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Abstract

Background: Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of
glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant
products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis
of pharmaceutically important molecules of medicinal plants like Withania somnifera.

Results: Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs.
Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates
(sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having
lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine,
stigmasterol and 24-methylene cholesterol.

Conclusion: This study reveals topological characters and conserved nature of two SGTs from W. somnifera

(WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate
specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy)
of enzyme-substrate complexes through comparative docking.
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Background
Glycosylation is an important step in biosynthesis of vari-
ous natural products that modifies the physical and chem-
ical properties of plant metabolites. Glycosylation of
metabolites have been reported to enhance their solubility
and stability as well as facilitates their accumulation and
storage in plant cells which ultimately determine bioactivity
and bioavailability of natural product [1]. Glycosylation re-
action is catalyzed by the specific enzymes, glycosyltransfer-
ases, (GTs; EC 2.4.x.y) which belong to a multigene family
and responsible for glycosidic bond formation by transfer
of activated glycosyl group to a nucleophilic acceptor mol-
ecule. Prior to the reaction, substrate that acts as glycosyl
group donor is activated as nucleoside diphosphate sugars

[2]. Acceptor molecule for the GTs are oligosaccharides,
polysaccharides and glyco-conjugates of the secondary me-
tabolites including phenolics, terpenoids, cyanohydrins,
thiohydroximates, flavonoids, sterols and alkaloids [3,4].
GTs have been classified on the basis of sequence

similarities into 97 families as mentioned in Carbohy-
drate Active Enzyme Database (http://www.cazy.org) [5].
Members of each GT family having related consensus se-
quence, corollary fold along with catalytic specificity
[6-8]. A comprehensive survey of the GTs demonstrated
to adopt either GT-A or GT-B fold. Tightly adjoining β/
α/β domain of the GT-A fold form continuous central
sheet with at least eight β-strands, while two Rossmann-
like less tightly associated β/α/β domains “face each
other” with ligand binding displays in the GT-B fold and
associated with the conformational changes in relative
orientation [9]. Formation of the enzyme substrate com-
plex requires two highly conserved domain of GTs, one
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of which binds to the UDP-sugar and another binds to
sugar acceptor. UDP sugar binding domain is also called as
plant secondary product GT consensus sequence (PSPG)
box [3,10,11]. Formation of the enzyme-substrate complex
by GTs and UDP-sugar interaction has been described
briefly in various reports [1,2,12,13].
Functional role of sterol glycosyltransferase is of great im-

portance in medicinal plants like Withania somnifera,
Panax ginseng, Crocus sativus, chickpea, etc. [14-17]. Com-
parative analysis of sterol glucosyltransferase (SGT) activity
towards sterols without side chain suggests relatively higher
activity in W. somnifera as compared to Arabidopsis [14].
Another study mentioned substrate specificity of purified
cytosolic and membrane-bound sterol glycosyltransferase
of W. somnifera towards different sterol substrates [18].
This medicinal plant has been reported to various pharma-
ceutical activities because of various glycosylated molecules
synthesized in this plant [19-22] and has been a target for
the genomic characterization [15,23-31].
Present study demonstrates catalytic behaviour of two

characterized members of Withania somnifera glycosyl-
transferases (WsSGTs), WsSGTL1 and WsSGTL4 among
the large gene family [29]. The structural model of
WsSGTL1 and WsSGTL4 is not available in database and is
reported for the first time in this study. Analysis suggested
specificity of these SGTs to specific molecules which might
be important for synthesis of unique molecules with spe-
cific pharmaceutical activities. Several reports are available
with detailed mechanism of UDP-glucose binding motif.
But, involvement of the putative sterol binding motif in re-
action mechanism has not been illustrated earlier. In the
present study, along with structural model of WsSGTs, we
also describe the sterols/withanolides-WsSGTs complexes,
which require putative sterol binding domain (UDPGT) of
the enzyme in order to catalyze reaction mechanism. Com-
parative analysis of protein followed by docking experi-
ments performed to evaluate the comparative docking
concert of proteins using AutoDock’s standard protocol.

Methods
Selection and sequence alignment of WsSGTs

Two WsSGT cDNA sequence of W. somnifera, WsSGTL1
and WsSGTL4 with accession number DQ356887.1 and
EU342374, respectively, were selected from the work of
Sharma et al. [14] and Chaturvedi et al. [15] and retrieved
from NCBI nucleotide database (http://www.ncbi.nlm.nih.
gov/nucleotide/). Sequence homology searches between
selected WsSGT proteins i.e. WsSGTL1 and WsSGTL4
were carried out using BLAST algorithm against protein
data bank (PDB). The deduced polypeptide sequence
alignment was performed using ClustalW program (http://
www.ebi.ac.uk/clustalW/) while shading was done with
the Boxshade 3.21 program (http://www.ch.embnet.org/
software/BOX_form.html/).

Topology alignment

Relationship of WsSGTs (WsSGTL1 and WsSGTL4) with
the known proteins in the PDB along with resemblance of
functionally important binding regions of proteins were
analysed through the structural similarity scores using
ProBis tool (http://probis.cmm.ki.si/) [32] by inspecting
their physiochemical properties. Active sites for both the
proteins are determined by DogSiteScorer [http://dogsi-
te.zbh.uni-hamburg.de/] and ProBis tool. Three dimen-
sional structures of proteins were further used for
structural topology alignment against non-redundant PDB
(nr-PDB) database to check the structural similarity and
conserved regions in WsSGTs structure using by means of
de novo comparisons of proteins ProBis tool. Structural
superimposition was also performed using Chimera tool
to find conserve structural folds [33].

Proteins data and model preparation

Osmani et al. [13] mentioned about the few reports
available with demonstration of crystal structure of any
GT. Structures of WsSGTL1 and WsSGTL4 were mod-
elled using GENO3D (http://geno3d-pbil.ibcp.fr) [34]
server where both sequences were submitted to search
template by using condition NPS@3D sequences at 95%
identity in PDB database with expectation value of 1e-06
applying blosum62 matrix. From provided outputs, pdb
Id 3H4T was selected as template for the structure mod-
elling. Structural refinement of both the models was ac-
complished by Molecular dynamics simulation (MD)
using GROMOS56 force field in GROMACS along with
the SPC model for water. MDs were done using a time
step of 1 fs at 300 K, under these conditions 1 ns MD
was performed using GROMACS [35]. Structural model-
ling provided insight about mechanism of action of
WsSGTL1 and WsSGTL4, the information of participat-
ing amino acids and clarifying the mechanism of action
of interaction between WsSGTL1 and WsSGTL4. Max-
imum likelihood algorithm in MEGA4 was used to con-
struct phylogenetic tree using neighbour joining method
with 100 bootstrap values. Accession numbers of the or-
ganisms are provided in Additional file 1.

Ligands data and preparation

The models of WsSGTL1 and WsSGTL4 were used to
study protein-ligand conformations by automatic dock-
ing for 14 substrates including 10 sterols (β-sitosterol,
brassicasterol, deactyl-16-DPA, dehydro-epiandrosteron,
epoxypregnenolone, ergosterol, pregnenolone, transan-
drosterone, solasodine, stigmasterol and 24-methylene
cholesterol) and 4 withanolides (withaferin A, withanolide
A, withanolide B and withanolide D). Structure Data File
(SDF) of the selected ligands were downloaded from the
Pubchem (http://pubchem.ncbi.nlm.nih.gov) and further
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converted into PDB format using OpenBabel Tool
(http://openbabel.org/wiki/Main_Page) [36].

Docking simulations

Docking studies were performed to predict the putative
modification of binding modes of group of sterols and
withanolides with the structural model of WsSGTL1 and
WsSGTL4. The grid size was set to cover both acting
domains present in WsSGTL1 and WsSGTL4 protein
with grid spacing of 0.375 Å. Genetic algorithm (GA)
was applied as searching parameter with 10 number of
GA runs and setting population size 150, maximum
number of energy evaluations was set to 25,00,000 with
considering the maximum number of generations to
27,000. Binding of WsSGTs (WsSGTL1 and WsSGTL4)
with different ligands were performed using AutoDock
4.0 (http://autodock.scripps.edu) [37]. The lowest bind-
ing energy conformation with H-Bonds in cluster was
considered as the most favourable docking pose.
Protein-ligand complexes obtained from AUTODOCK 4
were further viewed in UCSF-Chimera molecule viewer
tool for better analysis of interaction [33]. In each case,
10 different docking arrangements were produced. The
conformations obtained as result of rigid body docking
were sorted by total binding energy, hydrogen bonds
formed, bond lengths and close contacts between en-
zyme active sites.

Results and discussion
Evolutionary conserved nature of WsSGTs

Structural similarities as well as conserved functional
domains of WsSGTs have been detected from a large

database (ProBiS database) of the protein structures.
Structural annotations of WsSGT proteins showed some
interesting features. The active site of protein is aligned
with nrPDB using PROBIS tool, which aligns active site
geometry with similar amino acids. The result showed
that the structure of active site is very much similar to
chimeric glycosyltransferase (3H4T) of Actinoplanes

teichomyceticus, the bacterial GT with high similarity of
physiochemical properties on the basis of structural
equivalence for the both proteins. The structure com-
parison of WsSGTL1 and WsSGTL4 was also made for
the flavonoid glycosyltransferase protein of Vitis vinifera
(pdb 2C1X) and iso-flavonoid glycosyltransferase protein
of Medicago truncatula (pdb 2PQ6), which demonstrates
the similarity in structures as well as evolutionary con-
served regions in the protein structure (Figure 1).
On the basis of sequence similarity, more than 75% of

GTs from prokaryotes to eukaryotes were grouped into
three monophyletic super families named as GT-A, GT-
B and GT-C. Among three, GT-A and GT-B evolved as
most diverse and ubiquitous group of GTs as GT-A in-
cludes variety of organisms i.e. E. coli, Bacillus subtilis, Bos
taurus, Oryctolagus cuniculus, Mus musculus, Neisseria
meningitides, Homo sapiens, etc. [38]. Structure of
WsSGTL1 and WsSGTL4 were modelled using homology
modelling and are reported first time in this study. The
proposed models show structural organization which con-
tain 17 α-helices and 3 β-strands for the WsSGTL1
(Figure 2A) and 19 α-helix and 2 β-strands for the
WsSGTL4 (Figure 2B). Previous studies indicated that the
structure of these two domains of WsSGTs is crucial for
the activity and therefore the domains in both proteins

Figure 1 Topological alignment of WsSGTs. Local structural superimposition showing similarity of V. vinifera GT (yellow), M. truncatula GT (green),
with (A) WsSGTL1 (blue) and (B) WsSGTL4 (blue).
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were evaluated [6,12,39]. Structures of both the proteins
suggested that WsSGTL1 and WsSGTL4 belong to the
GT-B family glycosyltransferase, as in members of GT-B
family all β-sheets of protein are in parallel orientation
(Figure 2).

Differences between WsSGTL1 and WsSGTL4 proteins

WsSGTL1 (701aa) and WsSGTL4 (622 aa) have variation
in sequence length as well as in their structure. The se-
quence alignment of these two sequences shows 55%
identity with 72% conservative substitution (Figure 3A).
Phylogenetic analysis of both the proteins suggested that
WsSGTL1 was closer to S. lycopersicum GT, whereas
WsSGTL4 have more similarity to M. truncatula GT
(Figure 3B). Phylogenetic analysis of GTs performed by

Coutinho et al. and Hashimoto et al. explained the an-
cient origin of GTs during evolution from the time of di-
vergence of prokaryotes and eukaryotes [9,40]. Energy
minimization results for both proteins reflects that
WsSGTL4 seems more stable than the WsSGTL1, as
WsSGTL1 stabilizes on −1.20 kJ/mol while WsSGTL4
stabilizes on −1.58 kJ/mol (Figure 3C),
Active sites of both the protein involve UDPGT do-

main and a part of glyco_transf_28 domain. Comparison
of active sites of these proteins indicated that cavity vol-
ume of WsSGTL4 was much bigger (2371.07 Å3) than
WsSGTL1 (1481.16 Å3) (Table 1). Volume of cavities
suggested more sensitive nature of WsSGTL4 for the re-
action with substrates as compared to WsSGTL1. Number
of H-bond donors being much more (66) in WsSGTL4 as

Figure 2 Ribbon diagrams of WsSGT proteins. (A) WsSGTL1 (B) WsSGTL4 showing Glyco_tranf_28 domain (orange), UDPGT domain (yellow),
PSPG box (green), β-sheets (red) and α-helices (blue).
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compared to WsSGTL1 (38). Number of hydrophobic res-
idues (116) is more in WsSGTL4 in comparison with
WsSGTL1 (67 residues) as shown in Table 1.

Docking of WsSGTL1 and WsSGTL4 with different sterols

Protein-ligand conformations by automatic docking with
chosen ligands (sterols and withanolides) have been ana-
lysed using proposed model of WsSGTs. For all ligands
tested, the negative energies indicated a favourable inter-
action between the proteins and the ligands (Table 2).
The obtained results revealed that the higher interaction
energy was observed along with stable bonding for
WsSGTL1 with brassicasterol, transandrosterone, 24-
methylene cholesterol, ergosterol and β-sitosterol. Stig-
masterol and solasodine have similar binding energies
followed by pregnenolone (Table 2). The highest affinity
energy of WsSGTL1 was −11.36, −9.95 and −9.75 kcal/
mol for brassicasterol, transandrosterone and 24-
methylene cholesterol, respectively. The best conform-
ation of WsSGTL1 was found with brassicasterol having

−11.36 kcal/mol of binding energy (Figure 4A). The
model revealed that ASP535 is involved in formation of
H-bond with the ‘3β-OH group’ of brassicasterol and
the distance between the reactive functional group of
protein and ligand was 1.863 Å. Another amino acid,
PHE506 of WsSGTL1 formed H-Bond through –NH
group reacting with oxygen of brassicasterol and the dis-
tance between the reactive functional groups of protein
and ligand is 3.07 Å (Figure 4A). The second complex
with the highest negative energy (−9.95 kcal/mol) of
WsSGTL1 is with transandrosteron, which forms a stable
complex by forming H-bond with ‘O’ of PRO55 (Figure 4B).
Docking pose of 24-methylene cholesterol and ergosterol is
represented in Figure 4C and D, respectively.
For the WsSGTL4 protein, the best conformations

were with solasodine and stigmasterol with affinity en-
ergy of −9.40 kcal/mol for both the ligands (Table 2).
The best conformations observed in solasodine and stig-
masterol reveals that these two substrates follow a similar
way of interaction with WsSGTL proteins (Figure 5A,B).

A B

C

Figure 3 Similarity and difference between WsSGTL1 and WsSGTL4 proteins. (A) Sequence alignment of WsSGTL1, WsSGTL4 showing the close
relationship between two enzymes. Shaded region showed highly conserved amino acids. (B) Gromacs energy plot of WsSGTL1 and WsSGTL4
proteins. (C) Phylogentic analysis of WsSGTL1 and WsSGTL4 with GTs of other organisms.
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In WsSGTL4, both the ligands interact in a similar
manner by stabilizing the complex with 2 H-bonds with
same residues ASP11 with OD2 position and ALA350
with HN position maintaining the energy value of
−9.4 kcal/mol. The second most stable confirmation is
with 24-methylene cholesterol followed by transandros-
terone with affinity energy of 8.65and −8.44 kcal/mol
(Table 2; Figure 5C,D).
In all above interactions of sterols the main functional

group interacting with WsSGTL proteins is ‘3β-OH
group’ which indicates that it is the main active func-
tional group in sterols. Sharma et al. and Madina et al.
were also reported that the WsSGTLs have affinity for
the interaction with ‘3β-OH group’ of sterols [14,18].
Docking of all these sterols is restricted to UDPGT as
well as glyco_transf_28 domain. Gromacs energy plots of
WsSGTL1 and WsSGTL4 for each ligand present in
Table 2 were provided in Additional files 2 and 3. Most
of the sterols prefer the nonpolar hydrophobic residues
ALA, PRO and VAL where ‘O’ position of these amino
acids is the preferential site for binding with the 3β-OH

Table 1 Active site details of WsSGTL1 and WsSGTL4

proteins

Active site descriptors WsSGTL1 WsSGTL4

Size and shape

Volume [Å3] 1481.16 2371.07

Surface [Å2] 1801.17 2989.3

Lipophilic surface [Å2] 1260.55 2211.65

Depth [Å] 22.86 39.6

Ellipsoid main axis ratio c/a 0.32 0.21

Ellipsoid main axis ratio b/a 0.7 0.26

Enclosure 0.05 0.07

Functional groups

Hydrogen bond donors 38 66

Hydrogen bond acceptors 100 159

Metals 0 0

Hydrophobic interactions 67 116

Hydrophobicity ratio 0.33 0.34

Elements

Pocket atoms 352 579

Carbon (C) 246 399

Nitrogen (N) 51 90

Oxygen 53 86

Sulphur (S) 2 4

Other elements 0 0

Amino acid composition

Apolar amino acid ratio 0.55 0.52

Polar amino acid ratio 0.31 0.32

Positive amino acid ratio 0.06 0.09

Negative amino acid ratio 0.08 0.08

Amino acids

ALA 10 14

ARG 1 5

ASN 4 6

ASP 2 6

CYS 2 2

GLN 2 4

GLU 4 3

GLY 7 13

HIS 3 4

ILE 1 10

LEU 9 8

LYS 1 2

MET 2 3

PHE 7 12

PRO 5 8

SER 3 4

Table 1 Active site details of WsSGTL1 and WsSGTL4

proteins (Continued)

THR 3 4

TRP 2 3

TYR 3 5

VAL 6 4

Special amino acids 0 0

Table 2 Binding energy of selected substrates for

WsSGTL1 and WsSGTL4 proteins

Ligands Binding energy (kcal/mol)

Sterols WsSGTL1 WsSGTL4

β-Sitosterol −9.44 −8.36

Brassicasterol −11.36 −7.97

Deactyl-16-DPA −8.54 −8.0

Dehydroepiandrosteron −8.28 −7.57

Epoxypregnenolone −7.14 −6.25

Ergosterol −9.71 −8.21

Pregnenolone −8.97 −7.88

Solasodine −9.42 −9.4

Stigmasterol −9.42 −9.4

Transandrosterone −9.95 −8.44

24-methylene cholesterol −9.75 −8.65

Withanolides

Withaferin A −10.21 −9.14

Withanolide A −9.28 −10.51

Withanolide B −9.19 −9.21

Withanolide D −9.28 −8.96
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group of sterols. 3β-OH group also show affinity for nega-
tively charged Aspartate at ‘O’ and OD1 position for their
interaction. In case of positively charged ARG, HH11 and
HN positions were preferred for binding. On the other
hand, clear pattern of interaction was observed by over-
looking for interactions of the WsSGTL4 with different
sterols. Observation reveals that sterols show the tendency
to bind with preferred residues with specificity for a

position in some amino acids as ALA350, ALA348,
ASP11, PRO200 and HIS146. WsSGTL4 prefer -HN pos-
ition of ALA350 residue for 3β-OH group of sterols,
where in case of WsSGTL1, sterols shows affinity towards
the ‘O’ of ALA residue. The negatively charged Asp resi-
due at 11th position consistently interacts with OD2 pos-
ition. In all its interactions non polar cyclic residue
PRO200 binds with sterols via ‘O’ position.

Figure 4 Enlarged view of interaction of WsSGTL1 protein with some selected ligand molecules. (A) Brassicasterol, (B) Transandrostrone,
(C), 24-methylene cholesterol, and (D) Ergosterol. Interacting amino acid/s of protein, ‘H’ and ‘O’ atoms of hydroxyl group of interacting
ligand are denoted by yellow, white and red colour, respectively.

Figure 5 Enlarged view of interaction of WsSGTL4 protein with some selected ligand molecules. (A) Solasodine, (B) Stigmastrol, (C) 24-methylene
cholesterol, and (D) Transandrosterone. Interacting amino acid/s of protein, ‘H’ and ‘O’ atoms of hydroxyl group of interacting ligand are denoted
by yellow, white and red colour, respectively.

Pandey et al. BMC Bioinformatics  (2015) 16:120 Page 7 of 10



Docking of WsSGTL1 and WsSGTL4 with withanolides

Withanolides might also be serving as a substrate for
WsSGTs, as these enzymes catalyze the biosynthesis of
glycol-withanolides. It was observed that WsSGTL1-
withaferin-A complex generated with −10.21 kcal/mol of
binding energy with the single hydrogen-bond via -HN of
ALA327 with the bond length of 2.686 Å and −3.747 kcal/
mol of the bond energy (Figure 6A). The distance between
the interacting functional groups showed that this position
is quite favourable for the stabilizing the complex through
the H-bond. Binding of withanolide A reveals that it forms
a significantly stable complex with WsSGTL1 protein by
forming 3 H-bonds with energy value of −9.28 kcal/mol
involving ALA325 at ‘O’ position, ASP11 at OD1 position
and ALA327 at HN position. It also reflects that it prefers
hydrophobic side chain for the interaction.
Interactions of WsSGTL4 with withanolides shows its

affinity towards withanolide A and withanolide B with
higher (negative) binding energy forming the conforma-
tions of −10.51 and −9.21 kcal/mol, respectively. Complex

of withanolide A with WsSGTL4 showed enzyme-substrate
complex with −10.15 kcal/mol of binding energy and stabi-
lized by 2 hydrogen-bonds (hydrogen of -NH group of
SER104 and hydrogen of HIS146 residue) between witha-
nolide A and WsSGTL4 enzyme (Figure 6B). Distance
between the interacting functional groups are 2.757 Å
(SER104 at HN position) and 2.70 Å (HIS146 at HE2
position), which are suitable distance for the supporting
H-bonds. Other higher energy conformation is of wita-
nolide B which forms single H-bond with SER74 at OG
position with binding energy of −9.21 kcal/mol. Gromacs
energy plots of the WsSGTL1 and WsSGTL4 is provided
in Additional file 4.
Withanolides, the steroidal lactones, prefer ALA327,

ALA325 and ASP11 residues of WsSGTL1 mainly for
binding where -HN position for ALA327, ‘O’ position for
ALA325 and OD1 position for ASP11 were observed for
involvement in binding. In Withaferin A, the 5β- position
‘O’ molecule from steroid chain and 27th position hy-
droxyl group in lactone chain, participate in the reaction.

Figure 6 Enlarged view of interaction of WsSGT proteins with some selected withanolides. (A) WsSGTL1 with withaferin A, (B) WsSGTL4 with
withanolide A. Interacting amino acid/s of protein, ‘H’ and ‘O’ atoms of hydroxyl group of interacting ligand are denoted by yellow, white and red
colour, respectively.
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In reaction of Withanolide A with WsSGTL1, again the
same group participates in the interaction, whereas
interaction of WsSGTL4 with the withanolide A in-
volves participation of the 26th position ‘O’ as well as
22th position -OH group of the lactone chain in the
complex formation. These results clearly reflect the
tendency of the interaction of hydrophobic and nega-
tively charged residues of WsSGTs while in sterols, the
3β-OH group is the main interacting chemical domain.
In withanolides, no such common interacting group
was observed as each withanolide dock with the resi-
dues with the different chemical moieties.

Conclusion
Glycosyltransferases are one of the largest families of en-
zymes which catalyze glycosylation of variety of acceptor
molecules by the transfer of glycosyl moiety from activated
nucleoside diphosphate sugar donar [41]. WsSGTL1 and
WsSGTL4 differ in size as observed through sequence
alignment and difference in their affinity towards different
substrates. Observations collected in this study indicated
thatWsSGTL1 andWsSGTL4 interacts with different sub-
strate and follow the different pattern of interaction.
Hydrophobic amino acids as well as those with charged
side chains play important role in the interaction with ste-
rols. Results obtained in this study indicated that brassi-
casterol and withanolide A are the preferred substrates for
WsSGTL1 and WsSGTL4, respectively. The interactions
with different ligand molecules reveal that both proteins
interact with all the mentioned ligands due to broad sub-
strate specificity, however, have different affinity for the
same substrate. The current study is predictive and needs
to be confirmed experimentally using functional genomics
approaches. This study shed light to understand glycosyla-
tion mechanism of sterol glycosides in plants.
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