
DOI:10.1093/jnci/dju049

First published online April 3, 2014

JNCI | Article 1 of 12

© The Author 2014. Published by Oxford University Press. All rights reserved. 

For Permissions, please e-mail: journals.permissions@oup.com.

jnci.oxfordjournals.org

ARTICLE

Comparative Meta-analysis of Prognostic Gene Signatures for 

Late-Stage Ovarian Cancer

Levi Waldron, Benjamin Haibe-Kains, Aedín C. Culhane, Markus Riester, Jie Ding, Xin Victoria Wang, Mahnaz Ahmadifar, 

Svitlana Tyekucheva, Christoph Bernau, Thomas Risch, Benjamin Frederick Ganzfried, Curtis Huttenhower, Michael Birrer, 

Giovanni Parmigiani

Manuscript received February 24, 2013; revised January 13, 2014; accepted January 29, 2014.

Correspondence to: Giovanni Parmigiani, PhD, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, 

Boston, MA 02115 (e-mail: gp@jimmy.harvard.edu).

 Background Ovarian cancer is the fifth most common cause of cancer deaths in women in the United States. Numerous gene 

signatures of patient prognosis have been proposed, but diverse data and methods make these difficult to com-

pare or use in a clinically meaningful way. We sought to identify successful published prognostic gene signatures 

through systematic validation using public data.

 Methods A systematic review identified 14 prognostic models for late-stage ovarian cancer. For each, we evaluated its 

1) reimplementation as described by the original study, 2) performance for prognosis of overall survival in inde-

pendent data, and 3) performance compared with random gene signatures. We compared and ranked models 

by validation in 10 published datasets comprising 1251 primarily high-grade, late-stage serous ovarian cancer 

patients. All tests of statistical significance were two-sided.

 Results Twelve published models had 95% confidence intervals of the C-index that did not include the null value of 0.5; 

eight outperformed 97.5% of signatures including the same number of randomly selected genes and trained on 

the same data. The four top-ranked models achieved overall validation C-indices of 0.56 to 0.60 and shared anti-

correlation with expression of immune response pathways. Most models demonstrated lower accuracy in new 

datasets than in validation sets presented in their publication.

 Conclusions This analysis provides definitive support for a handful of prognostic models but also confirms that these require 

improvement to be of clinical value. This work addresses outstanding controversies in the ovarian cancer litera-

ture and provides a reproducible framework for meta-analytic evaluation of gene signatures.

  JNCI J Natl Cancer Inst (2014) 106(5): dju049 doi:10.1093/jnci/dju049

Ovarian cancer is the most lethal gynecological cancer and a 

leading cause of cancer deaths among women, with more than 

15 000 deaths per year in the United States (1). A  majority of 

patients present with late-stage, high-grade disease, and the abil-

ity to distinguish biologically or clinically within this group is 

limited (2). Numerous efforts to develop molecular signatures 

that better stratify survival within this group of patients have 

generated an enormous archive of genomic discovery data; how-

ever, it remains difficult to assess which, if any, of these efforts 

have generated reproducible and clinically relevant prognostic 

models.

Review papers have provided valuable summaries of proposed 

genomic prognostic models for ovarian cancer (3–7) but do not 

address the validity of published models when independently 

applied to new data. Independent validation can be addressed 

through meta-analysis by using archives of published data, but 

such efforts may be hindered by incomplete availability of original 

genomic and associated clinical data (8), diverse technologies and 

formats of published data (9), and lack of reproducibility of pub-

lished models (10,11). However, sufficient archives of microarray 

data are now available to evaluate published prognostic models by 

meta-analysis.

We therefore undertook a systematic validation of gene expres-

sion–based prognostic models for late-stage, high-grade serous 

ovarian cancer published between 2007 and 2012 (12–24) in a 

database of 10 clinically annotated microarray datasets totaling 

1251 patients (12,14–18,20,23,25,26). This assessment addresses 

several important issues for the translation of genomics to clinical 

application: 1) the accuracy of published prognostic models when 

applied to new, independent datasets; 2)  the impact of choice of 

validation datasets on apparent prognostic accuracy; 3)  similari-

ties between independently developed prognostic models; 4) the 

influence of popular datasets on the literature; and 5) the recent 

observation that random gene signatures may have prognostic 

ability (27). This study additionally addresses published contro-

versies in the ovarian cancer prognostic signature literature by 
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quantitatively placing these studies within their broader context. 

These controversies include the quality of a highly cited and fre-

quently reused dataset associated with a now-retracted article (26) 

and the clinical relevance of a DNA damage repair-based prognos-

tic model (19,28). Finally, evaluation of these prognostic models 

uncovered common pathways enriched for correlation with the 

most accurate prognostic models.

Methods

Our evaluation combines four major phases: 1) systematic literature 

review for selection of both eligible genomic datasets and eligible 

prognostic models; 2) transparent reimplementation of risk predic-

tion models identified by the literature review; 3) evaluation of the 

reproducibility of models in independent data; and 4) a multistudy 

validation of the published models using meta-analytic methods. 

We performed statistical analyses using R 3.0.1 (R foundation for 

Statistical Computing, Vienna, Austria) and Bioconductor 2.12 

(Bioconductor Core Team, Seattle, USA). Specific libraries are dis-

cussed within this section.

Eligibility Criteria and Implementation of 

Prognostic Models

We considered prognostic models  that: were claimed to have 

prognostic value for cohorts of late-stage serous ovarian can-

cer patients; generated a continuous risk score (specifically, this 

excluded discrete “subtyping”); were based on the expression of 

multiple mRNA transcripts; were developed from a training set 

of at least 40 patients; were either trained or tested using micro-

array data; were fully specified or could be reimplemented from 

original data and methods, and were published within the 5 years 

preceding June 30, 2012. Published models were reimplemented 

as described by the original publication. Some modifications to 

the original models were necessary for cross-platform valida-

tion, including translating probe set identifiers to standard gene 

symbols and removing platform-specific thresholds. Where pos-

sible, these reimplementations were verified by reproducing a 

result from the original publication of the model (Table 1; full 

code and details provided in the Supplementary Data, available 

online).

Eligibility Criteria for Datasets and Samples

We used microarray data in the public domain that provided: micro-

array expression data for collections of primary patient tumors 

consisting mostly or entirely of late-stage, high-grade, serous his-

tology; continuous time to death with censoring information, and 

at least 40 samples and 15 deaths after removing early-stage, low-

grade, or nonserous histology samples. Samples missing individual 

annotation for stage, grade, or histology were not excluded, so 

long as these could be assumed to be likely late-stage, high-grade, 

serous samples. The analysis was repeated excluding any samples 

not explicitly labeled as late-stage, high-grade, serous histology to 

assess the impact of incompletely annotated samples on summary 

results.

Information Sources

Prognostic models were identified through PubMed searches, 

review articles (3–7), and searches of publicly available data (29). 

The Dressman 2007 article (26) was retracted in 2012 (30) because 

incorrect chemotherapy response annotations, initially discovered 

by Baggerly and Coombes (31), compromised results of the initial 

paper. The survival data used for this analysis were unchallenged 

Table 1. Reproducibility of the 14 published models for prognosis of late-stage epithelial ovarian cancer selected for meta-analysis*

Model

Reproducibility†

Model provided Training data available Validation data available Verified implementation

TCGA11 (12) Yes Yes Yes Yes

Denkert09 (13) Yes Yes Yes Yes

Bonome08_263genes (14) Yes Yes Yes Yes

Bonome08_572genes (14) Yes Yes Yes Yes

Mok09 (15) No Yes Yes Partially

Yoshihara12 (16) Yes — Yes Yes

Yoshihara10 (17) Yes — Yes Yes

Bentink12 (18) Yes — Yes Yes

Kang12 (19) Yes Yes Yes Partially

Crijns09 (20) No Yes No No

Kernagis12 (21) Partially Yes Yes Partially

Sabatier11 (22) Partially No No No

Konstantinopoulos10 (23) Yes — Yes Partially

Hernandez10 (24) Partially — Yes Partially

* The term “prognostic model” refers here to a list of genes along with a fully specified algorithm for producing a risk score for each patient. The term “prognostic 

signature” refers to the list of genes only. The reproducibility assessments shown here represent our ability to reimplement published models, rather than an 

assessment of reproducibility of findings of the publication.

† Aspects of model reproducibility: Model provided: We were able to implement a fully specified model using gene identifiers and coefficients provided in the 

published paper. Training data available: Primary data were available to permit development of this model using methods described by the authors. Validation data 

available: Data were available to validate our implementation by reproducing a result from the paper. Verified implementation: we were able to reproduce validation 

results from the published paper using our implementation of the model. “—“ indicates that this step was unnecessary and we did not attempt it. If we were 

able to use the fully specified model as provided in the article, then we considered developing the fully specified model from data and methods to be optional. The 

details of this process are provided as Supplementary Data (available online).
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(32), and the curatedOvarianData database (29) used for this analy-

sis provides data downloaded after the authors posted corrected 

data in 2008 (32). We also repeated the analysis excluding this data-

set to assess its impact on prognostic model rankings.

Search

The following terms were used to search Pubmed: ({“ovary tumor” 

OR “ovary cancer” OR “ovary tumour” OR “ovary carcinoma” 

OR “ovarian tumor” OR “ovarian cancer” OR “ovarian tumour” 

OR “ovarian carcinoma”} AND {“genechip” OR “microarray” OR 

“expression profiling” OR “expression array” OR (“gene” AND 

“expression”)} AND {“outcome” OR “survival” OR “survivors” OR 

“prognosis” OR “prognostic” OR “resistance” OR “resistant”} AND 

{“signature” OR “score” OR “profile”} AND 2007/06/30:2012/06/30 

[dp]) AND “English”[Filter] NOT “review”[PT].

Study Selection

Papers returned by the PubMed search were reviewed by  

L Waldron; rationale for each exclusion is provided in 

Supplementary Table 1 (available online).

Data Collection Process

Published microarray and clinical data were downloaded, curated, 

and processed as described by Ganzfried et  al. and are available 

as the curatedOvarianData Bioconductor package (29) (version 

1.0.1). Except where prohibited by a published model algorithm 

(13), expression of each gene was log2-transformed and scaled to 

zero mean and unit variance within each dataset.

Duplicate Removal. We identified probable duplicate specimens 

within and between all datasets in the curatedOvarianData pack-

age using the doppelgangR package with default settings (https://

github.com/lwaldron/doppelgangR, version 0.4.6). This method 

uses all pairs of samples within a dataset or between two datasets 

to estimate the distribution of correlations and identifies outliers 

in the upper tail of the distribution. To identify duplicates across 

datasets, we first used a ComBat batch correction (33), as per the 

sva Bioconductor package version 3.6.0, separately for each pair of 

datasets, using dataset as the batch variable. Next we identified out-

lier pairs by performing Fisher’s transformation (34) to all pairwise 

sample correlations and setting an upper threshold at a cumulative 

probability of 0.005 divided by the number of sample pairs in the 

upper tail of the normal distribution with mean and standard devi-

ation estimated from the Fisher–transformed correlations. This 

approach identified, among others, 40 pairs of duplicate Affymetrix 

microarray profiles within The Cancer Genome Atlas (TCGA) 

ovarian cancer study, which, to the best of our knowledge, have 

not been identified by other investigations of this dataset. These 

duplicates had discordant clinical metadata, so we investigated 

them further by comparing these profiles to the corresponding 

Agilent microarray profiles and copy number profiles. The dupli-

cation apparently did not occur in these other platforms because 

each duplicated Affymetrix profile matched well to the Agilent and 

copy number profiles of one of the patient pair but not the other. 

This allowed us to select with confidence which of the patients 

had an incorrect Affymetrix profile and to remove these profiles 

from our study. We inspected all potential duplicates flagged by 

this process and removed probable false positives from the dupli-

cates list. Results of the database-wide search for duplicates, show-

ing which samples were removed from analysis, are provided in 

Supplementary Table 2 (available online).

Potential Bias in Individual Studies

The possibility of optimistic bias in individual studies was mini-

mized by estimating summary measures for prognostic models 

using independent expression and survival data on an independent 

set of patients. In the assessment of each model, we did not use 

summary measures provided by original study authors or data used 

by original study authors to generate that prognostic model.

Summary Measures

We assessed each model for concordance of risk scores with over-

all patient survival, using Uno’s version of the concordance index 

(or C-index). The C-index is interpretable as the probability that 

a patient predicted to be at lower risk than another patient will 

survive longer than that patient: its expected value is 0.5 for ran-

dom predictions and 1 for a perfect risk model. We calculated point 

estimates and 95% confidence intervals (CIs) using the survC1 R 

package version 1.0–2 (35), with tau equal to 4 years and iterations 

equal to 1000. We choose tau equal to 4 years because it is the com-

bined median survival time of all study participants rounded to the 

nearest year. Uno’s C-index and confidence interval are robust to 

the choice of tau unless very few deaths or censoring events occur 

at times greater than tau (35).

Synthesis of Results

We synthesized point estimates and confidence intervals of the 

C-index across validation datasets using a weighted average of 

performance in each dataset, with weights equal to the inverse of 

the variance of each estimate. Our method corresponds to a fixed-

effects meta-analysis; we also performed a random-effects meta-

analysis that may account for heterogeneity of C-indices across 

studies. Synthesis was performed using the rmeta R package ver-

sion 2.16. Models were ranked by the synthesized point estimate of 

the C-index, excluding the training datasets of each model.

Potential for Bias Across Studies

To assess whether the choice of validation datasets affects valida-

tion results, we calculated the synthesized C-index for each model 

using 1) only validation data presented by the model authors and 

2) excluding validation data presented by the model authors. We 

tested the null hypothesis of no influence of validation dataset 

choice by Wilcoxon signed-rank test between these two vectors of 

synthesized C-indices.

Because of extensive overlap in specimens, the Yoshihara data-

sets were excluded as validation sets for both Yoshihara et al. (16,17) 

models as a safeguard against overfitting in case any duplicate sam-

ples were not identified.

Additional Analyses

Assessing Improvement Over Known Prognostic Factors.  We 

also assessed whether the classification ability of the models is 

independent of age and optimal cytoreductive surgery (debulk-

ing), by stratifying patients into old (aged >70 years at diagnosis) vs 
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young and optimal vs suboptimal debulking. Within each dataset, 

the C-index was calculated within each of the four combinations 

of these subgroups (old–optimal, old–suboptimal, young–optimal, 

and young–suboptimal) and then synthesized as described above.

Analysis of Batch Effects.  Evidence of confounding between 

overall survival and batch was assessed within datasets by log-

rank test. Known batches (batch number for TCGA, processing 

date for Affymetrix-based studies) were used as provided by the 

“batch” variable in the curatedOvarianData package. For sensitiv-

ity analysis of the effect of batch correction, batch correction was 

performed using ComBat (33) in datasets for which a batch variable 

was available.

Model Similarity.  The risk scores produced by each model were 

assessed for similarity by Spearman correlation, calculated within 

each dataset, and then averaged across datasets weighting by sam-

ple size. For visualization, predictions were quantile-normalized 

within each test dataset to a single common reference distribution. 

Models were clustered using the Spearman correlation distance 

metric. Similarity of gene membership between each model pair 

was assessed by Jaccard index (36).

Gene Set Enrichment Analysis.  For each prognostic model, we 

computed the absolute Spearman rank correlation between the 

corresponding risk scores and gene expression profiles of each 

patient. For each study, we generated a vector of correlations of 

the 6138 genes present on every microarray platform and com-

puted a weighted average across studies, with weights given by the 

study sample size. We used the absolute value of the resulting vec-

tor to evaluate the enrichment of gene sets for each model’s score, 

using a preranked gene set enrichment analysis (37). We used the 

Java implementation (gsea2-2.08) with the parameter xtools.gseas.

GseaPreranked against 375 KEGG and oncogenic gene signatures 

in mSigDB version 3.1, with 1000 permutations. We plotted nega-

tive logs of false discovery rate, focusing on sets with false discovery 

rate less than 0.01 in at least one prognostic model.

Gene Set Improvement Over Random Signatures.  We generated 

risk scores for each signature using coefficients sign (βj), where βj is 

the coefficient of gene j in a univariable Cox regression; sign (x) = 1 

if x > 0 and –1 otherwise. For a given signature, this algorithm cre-

ates a score with a straightforward interpretation by defining each 

gene as a “good-prognosis gene” or a “bad-prognosis gene.” At the 

same time it provides independent validation performance compa-

rable with the fitted coefficients for each gene (38). We repeated 

the analysis using the actual coefficients βj [ie, Tukey’s compound 

covariates predictor (39)] to assess the robustness of results to the 

equalization of gene weights. The C-index was estimated for each 

of the 90 (10 × 9 = 90) combinations of training and independent 

validation sets. This “leave-one-in” independent validation process 

was repeated for 10 random gene sets of the same size as the gene 

set of interest, and the improvement over random signatures (IOR) 

score was defined as the fraction of training/validation combina-

tions in which the C-index based on signature genes was greater 

than the C-index based on random genes. Ten random gene sets 

provided 900 (10 × 90 = 900) comparisons, sufficient to provide a 

stable estimate of the IOR score. For plotting, we calculated the 

mean C-index across all combinations of training and allowable 

validation datasets. Similarly, we calculated a mean C-index for 100 

random gene signatures of size evenly distributed across the range 

of the published gene signature sizes.

Statistical Analysis and Reproducible Research

All tests of statistical significance were two-sided. Published mod-

els were implemented by Sweave literate programming (40). We 

developed the curatedOvarianData Bioconductor package version 

1.0.1 (29) to organize all curated expression and clinical data, the 

survHD Bioconductor package (https://bitbucket.org/lwaldron/

survhd, version 0.99.1) to define and evaluate published survival 

models, the HGNChelper R package version 0.2.2 to identify 

and correct invalid human gene symbols in published models, 

and the doppelgangR Bioconductor package (https://github.

com/lwaldron/doppelgangR, v0.4.6) to identify potentially dupli-

cated tumor specimens in the database. The accuracy of the data 

and each model implementation were confirmed, whenever pos-

sible, by reproducing results from relevant publications (Table 1; 

Supplementary Data, available online). Computation was defined 

as a pipeline in the Scientific Workflow Environment (http:// 

huttenhower.sph.harvard.edu/sfle), so it can be fully regenerated by 

a single command. All analyses were performed in R/Bioconductor 

(41). Issue tracking, code, and instructions to reproduce all results 

are available at https://bitbucket.org/lwaldron/ovrc4_sigvalidation.

Results

We performed a systematic review and evaluation of prognostic 

gene expression signatures for late-stage, high-grade, serous ovar-

ian cancer using overall survival as the endpoint. A  search for 

prognostic signatures yielded 101 results (Supplementary Table 1, 

available online), including 14 prognostic models that passed our 

study inclusion criteria and could be implemented (Table 1). We 

evaluated both prognostic signatures, the term we use to refer to a 

simple list of genes, and prognostic models, which we use to refer to 

the list of genes in combination with a fully specified algorithm for 

calculating a risk score for each patient. We validated each model 

in a database of 1251 microarray profiles from 10 studies selected 

for predominance of late-stage, high-grade, serous ovarian tumors 

(Table  2). Model performance was synthesized across studies by 

fixed-effects meta-analysis, which produced results indistinguish-

able from random-effects meta-analysis (Supplementary Figure 1, 

available online). The genes used in each model were further 

assessed for prognostic value independently of the authors’ choices 

of training data and methods. Finally, we identified a tendency for 

published models to perform better in validation sets used by the 

authors of each model than in other available validation sets. The 

complete analysis process is summarized in Figure 1.

Reproducibility and Implementation of 

Published Models

We implemented the 14 risk prediction models in a standardized 

framework that enabled risk prediction and validation in independ-

ent patient cohorts. Nine of these models could be implemented 

from provided specifications (eg, parameter values; see Methods); 
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the remaining five were reimplemented from published descrip-

tions and data. These implementations could be verified by repro-

ducing a published result (eg, a figure or numeric value) precisely 

for seven models and approximately for an additional five of the 14 

models (Table 1). These five models could be only partially veri-

fied for two reasons: 1) one study (21) did not provide platform-

specific thresholds that were used in the implementation of the 

model (although our implementation resulted in an improvement 

in model performance compared with the original validation); and 

2)  four studies (15,19,23,24) provided sufficient information for 

generating models, but the prediction accuracy of the model we 

implemented was lower than that reported in the original publi-

cation. In addition, two implementations could not be verified 

because validation data were not available (20,22).

We believe we closely implemented the 14 published models, 

including those for which test data were unavailable or some model 

parameters were unreported. These efforts are summarized in 

Table 1, and full details are provided as a comprehensive Sweave-

generated (40) document (Supplementary Data, available online).

Sensitivity Analysis

We assessed the sensitivity of synthesized performance results to 

the choice of random-effects or fixed-effects meta-analysis, the 

inclusion of 59 samples from the retracted Dressman (26,30) data-

set, the inclusion of 73 samples missing annotation for stage, grade, 

or histology, and batch correction of microarray data using the 

ComBat (33) method. These alternative analyses had no important 

impact on the summary performances and rankings of prognostic 

models (Supplementary Figure 1, available online).

Evaluation of Published Models on Independent Data

We assessed the prognostic accuracy of each model in each data-

set by C-index and excluded training datasets from the synthesis 

of validation statistics for each model (Figure 2). The top-ranked 

four models are those of the TCGA consortium (12), Bonome 

et  al. (optimally debulked patients) (14), and two scores pro-

posed in separate publications by Yoshihara et  al. (16,17). These 

achieved summary C-indices between 0.56 and 0.60. Twelve of 

14 models predicted better than chance, with summary C-indices 

varying between 0.54 and 0.60. Direct comparison of the TCGA 

and Yoshihara et al. (16) models by Cox regression, excluding the 

TCGA and both Yoshihara datasets, with risk scores dichotomized 

at the median within each validation set, showed hazard ratios of 

0.58 (95% CI = 0.48 to 0.72) and 0.56 (95% CI = 0.46 to 0.68), 

respectively (Supplementary Figure 2, available online).

Stratification by Known Prognostic Factors

The C-index was also estimated while stratifying for age (dichoto-

mized at 70 years) and optimal cytoreductive surgery (debulking) 

in the four datasets (12,14,18,25) where these factors were avail-

able. For these datasets, most models had very similar synthesized 

C-index with or without stratification by these known prognostic 

factors. Overall, our results suggest that prognostic models have the 

ability to classify patients independent of age and debulking status. 

The largest changes from stratification were actually improvements 

for several models (12,17,23,24). Synthesized C-indices of the 14 

prognostic models in these four datasets, with and without strati-

fication, are provided in Supplementary Table 3 (available online).

Systematic Differences Between Validation Datasets

The 10 datasets varied in how well prognostic models were seen to 

validate in each. The dataset of Dressman et al. (26,30) generated 

the highest validation statistics (average C-index = 0.61) (Figure 2). 

This dataset showed substantial confounding between run batch 

and overall survival (P < .001, log-rank test) (Supplementary 

Figure 3, available online), providing a likely explanation for its high 

validation statistics. Excluding this dataset had negligible effect on 

the meta-analysis summaries (Supplementary Figure  1, available 

online). Weak evidence of such confounding was also present in 

the dataset of Tothill et al. (25), which showed the second-highest 

Table 2. Ten public microarray datasets used for validation of published risk scores*

Dataset Accession
No. of  

samples

No. with 
incomplete 
annotation Microarray platform

Median  
survival,  

mo.
Median follow-up,  

mo.
Censored,  

%

TCGA (12) TCGA 413 12 Affymetrix HT U133a 41 54 44

Bonome (14) GSE26712 185 0 Affymetrix U133a 46 90 30

Mok (15) GSE18520 53 0 Affymetrix U133 Plus 2.0 25 140 23

Yoshihara 2012A (16) GSE32062 91 0 Agilent G4112a 104 56 56

Yoshihara 2010 (17) GSE17260 43 0 Agilent G4112a 46 45 49

Bentink (18) E.MTAB.386 127 0 Illumina HumanRef-8 v2 42 53 43

Crijns (20) GSE13876 98 13 Operon Human v3 25 64 27

Konstantinopoulos† (23) GSE19829 42 42* Affymetrix U95 v2 45 50 45

Tothill (25) GSE9891 140 2 Affymetrix U133 Plus 2.0 40 40 49

Dressman (26) PMID17290060 59 4 Affymetrix U133a 42 94 39

Total 1251 73 42 57 41

* The number of samples indicates those remaining after removing samples annotated as early-stage (I–II), low-grade or grade 1–2, or nonserous histology. Median 

survival and follow-up times refer to Kaplan–Meier and reverse Kaplan–Meier estimates, respectively, and “% censored” is the percentage of patients alive at the 

date of last follow-up after excluding patients annotated as having low-grade, early-stage, or nonserous histology.

† These samples are not individually annotated for grade, stage, or histology, but the publication (23) states that only 10 of 70 tumors are grade 1–2, five are clear cell 

or endometroid, and three are stage II; here only the 42 samples assayed by Affymetrix U95 v2 microarray are used. Other incompletely annotated samples were 

of unknown stage (n = 4) or grade (n = 28). We chose not to exclude these cases because the large majority of cases in these studies were late-stage, high-grade 

tumors.
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Figure 1. Methodology for the systematic meta-analysis of ovarian cancer prognosis models. This outlines methodology for comparative evalua-

tion of published genomic risk scores using a database of publicly available expression data.
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Figure 2. Performance assessment of published risk scores. Citations for 

models and expression datasets are provided in Tables 1 and 2, respec-

tively. A) Concordance statistic (C-index) for prediction of overall sur-

vival by each of the 14 models in each of the 10 microarray datasets. 

Datasets used for training a model are shown in black; datasets used by 

the authors of a model for testing are bordered in gray. Darker shades 
of orange correspond to better predictions. C-index is expected to be 0.5 

for a random risk score, and 1.0 corresponds to a model that predicts the 

exact order of deaths correctly. Models are ordered from top to bottom 

by best to worst summary C-index, and datasets are ordered from left to 

right by average C-index for all models not trained on that dataset. That 

means prediction models in general validated well in Dressman et al. 

dataset (26) and models that validated in multiple other datasets did not 

validate in The Cancer Genome Atlas (TCGA, (12)) or Crijns dataset (20). 

B) Summary C-index for each model with training datasets excluded 

(orange boxes) and with test sets presented by the authors also excluded 

(vertical bars). 95% confidence intervals (CI; gray lines) were obtained 

from resampling of cases. The top-ranked model is that proposed by the 

TCGA Consortium, and this dataset is conversely one of the most dif-

ficult for prediction by other models not using it for training.

average validation statistic (P = .07, log-rank test). No evidence of 

confounding was seen in the other four datasets for which a batch 

variable was available. Conversely, no dataset stood out as produc-

ing exceptionally low validation statistics, although the only dataset 

generated by a two-color custom microarray produced the lowest 

mean C-index (C = 0.53) (20).

Functional Interpretation of Prognostic Models

We clustered the 14 models by correlation of risk scores across all 

1251 patients and compared this with the overlap of genes used by 

the models (Figure 3). Gene overlap was no more than approxi-

mately 2% for any two models (Jaccard index). However, the cor-

relation between risk predictions was greater than 0.6 between 

the models of Denkert et al. (13), Bentink et al. (18), and Kernagis 

et  al. (21) and greater than 0.55 for the top-ranked TCGA (12) 

and fourth-ranked 263-gene Bonome et al. (14) models. Gene set 

enrichment analysis of genes ranked by correlation to risk scores 

identified distinct KEGG pathways (Supplementary Figures 4 and 

5, available online). As expected, extracellular matrix pathways are 

enriched for genes with high correlations to the Bentink et al. (18) 

angiogenesis score, and DNA replication and base excision repair 

gene sets are enriched for genes with high correlation to the Kang 

et  al. (19) DNA damage repair pathways score. Several immune 

response pathways are enriched for genes correlated to all four 

top-ranked risk scores (Supplementary Figure 4, available online). 

These immune response pathways contained large numbers of 

highly coexpressed human leukocyte antigen genes, meaning that 

high expression of these genes corresponded with good progno-

sis according to these models. The allograft rejection pathway 

is shown as a representative example in Supplementary Figure 5 

(available online).

Influence of Validation Datasets

To assess whether the choice of validation datasets affects valida-

tion results, we compared the performance of models in valida-

tion datasets presented in their publication to performance in new 

datasets. Under the null hypothesis of no influence, validation sets 

presented by authors are expected to be no better or worse than 

other validation datasets. The summary performance of eight of 10 

models was better in author-selected validation datasets (Figure 4) 

than other datasets, providing marginal evidence of such influence 

in the literature (P = .06, Wilcoxon signed-rank test).

Prognostic Performance of Gene Signatures Relative to 

Random Gene Signatures

We draw a distinction between a prognostic tool, as an algorithm 

that produces a risk score given an expression profile (and in most 

cases requires coefficients), and a prognostic signature, as a list of 

genes associated with patient outcome or with other related bio-

logical features (such as angiogenesis or DNA damage repair). We 

assessed prognostic performance of the gene signatures used in 

each published model independently of the original training dataset 

or proposed algorithm. Each gene signature was used to train and 

evaluate models on all combinations of training and independent 
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Figure 4. Publication bias toward prognostic models with favorable 

independent validation. Citations for models are provided in Table 1. 

We calculated the meta-analysis concordance statistic (C-index) for 

each model whose publication presented independent validation 

using 1) only test datasets presented in the original publication of the 

model and 2) all available data not used in the original publication. 

Error bars indicate 95% confidence intervals for the C-index. Of 10 

models that presented validation in test data, eight performed better 

in these test datasets than in datasets not used in the original publica-

tions (P = .06, two-sided Wilcoxon signed-rank test).

Figure 3. Similarity of risk predictions, models, and gene signatures. 

Citations for models are provided in Table 1. A) Quantile normalized 

risk predictions from each model for all 1251 patients in the database. 

Yellow indicates high predicted risk, and blue indicates low predicted 

risk. Models and patients are clustered by Spearman correlation of 

predicted risk. Patients who died within 4 years are labeled in black 

along the top. B) Spearman correlation heatmap of the risk scores 

produced by the 14 models, along with similarity of genes repre-

sented in each model, as calculated by Jaccard index (intersection 

divided by union of genes). Although the highest overlap between 

gene signatures is just greater than 2%, some of these models pro-

duce highly correlated risk predictions (ρ > 0.5). Gene overlap and cor-

relation between risk scores are associated (ρ = 0.40; 95% confidence 

interval = 0.21 to 0.56).
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validation datasets using a prediction algorithm that weights all 

genes equally and bases risk scores only on whether genes are 

associated with good or bad prognosis. This method meets two 

methodological requirements: 1) that it should be as simple as pos-

sible and 2)  that it perform comparably to established statistical 

learning approaches. We documented the statistical properties of 

this method previously (38). An IOR score was assigned to repre-

sent performance of the gene signature relative to random gene 

signatures of equal size subjected to the same procedure. Average 

C-index over all training/validation dataset combinations for the 

published models and 100 random signatures is shown in Figure 5. 

To assess the robustness of these findings to the choice of scor-

ing system, we added a parallel analysis using Tukey’s compound 

covariates predictor (39) instead of the proposed equal weight 

method (Supplementary Table 4, available online). Correlation of 

the two IOR scores was 0.95, and the conclusions are essentially 

unchanged.

An increase in ranking of the gene signature in Figure 5 rela-

tive to the published model in Figure 2 indicates good gene selec-

tion but a suboptimal model for using these genes to generate risk 

scores. Eight of 12 gene signatures showed better prognostic utility 

than 97.5% of random gene signatures, and the gene signatures of 

top-performing models (12,14,16) also ranked highly. Two signa-

tures showed substantially improved ranking compared with their 

fully specified models: Bentink (18) and Konstantinopoulos (23). 

These were developed based on hypotheses other than association 

with survival, indicating that these hypotheses may be directly or 

indirectly related to patient outcome but that survival prediction 

using these genes benefitted from using survival outcome directly 

for model development. Most other gene signatures showed prog-

nostic improvement over random signatures (evidenced by being 

above the best-fit line for random signatures and by having IOR 

scores better than the random expected value of 0.5) but not above 

the expected upper bound for 97.5% of random gene signatures.

Discussion

Genomic research on ovarian cancer has produced numerous pub-

lished microarray studies with the common objective of stratifying 

patients by probable clinical outcome [reviewed, for example, by 

(4)]. The value of generating prognostic signatures is twofold: 1) to 

provide accurate information for patients and to help physicians 

tailor therapies and 2)  to help identify pathways of importance, 

which then can be targeted for effective therapies. To date these 

efforts in ovarian cancer have not accomplished either goal.

There are multiple reasons for this lack of progress. Some of 

the more important ones include heterogeneous and difficult to 

reproduce methodology, inconsistently shared data, and a lack of 

directly comparable evaluations. These issues are common in high-

throughput experiments and have been recently addressed (42–44). 

This study attempts to validate every current major prognostic 

model for advanced-stage, serous ovarian cancer and to provide 

Figure 5. Prognostic (improvement over random signatures (IOR) score of 

gene signatures relative to random gene signatures, equalizing the influ-

ences of authors’ algorithms for generating risk scores, quality of the origi-

nal training data, and gene signature size. A) Methodology for comparing 

prognostic quality of gene sets to random gene sets. A simple risk score, 

defined as the sum of expressions of bad-prognosis genes minus the sum 

of expressions of good-prognosis genes, was trained and evaluated using 

all allowable combinations of training and independent validation sets. The 

IOR score is the fraction of training/test set combinations in which the gene 

signature achieves a higher concordance index (C-index) than random 

gene signatures of the same size. It is expected to be 0.5 for a random gene 

signature and 1 for a gene signature that is better than random signatures 

in all available training/test set combinations. *Author training sets are 

excluded. †Cross-validation statistics are not used. B) Gene set improve-

ment over random signatures. Citations for gene signatures are provided 

in Table 1. Average C-index for all training/test set combinations is plotted 

against the number of genes in the signature. For visualization, these aver-

ages are compared with the equivalent procedure repeated for 100 random 

gene sets (gray dots). Solid line is the quadratic best-fit line to C-index vs 

number of genes for random signatures; dashed line is the 95% confidence 

interval for the best-fit line; and dotted lines are the 95% prediction interval 

for expected average C-index of individual random gene signatures.
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an easily implemented bioinformatic algorithm that can be used 

to assess future prognostic signatures for ovarian or other cancers. 

This systematic evaluation required substantial initial effort to 

curate the relevant published data and to reimplement published 

prognostic models.

Our analysis reveals a wide range of accuracy of published prog-

nostic models and signatures. Four of the models considered were 

intended to predict some biological function thought to be related 

to patient survival; these were all in the bottom half of the rank-

ings (18,19,23,24). Conversely, the top-performing models were 

developed by “agnostic” approaches using standard Cox-based 

statistical methods: simple weighted averages of good- and bad-

prognosis genes (12,14) and penalized regression (16,17). These 

top-ranked models benefitted from the largest training cohorts. 

Two hypothesis-based signatures (18,23) performed substantially 

better when these genes were used to train survival models by Cox 

regression, further indicating the importance of survival analysis 

when attempting to predict survival by multiple-gene signatures.

How high of a C-index is needed for a useful prognostic tool 

depends on the clinical context. For example, the C-index of the 

Gleason score for prostate cancer has been estimated at 0.74 to 

0.76 (45) and that of the American Joint Committee on Cancer 

colorectal cancer staging system at 0.62 (46). The utility of these 

tools lies in the provision of prognostic information to patients, as 

well as in the clear delineation of subgroups that can benefit from 

different treatment. For the former, even the best model identi-

fied in this study would require at least a doubling of the C-index 

to become equally accurate to the Gleason score. However, it is 

important to note that this may be reachable. In a parallel study 

undertaken by our group, we observed such an improvement for 

a predictive model for suboptimal debulking when converting 

the microarray tool to quantitative reverse-transcription poly-

merase chain reaction (47). A greater challenge is the expectation 

of subgroup identification. In this respect, treatment options for 

late-stage, high-grade, serous ovarian cancer are lacking, with 

all patients being treated with carboplatin and paclitaxel. Thus, 

a prognostic signature would need to accurately identify those 

women with refractory disease (persistent or progressive disease 

after initial therapy) from the majority of women with advanced-

stage, high-grade ovarian cancer. Identification of these patients 

would provide the possibility of creating phase II trials testing 

novel agents that might be effective for these poor-prognosis 

patients and should be a focus of future development of ovarian 

cancer prognostic tools.

Functional analysis of all genes, ranked by correlation to a 

risk score, was more informative than functional analysis of genes 

comprising the signature. The four top-ranked risk scores were 

negatively correlated with immune response pathways containing 

human leukocyte antigen genes (ie, high expression of these genes 

was associated with good prognosis), whereas lower-ranked mod-

els were uncorrelated or positively correlated to these pathways. 

Notably, this association was apparent from the predicted risks 

rather than the individual genes used to generate the risk score, and 

none of these publications identified these proposed signatures as 

immune associated. Further work is needed to establish how these 

pathways influence survival and whether it is tumor or stromal 

expression that impacts survival.

This work helps to clarify two controversies in the ovarian 

cancer genomic literature. The first relates to the quality of the 

Dressman et al. (26) dataset, which underwent a correction (32) and 

was criticized by Baggerly and Coombes (31) because of confound-

ing between batches and outcomes. We repeated our analysis of sig-

natures as lists of genes shown in Figure 5 using only the Dressman 

dataset as training, and we observed that top-ranking published 

signatures still performed better than random signatures, suggest-

ing that gene expression profiles and survival data in the Dressman 

study are consistent with those of other studies. We also confirmed 

the importance of the run batches. To establish how much this 

batch effect might impact validation in this dataset, a comparable 

independent dataset is required. In our study, when used in valida-

tion, the Dressman dataset produced consistently higher C-indices, 

indicating that validation results based on this dataset  alone are 

likely to be optimistic. This tendency and the frequent reuse of the 

Dressman dataset in the literature highlight the importance of both 

rigorous study design and of direct comparative evaluation of newly 

proposed gene signatures against existing signatures or random 

signatures. Without such comparative evaluation, a confounded 

validation dataset may introduce systematic biases in the literature 

and could potentially lead to preferential publication of the models 

that best predict a technical artifact. Such bias can occur without 

knowledge or intent by authors or publishers. The same potential 

for batch effects to introduce bias exists for other high-throughput 

data types (48); however, unlike in this example, batches may be 

unknown to the analyst. If unknown batches are confounded with 

the outcome of interest, publication of data is the only way for inde-

pendent meta-analysis such as this to detect the resulting bias.

The second controversy relates to one of the first studies to 

independently make use of the ovarian TCGA gene expression 

dataset to train a prognostic model. Kang et al. (19) proposed a risk 

score based on expression of DNA repair pathway genes. Their 

study was criticized by Swisher et al. (28) for apparent contradic-

tions in the risk score with the initial hypothesis and for the small 

sample size and marginal statistical significance of the independ-

ent validation. We confirmed that this score was statistically sig-

nificantly prognostic of overall survival in independent datasets 

(Figure 2). However, it was poorly ranked (ranked 11 of 14), and 

the 23-gene signature was only slightly better than equally sized 

random gene sets (Figure 5). These analyses suggest it is unlikely 

that the expression of these 23 DNA repair genes, as measured by 

high-throughput microarrays, has direct utility in the prognosis of 

late-stage, serous ovarian cancer.

This meta-analysis is limited by some unavoidable aspects of 

the publicly available data. The number of usable gene expression 

profiles in the database was limited by incomplete or inconsist-

ent clinical annotations, although this problem was mitigated by 

the predominance of late-stage, high-grade, serous disease and 

widespread adoption of Federation of Gynecology and Obstetrics 

staging and grading (29). Additionally, the database contains the 

training datasets of some of the published models being assessed. 

Excluding these training sets results in models being compared in 

nonidentical subsets of the database. This limitation was mitigated 

by doing pairwise comparisons on the same data for top-perform-

ing models (Supplementary Figure 2, available online) and by com-

parison with random signatures in the same data (Figure 5), but a 
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complete and direct comparison of all models will require addi-

tional data. In future work, we plan to assess the most promising 

models identified here in a new dataset of clinical trial specimens.

This work provides a practical and transparent framework, as well 

as computational tools, for comparative validation and meta-analysis 

of predictive and prognostic models from high-throughput screens. 

To be applied in other areas, the framework requires a database of 

publicly available and clinically annotated data and a collection of 

fully specified prediction models. Together, these create a “level 

playing field” on which to assess alternative prognostic models. The 

implemented models and curated data provided here will enable 

straightforward additional efforts to move ovarian cancer signatures 

closer to clinical relevance, including identification of very-poor-

prognosis patients who could be diverted to phase II clinical trials 

instead of current standard therapy, analysis of gene expression sub-

types, rare histologies, and different endpoints of clinical interest.
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