
Comparative Genomics Reveals Adaptation by
Alteromonas sp. SN2 to Marine Tidal-Flat Conditions:
Cold Tolerance and Aromatic Hydrocarbon Metabolism

Renukaradhya K. Math1, Hyun Mi Jin1, Jeong Myeong Kim1, Yoonsoo Hahn1, Woojun Park2,

Eugene L. Madsen3, Che Ok Jeon1*

1 School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea, 2Division of Environmental Science

and Ecological Engineering, Korea University, Seoul, Republic of Korea, 3Department of Microbiology, Cornell University, Ithaca, New York, United States of America

Abstract

Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are
distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum
hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment
and has been shown to metabolize aromatic hydrocarbons there. Strain SN2’s genomic features were analyzed
bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2’s genome
differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs,
dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean
Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR
gene homology) indicate that strain SN2’s genome architecture has been altered via horizontal gene transfer (HGT).
Experiments proved that strain SN2 was far more cold tolerant, especially at 5uC, than the other two strains. Consistent with
the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane
transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its
seasonally cold sea-tidal flat habitat.
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Introduction

The genus Alteromonas, established by Baumann et al. [1,2],

accommodates Gram-negative, aerobic, motile, rod-shaped bac-

teria living in marine habitats. Members of the genus Alteromonas

are globally distributed and have been isolated as different

ecotypes from surface, as well as deep (1000,3500 m), seawater

[3,4,5,6,7]. Previous studies also have shown that members of the

genus Alteromonas may dominate heterotrophic blooms; thus, this

genus has been generally described as having a copiotrophic way

of life as an r-strategist [8,9]; they can grow rapidly when organic

nutrients are available in the marine setting.

The coasts of the Yellow Sea on the Korean peninsula consist of

vast tidal flats, which are known as ‘‘getbol’’ in Korea. It is well

known that sea-tidal flats are rich in valuable biological resources

(including marine animals) that play very important roles in the

restoration and stabilization of coastal ecosystems and nutrient

cycling [10,11,12,13]. Sea-tidal flats are coastal marshes or muddy

areas that undergo flooding with seawater and exposure to the

atmosphere between low and high tides [14]. Petroleum

hydrocarbon releases into the marine environment occur broadly

[15]; in fact, in 2007 the oil tanker MV Hebei Spirit released an

estimated 12,547,000 liters (10,900 M/T) of crude oil to tidal flats

along the Taean coast of the Yellow Sea in South Korea [16].

During the winter season, microbial communities in sea-tidal flats

experience very low temperature (,0uC) especially low tide; while

in summer, the sea-tidal flat microorganisms confront the

challenge of higher temperature (.30uC). Obviously then, sea-

tidal flat habitats present selective pressures for native marine

microorganisms (temperature, fluctuations in oxygen tension and

organic compounds; Kim et al. [17,13]) that differ considerably

from those of the open ocean.

Previously published reports have suggested that many

Alteromonas-related bacteria likely play important roles in PAH

degradation in marine habitats [18,19]. Our previous studies also

showed that members of Alteromonas were responsible for the in situ

biodegradation of polycyclic aromatic hydrocarbons (PAHs) in

crude oil-contaminated sea-tidal flat sediment [20]. Recently,

Alteromonas sp. strain SN2 (KACC 91504P) was isolated and its

genome was sequenced [21]. However, the genetic traits of strain

SN2 that confer abilities to metabolize aromatic hydrocarbons and

facilitate successful adaptation to sea-tidal flat conditions remain to

be explored.
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Over the past few years, genomic analysis and comparative

genomics have provided significant insights into the ecological

fitness traits and metabolic versatilities of microbes. Here, we

present an analysis of the whole genome sequence of strain SN2

and compare it with the genomes of two Alteromonas macleodii strains

representing distinctive ecotypes: surface waters in the Pacific

Ocean and deep waters of the Adriatic Sea [7]. We also examine

the SN2 genome for special features such as genomic islands,

codon usage, membrane transport, signal transduction genes,

tRNA diversity, recombination, carbon metabolism, and aromatic

hydrocarbon biodegradation–all of which reveal ecological fitness

traits associated with microbial survival strategies (especially cold

adaptation) that are relevant to sea-tidal flat sediments.

Materials and Methods

Sampling site and bacterial strains
Alteromonas sp. SN2 (KACC 91504P) was isolated from a sea-

tidal flat sediment gathered from the Taean coastal area (36u489

500N 126u11990E), Republic of Korea, on December 29, 2007, 22

days after an oil spill accident [20]. At the sampling time, the

characteristics of the sampling site were as follows: temperature of

the sampling site, 2.0uC; temperature of seawater, 6.7uC; salinity

of seawater: 32.05%; and dissolved oxygen of seawater: 10.9 mg

l21. In the previous report, the entire genomic sequence of strain

SN2 was determined [21]. In brief, a draft of assembly with the

pyrosequencing data at 1306coverage was first generated and all

intrascaffold and interscaffold gaps were closed by primer walking

and PCR segment sequencing. The final whole-genome sequence

was further validated by the Illumina sequencing data (about

1506coverage) and thirty-seven ambiguous regions were finally

confirmed by Sanger sequencing [21]. Alteromonas sp. AltDE (DSM

17117) and Alteromonas macleodii ATCC 27126 which were isolated

from the depths (1,000 m, 12.5uC) of the Adriatic Sea [7] and

from surface seawater of the Oahu coast (Hawaii) [1], respectively,

were used as reference strains for phenotypic and genomic

comparisons. For the growth tests for the three strains at different

temperatures, cells of the three strains at 30uC overnight were

inoculated (1%, vol/vol) into marine broth and cultivated in

a shaking incubator at 180 rpm. Growth was monitored by

measuring the OD600 of the cultures.

Genome annotation and comparative genomics
The completed genomic sequence of strain SN2 was submitted

to JGI Integrated Microbial Genomes (IMG, http://img.jgi.doe.

gov/) for automatic annotation; the results are available at URL

https://merced.jgi-psf.org/cgi-bin/er/main.cgi. Genomic se-

quencing and other related information for strains AltDE and

ATCC 27126 were obtained from the IMG server. A circular map

representing the genome of strain SN2 in Figure 1 was generated

using the web-based CGview program [22]. Shared proteins in

Figure 2(a) were defined as the reciprocal best-hit proteins with

a minimum of 50% identity and to 70% of the length of either

protein, as calculated by the BLAST algorithm. Proteins with no

matches were considered to be strain-specific proteins. The COG

analysis illustrated in Figures 2(b), 2(c), and 2(d) was performed

with the Function Category comparisons tool at IMG. Number

and diversity of tRNA genes of Table 1 were retrieved from the

tRNA database (http://gtrnadb.ucsc.edu/; [23]) or were calculat-

ed using an online web service (http://mobyle.pasteur.fr). The

ANI (average nucleotide identity) was calculated using the JSpecies

web program [24]. Small non-coding RNAs (ncRNA) were

identified by the IMG server and their roles were predicted using

the web-based TargetRNA program ([25]; http://snowwhite.

wellesley.edu/targetRNA/). Transporters, insertion sequence (IS)

elements, transcriptional regulators, chaperones and other func-

tional genes mentioned in Table 2 were found by inputting those

terms in NCBI or IMG gene product searches. Chromosomal

synteny of strains SN2 and AltDE was viewed using the tool within

the IMG server, and their genomic comparison was also

performed using the Mauve program [26]. Karlin signature skew

and cumulative GC skew were retrieved using Artemis tools

(sact_v9.0.5) [27]. The tetranucleotide frequency skew was drawn

using the Oligoweb interface (http://insilico.ehu.es/oligoweb/).

The Island Viewer was used to identify chromosomal deviation in

GC content, so called Genomic Islands (GIs) (http://www.

pathogenomics.sfu.ca/islandviewer; [28]). The CRISPR gene

sequences in the strain SN2 genome were found using an online

web service (http://crispr.u-psud.fr/Server/CRISPRfinder.php).

CUSP and CODCMP from the European Molecular Biology

Open Software Suite (EMBOSS) package [29] were used for

codon usage deviation analysis of the genomic islands (GIs), as

shown in Table 3. Correspondence analysis of codon usage as

shown in Table 4 was carried out using the web-based codonw

1.4.4 program (http://mobyle.pasteur.fr).

Global ocean sampling (GOS) recruitment
Recruitment of nucleotide-sequence fragments from GOS

database sequences [30,31] by the three Alteromonas genomes were

performed as described by Ivars-Martinez et al., [7]. Prior to

performing the recruitment analysis, the data base was sorted

according to the temperature (34 data sets spanning source-water

temperatures from 2 to 37 uC). The analyses used BLASTN set for

a cutoff of 50% identity and 70% of the length of the query

sequence. Normalization of the results was performed based on

database size, and the distribution of BLASTN best hit values of

SN2 (along with the values of strains AltDE and ATCC 27126)

were plotted using the SigmaPlot program (Systat Software, USA).

Recruitment of GOS database sequences to the strain SN2

genome, as shown in Figure 3(b), was performed using the

MUMmer program [32] and was visualized using the plotting

program gnuplot (http://www.gnuplot.info/) after sorting subsets

of the GOS database by the following geographic origins: follows,

Sargasso Sea, North American east coast, Coccus Kelling inside

London, Galapagos Island, Caribbean Sea, eastern tropical

Pacific, Panama Canal, Indian Ocean, tropical South Pacific,

Polynesian Archipelagos.

Oxidative stress sensitivity assay and growth curves
Growth (OD) by all three strains was monitored in marine broth

(Difco, USA) at different temperatures (5 to 40uC). Assays were

performed in triplicate in 5-ml culture volumes, shaken a 120 rpm,

and periodically monitored with a spectrophotometer. Oxidative

stress sensitivities of the three Alteromonas strains (SN2, AltDE, and

ATCC 21726) were evaluated as previously described [33]. Cells

were grown in marine broth overnight at 30uC and diluted 10-104-

fold in the same medium. The diluted cells were spotted on marine

agar (MA) without or with H2O2 (700 mM) and incubated at 30uC

for 24 h.

Accession number
The complete genome sequence of strain SN2 has been

deposited in GenBank under accession no. CP002339.

Sea-Tidal Flat Adaptation of Alteromonas sp. SN2
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Results and Discussion

General features of the strain SN2 genome
Strain SN2 has a single circular chromosome of 4,972,148 bp

with a G+C content of 43.51% [17]. General aspects of the

genome of strain SN2 and the two Alteromonas macleodii strains,

AltDE and ATCC 21726, are summarized in Table 1. Key

structural features, including G+C content, GC skew, and coding

sequences (CDSs) shared with strain AltDE (all discussed below)

are graphically depicted in Figure 1. Strain SN2 has a larger

genome (4.97 Mb) than the two other Alteromonas strains, AltDE

(4.41 Mb) and ATCC 27126 (4.61 Mb). The average gene length

of strain SN2 was relatively longer than those of the other two

Alteromonas strains because the number of protein coding genes in

strain SN2 did not exceed that of strain ATCC 27126, and the

DNA coding density of strain SN2 (87.99%) was similar to that of

strains AltDE (86.65%) and ATCC 27126 (86.76%) (Table 1). The

genome of strain SN2 encodes 4,355 candidate protein coding

genes, of which 3089 (70.93%) proteins were assigned to the

cluster of orthologous groups of proteins (COG), similar to the

values for strains AltDE (70.33%) and ATCC 27126 (71.29%).

Comparative average nucleotide identity (ANI) analysis with all

sequenced bacterial genomes in the IMG database revealed that

the genome of strain SN2 is most closely related to strains ATCC

21726 and AltDE. The ANI values between strains SN2 and

AltDE and ATCC 21726 were 74.03% and 70.8%, respectively,

and the ANI value between strains AltDE and ATCC 27126 was

81.24% [7], which indicates that, contrary to existing nomencla-

ture, the three Alteromonas strains represent members of different

species within the genus Alteromonas [34]. Five complete sets of

rRNA genes, 64 tRNA genes, and eight non-coding RNA genes

were identified within the strain SN2 genome.

Comparing gene contents across genomes
Distinctive genetic traits of strain SN2 may provide valuable

clues in identifying selective pressures and evolutionary develop-

ments that have allowed strain SN2 to succeed in its tidal flat

sediment habitat. Therefore, we applied established criteria

(minimum percent identity of nucleotides, 50%; coverage, 70%)

to identify common and strain-specific genes among the three

Alteromonas genomes (Figure 2). The three genomes shared 2479

core protein coding genes [Figure 2(a)]. Strains AltDE and ATCC

27126 shared more genes with each other than with strain SN2

Figure 1. A circular map representing the genome of Alteromonas sp. SN2. Forward strand and reverse strand CDSs (blue) are depicted on
the outermost two circles of the map, respectively, and RNA genes (tRNA: red; rRNA: violet; others: gray) are also shown on the same circles. The third
circle represents the BLASTN comparison of the strain AltDE genome against the strain SN2 genome (dark red indicates highly homologous CDSs).
G+C content (black) and GC skews (GC skew+: green, GC skew-: violet) are drawn on the fourth and fifth circles, respectively.
doi:10.1371/journal.pone.0035784.g001
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[Figure 2(a)]. This implies that the SN2 genome contains a greater

proportion of strain-specific genes than the other two genomes–

likely encoding specialized physiological properties. Although

a COG analysis comparison using the total pool of genes

reinforced commonalities among the three genomes (Figure 2b),

contrasts found using strain-specific genes appeared more evident,

especially in the COG categories of energy production and

conversion (C), carbohydrate transport and metabolism (G), and

replication, recombination and repair (L) [Figures 2(c) and 2(d)].

Genes from the categories of greatest contrast in Figures 2(c)

and 2(d) were subjected to additional scrutiny (Table 2). Strain

SN2’s genome contains 66 transposase and IS elements belonging

to 16 families; this abundance of mobile genetic element-related

genes is similar to that of the genome of strain AltDE (65) but is

much higher than that of the genome of strain ATCC 27126 (3)

(Table 2). Regarding another type of mobile genetic element, the

genomes of strain SN2 and ATCC 27126 both contain a relatively

low number (13 and 12, respectively) of phage integrase genes,

compared to that of the AltDE genome (32). The current literature

exhibits conflicting trends regarding the influence of ocean-water

depth on the abundance of mobile genetic elements. Reports

indicate that metagenomic DNA from surface seawater can

contain fewer phage integrases than that of deep (4000 m)

seawater [7,35]. On the other hand, DeLong et al. [36] observed

that phage genes were enriched in the photic zones having high

productivity. We feel the trends of phage genes found within our

three compared genomes reflect a combination of both water

depth and the sediment matrix. We speculate that microorganisms

living in sea-tidal-flat sediment experience cell-cell interactions at

relatively high frequency (leading to lateral gene transfer) due to

relatively high cell densities associated with particulate surfaces

[35]. By contrast, exposure in sediment to attack by phage

parasites may be relatively infrequent due to adsorptive in-

activation of the phage by particle surfaces [7].

Strain SN2 harbors more dioxygenase genes than the other two

Alteromonas strains AltDE and ATCC 27126 (Table 2), indicating

that strain SN2 has a higher degradation potential for recalcitrant

organic compounds such as polycyclic aromatic hydrocarbons

(PAHs). However, TonB receptors, which are related to the

transport or utilization of various substrates, are not as prevalent in

strain SN2 as they are in ATCC 27126. Similarly, there are

comparatively fewer ABC transporter genes in strain SN2 than in

the other two strains (Table 2), which contrasts with a previous

report that prokaryotic species with larger genome may contain

Figure 2. Comparison of the gene content of strains SN2, AltDE, and ATCC 27126. (a) A Venn diagram of shared and specific CDS genes in
each strain. Percentages of COG categories in the three Alteromonas species. (b) All orthologous genes and (c) specific orthologous genes between
strains SN2 and AltDE and (d) between strains SN2 and ATCC 27126. The alphabetic code for the column charts is as follows: C, energy production
and conversion; D, cell division and chromosome partitioning; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G,
carbohydrate transport and metabolism; H, coenzyme metabolism; I, lipid metabolism; J, translation, ribosomal structure, and biogenesis; K,
transcription; L, DNA replication, recombination, and repair; M, cell envelope biogenesis, outer membrane; N, cell motility and secretion; O,
posttranslational modification, protein turnover, and chaperones; P, inorganic ion transport and metabolism; Q, secondary metabolite biosynthesis,
transport, and catabolism; R, general function prediction only; S, function unknown; T, signal transduction mechanisms; U, intracellular trafficking,
secretion, and vesicular transport; V, defense mechanisms. Asterisks appear when a difference between treatments was at least 20%.
doi:10.1371/journal.pone.0035784.g002
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more ABC transporter genes [37]. Both trends in transport-related

genes may reflect the likelihood that carbon flow in sea-tidal flat

habitats may be proportionately less reliant on photosynthesis than

is surface seawater and less reliant on organic particulates (e.g.,

marine snow) than are deep sea areas. Strain SN2 contains fewer

heavy metal resistance-related genes and toxin-antitoxin systems.

Phenotypically, however, our recent experimental results (Figure

S1 and Table S1) showed that resistance by strain SN2 to heavy

metals (zinc and mercury; also antibiotics) was similar to that of

strain AltDE [7]. Genes that enable export of drugs or toxins are

commonly found in Gram-negative bacteria. The ability of these

three Alteromonas strains to tolerate exposure to metals and

antibiotics may be facilitated by their substantial content (SN2,

51; AltDE, 50; ATCC 27126, 45) of Acr system-related genes.

Although most genes in strains SN2 and AltDE matched

significantly, the complex patterns exhibited in the chromosomal

synteny dot-blot revealed that numerous genomic translocation,

inversion, and insertion have occurred (Figure 3; the dot-blot plot

between strains SN2 and ATCC 27126 was not shown due to the

incomplete genome sequence of strain ATCC 27126); such

rearrangements may have been mediated by strain SN2’s mobile

genetic elements (transposases, IS elements, phage integrases; see

above and Table 2). A global genomic comparison using the

Mauve program also confirmed the extensive genome-wide

rearrangements in strain SN2 relative to strain AltDE, especially

in the form of reciprocal inversions (Figure S2). Furthermore,

deviations from mean values in Karlin signature skew, cumulative

GC skew, and tetranucleotide frequency (Figure 3) show

significant correlation; thereby providing additional evidence for

structural rearrangements in strain SN2’s genome. Interestingly,

the cumulative GC skew in the genome of strain SN2 showed

asymmetry (Figure 3); this is fully consistent with the above-

suggested recent genetic acquisitions and rearrangements [38].

Fifteen genomic islands were detected across the SN2 chromo-

some; these are discussed below.

Testing temperature adaptation among three
Alteromonas genomes using gene-fragment recruitment
analysis of the GOS database
Gene-fragment ‘‘recruitment analysis’’ has recently proven to be

an effective tool for assessing the degree of representation of

reference genomes in environmental metagenomic sequence

reads. By mapping the metagenomic reads onto known genomes,

this approach has shown that Pelagibacter ubique had a high presence

in pyrosequenced fosmid libraries prepared from Norwegian

coastal waters [39] and has shown high (.40%) Alteromonas-

genome coverage in a pyrosequenced metagenome from the Sea

of Marmara [40]. Particularly germane to the present investigation

prior to carrying out recruitment analyses, Ivars-Martinez et al. [7]

sorted subsets from the Global Ocean Survey (GOS) data sets

[30,31) according to location of origin and both habitat type (e.g.,

coastal, estuary, open ocean) and water temperature; this strategy

showed that the strain ATCC 27126 genome was highly

represented in metagenomes from estuaries and in metagenomes

derived from waters .20uC, relative to the AltDE genome. Here

we also utilized recruitment analysis to examine the influence of

temperature on the degree of representation of each of the three

Alteromonas genomes. We sorted the GOS database into 82 subsets

spanning temperatures from 2 to 37 uC; the majority of the subsets

(gathered from depths of 1 to 30 m) were warm surface waters (25

to 29uC). Results of this ‘‘recruitment versus water temperature’’

analysis appear in Figure 4(a), which plots habitat temperature

against normalized best-hit values for each of the three Alteromonas

genomes (a BLASTN cutoff of 50% nucleotide identity was

utilized; 70% of the length of the query sequence; best hit numbers

were normalized according to database sizes). The recruitment

analysis showed that the strain SN2 genome recruited slightly

Table 1. General features of the whole genomes of three
Alteromonas strainsa.

SN2 AltDE ATCC 27126

Size (bp) 4,972,148 4,412,285 4,607,010

GC content 43.51 44.90 44.60

Contigs 1 1 716

Total genesb 4,442 4,128 4,449

Protein coding genes 4,355 4,072 4,396

Proteins with function
prediction

3,401 3,032 3,306

DNA coding density
(%)

87.99 86.65 86.76

Proteins
assigned to COG (%)

3,089 (70.93) 2,864 (70.33) 3,134 (71.29)

Average gene length
(bp)

999.18 933.97 909.33

rRNA operons 5 5 5

Total tRNA
genes

64 40 48

tRNA diversity 34 29 31

ANIc (%) - 74.03 70.80

Non-coding RNA 8 - -

aThe genome analysis was carried out at JGI Integrated Microbial Genomes
(http://img.jgi.doe.gov/).
bNumbers of total protein coding genes.
cANI, Average nucleotide identity [34].
doi:10.1371/journal.pone.0035784.t001

Table 2. Abundances of gene categories found in the three
genomes of Alteromonas strains SN2, AltDE, and ATCC 27126.

Genes categories SN2 AltDE ATCC 27126

Phage integrase 13 32 12

Transposases and IS
elements

66 65 3

Chaperones 17 13 9

Sigma factors 18 8 10

Dioxygenases 21 11 8

TonB receptor 60 52 82

ABC transporters 73 82 79

Heavy metal
resistance

14 36 24

Toxin-antitoxin
system

3 12 7

Acr system 51 43 50

Histidine kinases 48 40 53

DDGEF domain
proteins

24 24 22

Diguanylate cyclase 15 6 14

Antioxidation-related
genes

23 17 15

doi:10.1371/journal.pone.0035784.t002
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more GOS database genes from seawater samples with low

temperature, and vice versa for strain ATCC 27126 although

strains SN2 and ATCC 27126 genomes had no significant

correlations for source seawater temperature [Figure 4(a)]. A

subsequent PCA plot revealed clearer correlations between the

seawater temperatures of GOS databases and the normalized best-

hit values. In the recruitment analysis of the strain ATCC 27126

genome, the variability represented by PCA factor 1 had a clear

positive correlation for the variability represented by factor 2

[Figure 4(b)]. However, in the strain SN2 genome, the two

variabilities had negative correlations, which were stronger than

those of the strain AltDE genome. Overall, the PCA-analysis

showed that the temperature-sorted recruitment trends were

distinct for each of the Alteromonas genomes. Thus, we conclude

that strain SN2 is adapted to grow at low temperature (relative to

strains AltDE and ATCC 27126). Conversely, consistent with the

findings of Ivars-Martinez et al. [7], we found that strain ATCC

27126 is adapted to grow at relatively higher seawater tempera-

tures.

Experimental verification of the influence of temperature
(5uC to 40uC) on the growth of three Alteromonas strains
Given the results of the above bioinformatics approach to gain

insight into temperature adaptations of the three Alteromonas

strains, we sought experimental laboratory verification. The sea-

tidal flat where strain SN2 was isolated features highly dynamic

Table 3. Characteristics of genomic islands (GIs) found in Alteromonas sp. SN2.

GI

Size

(kbp)

Number

of

genes

GC

content (%)

Hypothetical

proteins

Number of

transposase and

integrase

genes

Predicted

function

Codon usage

deviationa

1 12.82 12 0.42 7 2 Membrane
transport

2.089

2 15.30 16 0.40 11 3 Unknown 2.859

3 7.19 8 0.42 6 0 Cytochrome
complex

2.423

4 6.81 7 0.40 3 2 Cysteine synthesis 3.547

5 6.43 11 0.40 9 1 Unknown 2.595

6 9.89 7 0.41 3 2 Fatty acid
biosynthesis

2.348

7 10.30 8 0.40 6 0 Recombinase 2.411

8 7.32 7 0.40 4 1 Recombinase 2.476

9 37.50 35 0.39 19 5 Defense/motility 2.482

10 28.58 43 0.48 32 2 Conjugation 2.627

11 63.88 60 0.42 19 4 PAH degradation 1.530

12 4.03 7 0.45 5 0 DNA repair 4.243

13 18.81 17 0.49 9 1 Energy production
or conversion

2.915

14 8.81 12 0.43 5 5 LOS biosynthesis 2.193

15 18.47 15 0.39 6 3 GreB transcriptional factor 2.514

Abbreviations: PAH, polycyclic aromatic hydrocarbons; LOS, lipooligosaccharide.
aSum of the differences in codon use for each nucleotide triplet between a particular genomic island and the whole genome.
doi:10.1371/journal.pone.0035784.t003

Table 4. Correspondence analysis of codon usage among three Alteromonas species genomes.

Organism T3 C3 A3 G3 GC GC3s Fop CBI CAI L_sym L_nsym

SN2 0.3521 0.2776 0.3433 0.2647 0.450 0.429 0.409 20.004 0.187 1509464 53617

AltDE 0.3403 0.2820 0.3320 0.2759 0.463 0.445 0.416 0.009 0.188 1346658 45921

ATCC 27126 0.3396 0.2788 0.3349 0.2763 0.460 0.443 0.415 0.008 0.191 1409307 47524

Eleven types of codon use are shown for Alteromonas strains SN2, AltDE, and ATCC 27126
Abbreviations: T3,C3,A3 and G3 indicate the frequencies of bases at position 3 of each codon.
GC, GC content in coding genes (G+C)
GC3s, GC of silent 3rd codon position
Fop, frequency of optimal codon index
CBI, codon bias index
CAI, codon adaptation index
L_sym, number of synonymous codons
L_nsym, number of non-synonymous codons
doi:10.1371/journal.pone.0035784.t004
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environmental conditions: coastal waters ebb and flow on lunar

cycles, while there are large annual temperature fluctuations

(25uC to 35uC; [13]). By contrast, the seawater habitats where

Alteromonas macleodii ‘‘deep ecotype’’ (AltDE) and Alteromonas

macleodii ATCC 27126 were isolated have relatively constant

temperatures. AltDE is from the 1,000-m depth of the Adriatic Sea

(12.5uC; [7]) and strain ATCC 27126 is from surface seawater off

the coast of Oahu (Hawaii), whose annual variation is ,24 to

28uC. Because of the radically different temperature regimes in the

habitats from which the three strains were isolated, we

hypothesized their physiologies would reflect this selective in-

fluence. Growth (OD) by all three strains was monitored in marine

broth at eight different temperatures (5 to 40uC; Figure 5). Strain

SN2 clearly grew well at low temperatures– reaching high cell

density at 5uC within 14 days, while strains AltDE and ATCC

27126 showed no appreciable growth. At 10uC, both strains SN2

and AltDE showed maximum OD within 80 h, while strain

ATCC27126 failed to grow (Figure 5). At 15uC after 50 h, strain

ATCC 27126 showed increased OD, but the value was only half

that of the other more cold-tolerant strains. At 25, 30, and 35uC

growth of the three strains roughly matched one another.

Strikingly, at 40uC strain SN2 did not grow appreciably, while

Figure 3. Genome-wide analyses of Alteromonas strain SN2. (a) Dotplot showing chromosomal synteny between strains SN2 and AltDE. The
blue and orange-colored circles indicate reciprocal best hits in the forward and reverse strands for amino acid regions with .74% identity. The
dotplot shows extensive rearrangement in strain SN2 in the form of reciprocal inversions. Plots of cumulative GC skew for strains SN2 and AltDE are
shown next to the axes. The Karlin signature difference and tetranucleotide frequency diagrams are shown above the dotplot. Fifteen genomic
islands (shaded regions 1–15) were found in the strain SN2 genome. (b) Recruitment of nucleotide-sequence fragments from Global Ocean Survey
(GOS) database sequences against the strain SN2 genome using the Mummer program. Geographic origins of the GOS data sets are shown by color
codes as follows: Sargasso Sea (green), North American east coast (pink), Coccus Kelling inside London (light green), Galapagos Island (red), Caribbean
Sea (light blue), eastern tropical Pacific (brown), Panama Canal (yellow), Indian Ocean (sky blue), tropical South Pacific (dark green), Polynesian
Archipelagos (dark blue).
doi:10.1371/journal.pone.0035784.g003
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the ODs for strains AltDE and ATCC 27126 were diminished,

relative to the moderate temperatures (Figure 5). These results

clearly confirm that the individual physiologies of the three strains

reflect temperature regimes in their habitats of origin: strain SN2

has adapted to cold and ATCC 27126 has adapted to warm.

Psychrotolerant and psychrophilic microorganisms can grow

and colonize efficiently even at sub-zero temperatures. Such

abilities in microorganisms rely upon a broad array of cellular

modifications to counteract low-temperature challenges such as

low water viscosity, reduced fluidity of lipid membranes, and low

enzymatic activity [41,42]. Metabolic genes and genomic features

of strain SN2 that are likely involved in adaption to the sea-tidal-

flat habitat are explored below.

Genomic islands and other evidence of horizontal gene
transfer
Fifteen regions across the SN2 genome were identified (using

the integrated mode of IslandViewer) as genomic islands (GIs;

shaded regions 1–15 of Figure 3). Table 3 lists characteristics of

each GI, including size (kbp), number of genes, number of

associated mobile genetic elements, number of hypothetical

proteins, and their predicted function. These GIs represent

functional gene clusters acquired by strain SN2, likely via relatively

recent lateral gene transfer ([43,44,45,46] see above). When

fragment recruitment analysis using GOS database sequences was

performed for strain SN2’s genome [Figure 3(b)], it became

evident that some of these GIs were under-represented [particu-

larly GI-5 (unknown function) and GI-13 (energy production/

conservation; and also GI-4 (cysteine synthesis), GI-10 (conjuga-

tion) and GI-11 (PAH degradation)]. These observations are

consistent with the hypothesis that a subset of the genomic islands

may have been acquired from bacteria native to terrestrial habitats

adjacent to the sea-tidal flat sediment (Table 3). Consistent with

this hypothesis is the fact that the majority of GI-1’s 7 hypothetical

proteins had high similarities to homologues in the genome of the

terrestrial soil bacterium, Pseudomonas mendocina strain ymp.

Independent of their terrestrial versus marine origins, genomic

islands provide additional clues about genome plasticity in strain

SN2. Studies of deep-sea microbial genomes have indicated a high

degree of genetic plasticity [35], endowed by mobile elements such

as phage integrases or transposases (see related discussion, above,

and Table 2). GI-10 carries genes encoding TraL, TraE, TraK

and a related putative transfer protein (Table 3; loci

AMB_00035480, 00035490, 00035500, and 00035510); these

contribute to the overall pool of transposase and IS elements

impacting genetic rearrangement and horizontal gene transfer. In

addition, the IMG database annotation shows that the strain SN2

genome has 37 phage-related genes. Consistent with this, GIs -2, -

5 and -9 have footprints of phages or their remnants. Furthermore,

GIs -7, -8, -9, and -12 contain DNA-invertase, recombinase,

transcriptional regulator, and a restriction modification system,

respectively; these all reflect phage-related genetic modifications

and selective pressures. Furthermore, both GI-4 (cysteine synthe-

sis) and GI-12 (DNA repair) contain genes that have abnormal

codon usage (Table 3), a clear indicator of acquisition through

lateral gene transfers [47]. Finally, a survey of COG ‘‘L’’- category

genes from the three Alteromonas strains [Figures. 2(b) and 2(c)]

revealed that strain SN2 had relatively more genes (221) related to

replication, recombination and repair (COG L), while strain

AltDE and strain ATCC 27126 had only 178 and 137 genes,

respectively.

Thus, the many genomic islands, in combination with mobile

genetic elements and DNA replication/repair apparatus present in

the genome of strain SN2, offer clear evidence for the prominent

role of horizontal gene transfer, phage attacks, and genetic

rearrangements in the adaptive evolutionary history of this

bacterium.

Codon usage and correspondence analysis
Most amino acids are encoded by more than one nucleotide

triplet–there are synonymous codons, which usually differ from

one another at the third nucleotide. Such synonymous codons are

not used with equal frequencies, and their usage is often distinctive

Figure 4. Recruitment analysis of the GOS database sequences sorted by source-water temperatures. (a) Distribution of the normalized
BLASTN best hit values recruited against the three marine Alteromonas genomes as a function of habitat temperature. (b) Principal Components
Analysis (PCA) plot of data shown in panel A, showing results of factor analysis, and sorting by matched genome.
doi:10.1371/journal.pone.0035784.g004
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among microorganisms [48]. It is well recognized that natural

selection enhances biases of synonymous codon usage; thus,

analysis of synonymous codon usage between genomes can

facilitate our understanding of the evolution and ecological

adaptation [49]. For example, some thermophilic bacteria show

very strong triplet biases, including preference for AGG and AUA

and strong avoidance of CGU and CGA [50]. We examined

relative synonymous codon usage (RSCU) within the genomes of

Figure 5. Growth (optical density) of three Alteromonas strains (SN2, AltDE and ATCC 27126) in marine broth at eight different
temperatures ranging from 5 to 40uC. Closed circles indicate the growth rate for strain SN2, open circles for strain AltDE and closed triangles for
strain ATCC 27126. Data show averages of three replicate tubes.
doi:10.1371/journal.pone.0035784.g005
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Alteromonas strains SN2, AltDE, and ATCC 27126 (Figure 6).

While there was broad uniformity in codon usage (Figure 6), strain

ATCC 27126 (with its physiological preference for higher

temperatures; see above) showed clearly different codon usages

of CCA, UCC, UAG, UGU, UAC, UCU, UGC, UUG, UAA,

and UUA in comparison to those of the other two Alteromonas

strains AltDE and SN2. Strains AltDE and SN2 showed very

similar codon usage, with the exception of CCA (Figure 6). In

search for additional clues regarding low temperature adaptation

by strain SN2, we performed correspondence analysis (COA) of

codon usage for the three Alteromonas genomes; representative

COA values for the three Alteromonas genomes are listed in Table 4.

Although three indices (codon adaptation index, optimal codon

index, and effective number of codons) did not reveal major

differences (Table 4), strain SN2’s genome did show generally

lower G and C values for protein-coding genes, and negative value

for codon bias index compared to values for the other two

Alteromonas strains. In particularly, the G and C values of the third

nucleotide of synonymous codons in strain SN2 were lower than

those of the other two genomes, which is consistent the mounting

evidence (see sections above) that strain SN2 is more adapted to

cold habitats than are strains AltDE and ATCC 27126 [35].

Membrane transport and fatty acid biosynthesis:
implications for cold-tolerant physiology
It is widely recognized that cold-adapted bacteria feature

modified membrane components to maintain cell membrane

fluidity at low temperature through the synthesis of unsaturated

fatty acids and by changing the lengths of fatty acids and their

degree of phosphorylation [51]. Similarly, it is recognized that

membrane sterols are very important components in the

regulation of membrane fluidity, permeability, and the activity of

membrane bound proteins (e.g., transporters) [52], which are

common adaptive mechanisms used by cold-adapted microorgan-

isms [53,54]. Search for sterol-related genes across the strain SN2

genome showed the presence of four sterol desaturase- and one

fatty acid desaturase-coding genes, which are in common with two

other Alteromonas strains. We analyzed the fatty-acid profiles of all

three Alteromonas strains and also found very few differences (data

not shown); we surmise that other cellular factors influencing

membrane fluidity may explain the cold adaptation of strain SN2.

Among four sterol desaturase-coding genes, one (AMB_00013640)

was coded on GI-1 and other three (AMB_00002210,

AMB_00010260, and AMB_00043730) were coded elsewhere

on the chromosome. Strain SN2’s sterol-desaturase-containing GI-

1 also carries genes encoding a LysR-type transcriptional regulator

(AMB_00002200), a maltoporin (LamB, AMB_00002220), and

additional putative proteins [Figure S3(a)]. The maltoporin gene,

which was only present in strain SN2 among the three Alteromonas

strains, belongs to the LamB glycoporin family and is predicted to

facilitate passage of mono-, di-, and oligosaccharides, nucleic acids,

and proteins across the bacterial outer membrane [55].

Strain SN2 also possesses a biotin carboxylase gene

(AMB_00042110) in GI-6 that may be involved in de novo fatty

acid biosynthesis [Figure S3(b); this gene has previously been

reported to be expressed in Sphingopyxis at low temperature [42].

Strain SN2 carries three other de novo fatty acid biosynthesis genes:

acetyl-CoA carboxylase (AMB_00010190), cognate biotin carbox-

yl carrier protein (AMB_00042100), and biotin synthase

(AMB_00023740). Except for biotin synthase, other two genes

were not found from the genomes of strains AltDE and ATCC

27126. Similarly, biosynthetic genes for the synthesis of cell-

membrane aminoglycerophospholipids and the glycerol kinase

gene (AMB_00034630; catalyzing phosphorylation of glycerol into

glycerol-3-phosphate) are all present in strain SN2, but no glycerol

kinase gene was found from other two strains.

In Gram-negative bacteria, membrane components known as

lipooligosaccharides (LOS) have been shown to be important for

maintaining membrane fluidity at low temperature [51]. The

strain SN2 genome harbors clusters of LOS-like genes for the

biosynthesis of capsular exopolysaccharides

(AMB_00007130,40,50; AMB_00021260,70,80;

Figure 6. Relative synonymous codon usage (RSCU) in three Alteromonas strains (SN2, AltDE, and ATCC 27126). RSCU values were
calculated by summing the values for all of the genes. Correspondence analysis of codon usage as shown was carried out using the web-based
codonw 1.4.4 program (Rice et al., 2000). Codons of amino acids on X axis were arranged based on the ascending RSCU values of strain SN2.
doi:10.1371/journal.pone.0035784.g006
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AMB_00038110; AMB_00033060,70,80); similar gene clusters

were also identified in the genome of the relatively cold-adapted

bacterium strain AltDE, while such gene clusters were absent from

strain ATCC 27126. In addition, lipid A is a component of LOS in

Gram-negative bacteria, and lipid A biosynthesis acyltransferase is

responsible for lipid A biosynthesis [56]. The lipid A biosynthesis

acyltransferase (AMBT_03515) gene was found in GI-14 of strain

SN2 [Figure 3S(d)], but was not found in strain AltDE or ATCC

27126.

To conclude, a wide array of genetic characteristics, especially

of a maltoporin coding gene, a biotin carboxylase gene, and

a variety of other fatty-acid biosynthetic genes, and LOS- related

genes likely contribute to the cold adaptation phenotype of strain

SN2.

Signal transduction genes
Histidine kinases constitute the sensing component of the two-

component signal transduction systems, and diguanylate cyclase is

the GGDEF domain-containing protein that catalyzes the

formation of cyclic diguanylate monophosphate (C-di-GMP)

[57,58]. C-di-GMP in bacteria is the ubiquitous secondary

messenger involved in bacterial traits such as motility, biofilm

formation, phage or metal resistance, virulence, cell-cell commu-

nication, and extracellular polysaccharide (EPS) production [57].

A trend has been reported that the genomes of deep seawater

bacteria are more enriched in histidine kinases and diguanylate

cyclases than are the genomes of surface seawater bacteria [35,59].

However, our gene-content survey of the three Alteromonas strains

showed that the deep seawater bacterium, strain AltDE, had far

fewer histidine kinases and diguanylate cyclases than did the

surface marine habitat strains, SN2 and ATCC 27126 (Table 2).

The strain SN2 genome contains 24 genes encoding GGDEF

domain-containing proteins, 15 genes encoding diguanylate

cyclases, and 48 histidine kinase genes; these match or exceed

the corresponding abundances of these two gene categories for the

other two strains. Furthermore, strain SN2’s genome contains

more sigma factor coding genes than those of two other Alteromonas

strains (Table 2), suggesting that strain SN2 may respond more

rapidly to cellular or environmental signals such as temperature

fluctuations of the sea-tidal flat. The trend is clear: sea-tidal-flat

bacterium strain SN2 harbors more genes specific to signal

transduction systems than do its open-ocean-dwelling relatives

(strains AltDE and ATCC 27126), suggesting that signal-trans-

duction genes may play proportionately larger roles in the

adaptation of strain SN2 to sea-tidal sediment conditions, perhaps

fostering surface-attachment by cells to sediment particles.

tRNAs and non-coding RNAs
The total tRNA gene content in bacteria, especially psychro-

philic ones, can contribute to maximum potential growth rates–

because high numbers of tRNA genes can compensate for a slow

diffusion rates during biosynthetic reactions at low temperatures

[55]. Thus, microorganisms with high growth rates (high trans-

lational speed and/or accuracy) tend to have a high number of

total tRNA genes. It follows that the total tRNA gene content of

a genome may be an important indicator of selective pressures at

low temperatures [60,61]. Tallies of tRNA genes across the three

Alteromonas genomes showed that strain SN2 has a higher total

tRNA gene content and tRNA gene diversity than do strains

AltDE and ATCC 27126 (Table 1); this observation is, again,

consistent with strain SN2’s ability to grow well at low temperature

compared to strains AltDE and ATCC 27126 (Figure 5).

Another comparative analysis using the IMG server revealed

that the genome of strain SN2 carries eight small non-coding

RNAs (ncRNAs), which are not present in the other two

Alteromonas strains (Table 1). Small ncRNAs have been shown to

play post-transcriptionally important regulatory roles ranging from

Fe2+ metabolism to oxidative damage at low temperature to

reduction of glucose entry to phosphorylation under various stress

conditions [62,63]. To predict possible roles of the eight ncRNAs

in strain SN2, we analyzed the ncRNA sequences using the web-

based TargetRNA program [25], which predicts ncRNA in-

Figure 7. Physical map of a naphthalene degradation gene cluster and transposase coding genes from GI-11 of strain SN2. (a) and its
comparisons with Polaromonas naphthalenivorans CJ2 (b) and Ralstonia sp. U2 (C). The black arrows indicate genes involved in naphthalene
metabolism (nagC9 is a partial gene of nagC). R1, R2, and R3 are coding genes of GntR-, LysR-, and MarR-type regulatory proteins, respectively, and
orf1 and orf2 are coding genes of putative 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase and 3-hydroxybenzoate 6-hydroxylase, respectively.
doi:10.1371/journal.pone.0035784.g007
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teraction genes based on E. coli and Shewanella oneidensis genomes.

Among the eight ncRNAs, the possible regulatory roles of two

ncRNAs were predicted in strain SN2. One ncRNA (182 bp) was

predicted to bind with mRNA transcripts of ompR (S. oneidensis) or

uspA (E. coli), suggesting that the ncRNA may regulate the ompA

(AMB_00039900) gene expression of strain SN2 to improve outer-

membrane permeability [34,64]. The other ncRNA (344 bp) was

predicted to bind with mRNA transcripts of GGDEF (S. oneidensis)

or RpoS (E. coli) genes that likely confer tolerance and improve

environmental fitness under stress conditions [57]. The above

findings suggest that strain SN2’s complement of both tRNA and

ncRNAs genes add to the bacterium’s array of fitness traits.

Chaperones
Chaperones are ubiquitous and abundant proteins that assist in

cell function in all organisms. Chaperones stabilize the conforma-

tion and 3-dimensional folding properties of other proteins and

have been shown to contribute to bacterial growth at low

temperatures [65]. Strain SN2 demonstrated robust growth at

5uC, although its lag period was long (see above, Figure 5). Such

phenotypic behavior has often been observed in psychrotrophic

and mesophilic bacteria, and is associated with the expression of

cold-shock chaperones [65]. As expected, strain SN2 contains

more chaperones such as a flagellin-specific chaperonin, heat

shock chaperone (Hsp90 & 70), Dna K, J, lipase chaperone, and

Cochaperonin (GroEL, GrpE) than do the other two Alteromonas

strains (Table 2)– which likely signifies the higher adaptability of

strain SN2 to environmental fluctuations such as daily sea-tidal

flooding, frequent input of contaminants, and wide seasonal

temperature changes [66,7].

Central metabolism
The genes typical of the complete Embden-Meyerhof-Parnas

(EMP) and citric acid cycle pathways are present in all three

Alteromonas strains. The glucokinase (AMB_00011720) gene, which

encodes the enzyme catalyzing the first step of the EMP pathway

for strain SN2, is positioned in the genome near the glucose 6-

phosphate-1-dehydrogenase gene (AMB_00011690) of the pentose

phosphate (PP) pathway. This close gene arrangement and

a proximally located rpiR-family transcriptional regulator hexR

(AMB_00011680) indicate co-regulation of the EMP and PP

catabolic pathways in strain SN2. However, the genes coding for

glucose 6-phosphate isomerase (AMB_00004020; catalyzing the

second step in the EMP pathway) and for phosphoglyceraldehyde

transaldolase (AMB_00004030; catalyzing the second step in the

PP pathway) are distant from the above adjacently located genes.

This gene arrangement is also observed in the other two

Alteromonas strains.

All genes encoding proteins in the Entner-Doudoroff (ED)

pathway, which is used by aerobic prokaryotes to transform

glucose to pyruvate, are also present in Strain SN2. The two genes

coding 6-phosphogluconate dehydratase (AMB_00011710) and 2-

keto-3-deoxyphosphogluconate aldolase (AMB_0011730) are ad-

jacent to one another; this arrangement is the same as that in the

other two Alteromonas strains, as well as in many other strains such

as Polaromonas naphthalenivorans CJ2, Polaromonas JS 666, Rhodoferax

ferrireducens, and Acidovorax JS42 [46]. Meanwhile, the PP pathway

can produce a variety crucial metabolic precursors for nucleic

acids, aromatic amino acids and NADPH for biosynthesis and

several catalytic reactions [46]. All genes required for the PP

pathway are present in all three Alteromonas strains, and all three

Alteromonas strains harbor one copy of the gene encoding ribulose-

5-phosphate 3-epimerase, which converts ribulose-5-phosphate to

xylulose 5-phosphate. However, only strain SN2 shows broader

potential metabolic versatility by harboring, in addition, two

copies of the ribulose-5-phosphate 4-epimerase gene. Two genes

for the glyoxylate pathway within the citric acid cycle, isocitrate

lyase (AMB_00007460) and malate synthase (AMB_00007440),

are present in all three Alteromonas strains. It is well established that

many bacteria accumulate glycogen storage bodies during periods

of high carbon source availability [59]. Genes for the storage and

use of glycogen including glucose-1-phosphate adenylyltransferase

(AMB_00020600), glycogen synthase (AMB_00034280), glycogen

branching enzyme (AMB_00011770), and glycogen debranching

enzyme GlgX (AMB_00011780) are present in all three Alteromonas

strains. Thus, the presence of central carbon metabolism genes

(EMP pathway, citric acid cycle, ED pathway, PP pathway,

glycogen storage, and glyoxylate pathway) in all three Alteromonas

strains is consistent with prior reports of their copiotrophic life style

as r-strategists [8,9].

Degradation of polycyclic aromatic hydrocarbons
Strain SN2 harbors genes for metabolizing polycyclic aromatic

hydrocarbons (PAH) within GI-11 [Table 3, Figure 7(a)], while the

other two Alteromonas strains do not. Gene homology and

associated functions indicate that strain SN2 metabolizes naph-

thalene via the gentisate biochemical pathway, which is encoded

by the nag operon in other bacteria. GI-11 contains salicylate-5-

hydroxylase (nagGH) and gentisate 1,2-dioxygenase (nag I) genes

(Figure 7), which are the key naphthalene metabolic enzymes in

the gentisate pathway in Polaromonas naphthalenivorans CJ2 [67,68]

and Ralstonia sp. U2 [69]. However, the naphthalene catabolic

gene order and operon structures among strains SN2, U2, and CJ2

show striking contrasts (Figure 7). The naphthalene catabolic gene

cluster in strain U2 occurs as a single linear array of genes,

controlled by one LysR-type regulator (nagR). In strain CJ2,

control is, again, by nagR, and the strain U2-like gene organization

is retained, although split into large and small gene clusters; [70].

By contrast, the naphthalene catabolic genes of strain SN2 are

scattered broadly and are distributed between two clusters across

a 33 kbp section of GI-11. Moreover, three regulatory genes (two

LysR-type regulators, AMB_00036020; AMB_00036030; one

GntR-type regulator, AMB_00035900) are associated with the

PAH genes in strain SN2. The presence of additional regulatory

genes may be physiologically advantageous to strain SN2; it has

been suggested that refined gene regulatory mechanisms allow

cells to adjust their metabolism within a challenging range of

conditions. The fluctuating conditions such as sporadic input of

hydrocarbon contaminants and seasonal temperature change that

prevail in strain SN2’s sea-tidal-flat habitat may have selected for

an increase in gene copy number or alterations in the associated

regulatory system [71].

Overall, the naphthalene metabolic pathway carried by strain

SN2 likely converts naphthalene to salicylate, then gentisate, and

finally fumarate and pyruvate via the gentisate pathway. The PAH

degradation capabilities of strain SN2 have been confirmed

experimentally; strain SN2 is able to degrade naphthalene,

phenanthrene, anthracene, and pyrene [21]. PAH degradation

does not seem to be a common feature of the Alteromonas strains,

although it has been reported that some Alteromonas species can

degrade PAH compounds [72,73]. The recruitment of PAH-

degrading genes into strain SN2 is presumed to be an important

enabling adaptation for the sea-tidal-flat habitat. The absence of

napthalene-catabolic genes in the other two Alteromonas strains and

the presence of transposases at the two ends of the PAH-degrading

gene cluster in GI-11 are fully consistent with acquisition in strain

SN2 via horizontal gene transfer.
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Oxidative stress tolerance
Mechanisms to combat oxidative stress are required in all

microorganisms that carry out aerobic respiration, as well as those

that express dioxygenase-type enzymes (discussed above) used in

PAH metabolism. Inspection of the strain the SN2 genome

revealed that strain SN2 has a greater abundance of both

dioxygenase genes (see above) and anti-oxidation related genes

than do the two other strains AltDE and ATCC 27126. This tally

of genes that neutralize reactive-oxygen-species such as superoxide

and hydrogen peroxide (Table 2). Strain SN2 has six predicted

catalase genes (AMB_00000560,90,940, AMB_00001910,

AMB_00011020,23980), two superoxide dismutase

(AMB_00011220; AMB_00025380), and one alkyl hydrogen

peroxide reductase (AMB_00013490) gene, which are similar

with the corresponding abundances of these three gene categories

for other two strains AltDE (5, 2, and 3 genes, respectively) and

ATCC 27126 (4, 3, and 3 genes, respectively). On the other hand,

six glutaredoxin and eight thioredoxin genes were found from the

strain SN2’s genome. However, other two Alteromonas strains

harbor fewer glutaredoxin (AltDE, 4; ATCC27126, 3) and

thioredoxin (AltDE, 6; ATCC27126, 6) genes than strain SN2.

The presence of oxidative stress tolerance genes may be a strategy

adopted by strain SN2 to deal with reactive oxygen species

produced by exposure to the atmosphere or the dioxygenase

actions. This feature was checked phenotypically and strain SN2

showed more tolerance to 700 mM H2O2 than did the other

Alteromonas strains (Figure S4).

Phage resistance and lateral gene transfer
A survey for genes related to defensive strategies revealed that

strain SN2 harbors five restriction endonuclease genes to degrade

alien DNAs and protect from viral attack [43]. One of these is

encoded within GI-9 (AMB_00033980) [Figure S3(c)], adjacent to

an adenine-specific DNA methylase Mod gene (AMB_00033990),

which likely contribute to a restriction-modification system to resist

phage attack [7]. Because phage that attack bacteria are abundant

in seawater habitats, many seawater bacteria may carry CRISPR

sequences which function as an anti-phage defense system via

RNA-silencing-like mechanism [74,75]. Four CRISPR sequences

were found in the strain SN2’s genome via the CRISPR-finder

program. Meanwhile, one CRISPR gene and no CRISPR genes

were found from strains AltDE and strain ATCC 27126,

respectively [7]. Interestingly, one of the CRISPR genes was

detected within GI-11 of strain SN2’s genome in association with

PAH-degrading genes (Figure 7) and its BlastN analysis showed

that a related CRISPR gene sequence occur also in the Shewanella

baltica OS185 genome with high homology. The other two

CRISPR gene sequences in strain SN2 were detected, with 100%

homology, in the genomes of Marinomonas sp. MWYL1 and

Leuconostoc gasicomitatum. The above patterns in CRISPR and GI

occurrence in strain SN2’s genome confirm that an extensive and

complex array of horizontal gene transfer events have occurred

throughout this bacterium’s evolutionary history.

In conclusion, comparative genomic analyses of strain SN2 and

two other Alteromonas strains, AltDE and ATCC 27126, expand

our knowledge of the evolution and adaptation of an important

marine genus. Numerous independent criteria (e.g., genomic

islands, transposons, IS elements, gene clusters with homologs only

in taxonomically-distant hosts) establish that strain SN2 has

acquired many genes via lateral gene transfer. A large portion of

these genetic acquisitions have contributed to strain SN2’s

successful adaption to cold conditions and to its ability to

metabolize PAH compounds in its sea-tidal-flat-sediment habitat

that undergoes wide seasonal temperature fluctuations. The

completed genome of strain SN2 will allow us to continue to

advance understanding of the physiology, evolution, and ecolog-

ical fitness of this copiotrophic marine bacterium.

Supporting Information

Figure S1 Growth curves (Optical Density) of strain SN2

at different concentrations of mercury (a) and Zinc (b).

(TIF)

Figure S2 Genomic alignment showing extensive ge-

nome-wide rearrangements in strains SN2 and AltDE in

the form of reciprocal inversions. Forty two homologous

blocks in the SN2 genome are shown as identically colored regions

linked to the AltDE genome. Regions that are inverted relative to

strain SN2 are shifted downward in the genome of strain SN2.

(TIF)

Figure S3 Genomic islands of strain SN2 involved in

membrane transport (a, GI-1), fatty acid biosynthesis (b, GI-6;

D, GI-14), and phage resistance (c, GI-9).

(TIF)

Figure S4 Plate assay to determine the oxidative stress

tolerance ability of three Alteromonas species. The stress

tolerance abilities of the strains were tested using 700 mM H2O2.

The serially diluted cells (10 to 104-fold) were spotted on marine

agar (MA) without or with H2O2 (700 mM) and incubated at 30uC

for 24 hrs.

(TIF)

Table S1 Antibiotic tolerance for three Alteromonas strains (SN2,

AltDE, and ATCC 27126). The tests were performed on marine

agar at 25uC for 2 days.
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