
RESEARCH ARTICLE Open Access

Comparative metagenomics of biogas-producing
microbial communities from production-scale
biogas plants operating under wet or dry
fermentation conditions
Yvonne Stolze1†, Martha Zakrzewski2†, Irena Maus1, Felix Eikmeyer1, Sebastian Jaenicke3, Nils Rottmann4,
Clemens Siebner1, Alfred Pühler1 and Andreas Schlüter1*

Abstract

Background: Decomposition of biomass for biogas production can be practiced under wet and dry fermentation
conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content
and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing
microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a
metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S
rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a
dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA
preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools.

Results: High-throughput metagenome sequencing of community DNA from the wet fermentation process
applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting
for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from
wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while
the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes,
Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the
phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the
communities revealed that environmental gene tags representing methanogenesis enzymes were present in both
biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences
in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of
metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant
methanogens within the dry fermentation process were highly related to the reference.

Conclusions: Although process parameters, substrates and technology differ between the wet and dry biogas
fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating
that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding
methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process,
suggesting the adaptation of members belonging to this species to specific fermentation process parameters.
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Background
Rising energy costs and considerations on long term en-

vironmental sustainability have placed renewable energy

sources in the focus of debate. The development of re-

newable energy resources offers the chance to replace

traditional fossil fuels and can help to reduce carbon di-

oxide emissions [1,2]. An economically attractive tech-

nology to generate bioenergy is the production of biogas

that is a mixture of methane (CH4) and carbon dioxide

(CO2) as the main components, with small amounts of

hydrogen sulfide (H2S), nitrogen (N2), hydrogen (H2),

ammonia (NH3) and carbon monoxide (CO) [3]. The

most common and widespread utilization of biogas is

the production of electricity and heat by its combustion

in combined heat and power units.

The process of biogas production takes place under

anaerobic conditions and involves microbial decompos-

ition of organic matter, yielding methane as the main

final product of underlying metabolic pathways. In

Germany, mostly maize silage combined with liquid ma-

nure is utilized as the substrate for biogas production

[1,4]. Complex consortia of microorganisms are respon-

sible for biomass decomposition and biogas production

involving the stages substrate hydrolysis, acidogenesis,

acetogenesis and methanogenesis. However, most of

these microbes, as well as their roles in biogas produc-

tion, are currently unknown. Recently, the analysis of

the structure, composition and activity of microbial

communities in relation to input substrates and fermen-

tation parameters in biogas plants have become the

focus of research [5-7]. It is generally accepted that a

better understanding of the composition and activity of

the multifarious microbial community is crucial for fur-

ther optimization of reactor performance and fermenta-

tion process technologies. Moreover, to increase the

yield of biogas, a detailed insight into relevant microbial

metabolic pathways involved in methane synthesis and

syntrophy is necessary.

Previous studies analyzed the taxonomic structure and

enzymatic potential of biogas communities residing in

agricultural biogas reactors. A classical microbiological

approach for the analysis of the communities’ taxonomy

is the generation of 16S rRNA gene clone libraries,

followed by Sanger sequencing of the 16S rRNA gene

fragments [8-12]. Sequencing of 16S rRNA gene clone li-

braries is limited since coverage of the microbial complex-

ity frequently is laborious, costly and time-consuming.

Moreover, sequence information on community 16S rRNA

marker genes does not provide direct insights into func-

tions of microorganisms. To achieve deeper insights into

community structure and function, metagenome analyses

applying high-throughput sequencing technologies were

carried out [13-17]. Elaborate bioinformatics methods and

analysis platforms facilitated metagenome sequence data

interpretation and comparison [13,14,16,18]. Another ap-

proach for comparison of metagenome datasets is frag-

ment recruitment of metagenomic sequences related to

selected genomes of reference species. This approach pro-

vides insights into the degree of relatedness of indigenous

species within a given habitat to known reference species.

Recently, fragment recruitment has been applied for mar-

ine and silage microbial communities [19,20].

In principle, decomposition of biomass for biogas pro-

duction can be practiced under wet or dry fermentation

conditions. Wet fermentation is characterized by a high

liquid content and a low total solid content, which usu-

ally is below 10%. In contrast to this, in dry fermentation

the total solids content is between 15 and 35%. Biogas

plants operating under dry fermentation conditions

apply mostly maize silage, green rye (and similar bio-

mass), dung (cow dung, poultry dry excrement and so

forth) or municipal solid wastes as substrates without

any continuous supplementation of liquid manure,

which consequently leads to a low liquid content [1,21].

To control the water content, recirculation of digestate

or liquid is applied, which may have a great impact on

the activity of the underlying community. Recirculation

may influence the pH, salt and organic loads, which

could inhibit the microbial activity. Dry fermentation

proved to be a convenient technology for the fermenta-

tion of substrates possessing relatively high dry matter

contents. According to the German Renewable Energy

Law (EEG), a technology bonus was granted for dry fer-

mentation biogas plants built before the year 2008. Pre-

viously, a dry fermentation process of a production-scale

biogas plant was characterized at the metagenomic level

[13,14,16]. On the other hand, wet fermentation utilizing

maize silage and liquid manure from cattle or swine is

performed in most mid-sized, agricultural biogas plants

in Germany. In this study, the microbial community of

an agricultural biogas plant performing wet fermentation

was analyzed by applying a metagenomic approach. Ob-

tained results were compared to taxonomic community

profiles deduced from a dry fermentation biogas plant

analyzed previously. The present study adopted exactly

the same methodology for processing samples, preparing

total community DNA and metagenome sequence data

analysis as for metagenome analysis of the dry fermentation

process in the study mentioned above. It is hypothesized

that biogas-producing microbial communities comprise a

‘core’ microbiome and variable sub-communities that re-

spond to specific conditions and process parameters pre-

vailing in particular reactor environments. The objective of

this study was to differentiate biogas communities from

biogas plants performing wet and dry fermentation, with

respect to their taxonomic profiles, and to deduce correla-

tions between these profiles and process parameters col-

lected for both fermentation types. Another aim of this
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study was to identify key species specifically adapted to one

process or the other and their predicted functions, focusing

on methanogenic species.

Results and discussion
Analyzed biogas production plants differ in substrate

input and chemical parameters

To compare taxonomic and functional profiles of the

biogas-producing microbial communities from production-

scale biogas plants operating under dry or wet fermentation

conditions, samples from the primary digesters of two

agricultural biogas plants differing in these fermentation

types were analyzed. The biogas plant operating under

dry fermentation conditions (BGP_DF) was sampled

previously [16], whereas samples from the biogas plant

operating under wet fermentation conditions (BGP_WF)

were taken in March 2011. One of the major differences

between BGP_WF and BGP_DF is their dry matter

content (BGP_DF: 14% ± 2% and BGP_WF: 9% ± 1%).

BGP_DF was fed with high amounts of plant silages and

low amounts of chicken manure [16], whereas the sub-

strate composition of BGP_WF mainly consisted of

maize silage and a relatively high amount of liquid pig

manure (Table 1). Moreover, both biogas plants can be

distinguished according to their process parameters,

such as volatile organic acids, total inorganic carbon,

acetic and propionic acid concentrations and ammonium

contents (see Table 1). BGP_DF is characterized by higher

acetic and propionic acid concentrations as compared to

BGP_WF, suggesting that consumption of these com-

pounds is limited in BGP_DF. The biogas and methane

yields (698.2 l/kg and 350.5 l/kg organic dry matter

(oDM), see Table 1) are in the normal range of production

in mesophilic production-scale biogas plants.

In a recent study, a metagenome approach was carried

out to study the taxonomic composition and functional

potential of the microbial community in the biogas plant

BGP_DF [13,16]. In total, 1,347,644 sequencing reads

were generated with an average read length of 367.7

bases providing approximately 496 million bases se-

quence information (Table 2). Most biogas plants in

Germany practice wet fermentation utilizing liquid ma-

nure and maize silage for the production of methane. To

obtain insights into the microbial community compos-

ition of this process, a metagenome sequencing ap-

proach for the biogas plant applying wet fermentation

(BGP_WF) was carried out. The same sample prepar-

ation, DNA-extraction method and sequencing tech-

nique were applied as previously described for BGP_DF

to ensure comparability of the metagenome datasets. Se-

quencing of the samples originating from BGP_WF re-

sulted in 1,532,780 sequencing reads, with an average

read length of 387.3 bases, accounting for approximately

594 million bases sequence information (Table 2). To in-

clude only high quality sequences, both datasets were fil-

tered for GC (G: Guanine, C: Cytosine bias and duplicates

as previously described [22]. After this filtering step,

1,019,333 sequences from the BGP_DF and 1,097,549

sequences from the BGP_WF remained and were used

for downstream taxonomic and functional analyses (see

Table 2).

Comparative analyses of taxonomic profiles obtained

from wet and dry fermentation communities revealed

high similarities

The community structures in the biogas plants operating

under wet (BGP_WF) or dry fermentation (BGP_DF)

conditions were studied using CARMA3 [23] and Meta-

SAMS [24]. The software CARMA3 was applied to cal-

culate the taxonomic (microbial composition based on

phylogenetic analyses) and functional profile (predicted

Pfam protein families based on similarity searches) of

Table 1 Characteristics of the studied biogas plants performing wet or dry fermentation technology

Biogas plant operating dry fermentation
(Sampling date: 14 August 2007)

Biogas plant operating wet fermentation
(Sampling date: 1 March 2011)

pH 7.7 ± 0.01 7.8 ± 0.01

Conductivity (mS/cm) 17.1 ± 1 21.6 ± 1

VOA (mg/l) 7,739 ± 60 3,987 ± 31

TIC 15,159 ± 120 14,517 ± 115

VOA/TIC 0.51 0.27

NH4-N (g NH4-N/l) 2.25 ± 0.02 2.85 ± 0.02

Acetic acid (mg/l) 2,628 ± 50 344 ± 7

Propionic acid (mg/l) 179 ± 3.6 14 ± 0.3

Fed substrates Maize silage (63%), green rye (35%), chicken manure (2%) Maize silage (approximately 72%), pig manure (approximately 28%)

Biogas yield (l/kg oDM) 698.2 810.5

Methane yield (l/kg oDM) 350.5 417.8

oDM: Organic dry matter; TIC: Total inorganic carbon; VOA: Volatile organic acids.
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the microbial community. CARMA3 is implemented in

MetaSAMS (Metagenome Sequence Analysis and Man-

agement System), a software suited for the analysis of

metagenome datasets. For the interpretation only taxo-

nomic assignments with an E-value threshold of 10−5

were considered. In total, 711,293 sequences of the

BGP_WF were assigned to a superkingdom representing

64.8% of the total number of analyzed sequences. In the

BGP_DF dataset, 604,243 sequences (59.3% of the total

sequences) were similar to known reference sequences

at the rank superkingdom. Rarefaction analyses on the

mean taxonomic richness on the taxonomic family rank

showed a saturation from approximately 800,000 reads,

which indicates that the majority of the microbial com-

munity has been captured, while the rarefaction analysis

on the rank genus was nearly saturated (Additional file

1: Figure S1A and D).

At higher taxonomic ranks, the community composi-

tions in BGP_WF and BGP_DF are very similar (Figure 1).

Both communities are mainly composed of bacterial (59%

in BGP_WF and 52.5% in BGP_DF of the total analyzed

reads) and archaeal microorganisms (5.5% in BGP_WF

and 6.6% in BGP_DF) (Figure 1). The bacterial superking-

dom mainly comprises the phyla Firmicutes (32.5% in

BGP_WF and 25.4% in BGP_DF), Bacteroidetes (8.4%

in BGP_WF and 6.2% in BGP_DF), Spirochaetes (1.7%

in BGP_WF and 0.5% in BGP_DF) and Proteobacteria

(1.7% in BGP_WF and 1.2% in BGP_DF). These phyla

were also common in other biogas plant microbiota

[9,17,18]. Bacterial groups belonging to the taxa Firmicutes,

Bacteroidetes and Spirochaetes are assumed to be involved

in cellulolytic degradation, proteolysis, acidogenesis and

homoacetogenesis [10]. Among the archaeal community,

Euryarchaeota (5.2% in BGP_WF and 6.2% in BGP_DF of

all analyzed sequences) is the most abundant phylum with

Methanomicrobia as the largest class (Figure 1). Compar-

ing both profiles on the phylum level, minor differences

were observed in the relative abundances of Firmicutes.

However, there are some noteworthy changes in the rela-

tive abundances of taxonomic groups between wet and dry

fermentation digesters on the class level, in particular of

classes belonging to the phylum Firmicutes.

Among the phylum Firmicutes in BGP_WF, Clostridia

(19.5% of all analyzed sequences in BGP_WF) forms the

largest class, followed by Bacilli (1.8%) and Erysipelotri-

chi (1.2%) (Figure 1). Likewise, Clostridia and Bacilli are

also the most abundant classes of Firmicutes in the

microbiome of the BGP_DF, with 14.3% and 1.4% of the

total number of analyzed reads, respectively, whereas

Erysipelotrichi is barely present (0.1%) in this digester.

While Clostridia and Bacilli species are well described

in the anaerobic digestion process in biogas plants, the

evidence for Erysipelotrichi species is sparse [248]. Little

is known about the family Erysipelotrichaceae. However,

it was also identified in the microbial community of the

gut [25]. An increase in members of this family was as-

sociated with a diet high in fat, increased body weight

and decreased fecal short-chain fatty acid concentrations

in mice [25]. Concurrently, occurrence of Erysipelotrichi

members correlates with lower short-chain fatty acid

concentrations in BGP_WF. Whether this observation is

really due to the metabolic capabilities of this group of

microorganisms remains to be determined.

In both biogas plants, the most abundant families be-

longing to the class Clostridia are Clostridiaceae (3.8%

in BGP_WF and 1.8% in BGP_DF of all analyzed se-

quences), Ruminococcaceae (0.5% in BGP_WF and 0.3%

in BGP_DF) and Lachnospiraceae (0.3% in BGP_WF and

0.1% in BGP_DF) (Figures 1 and 2). Clostridium, the

prevalent genus within Clostridiaceae, seems to belong

to the core set of organisms, as it is dominant in both

biogas plants studied (Figure 1). Species of this genus,

such as Clostridium thermocellum [26] and Clostridium

clariflavum [27], produce cellulosomes, an extracellular

multi-enzyme complex which is important for the deg-

radation of complex carbohydrates such as cellulose. In-

deed, environmental gene tags (EGTs) classified to the

genus Clostridium encode enzymes relevant in the hydroly-

sis process of glycoside bonds (PF00150 and PF00759). In

both biogas plants, Alkaliphilus is the second largest genus

within the family Clostridiaceae. It has also been detected

in high amounts in a biogas plant fed with plant biomass

and pig manure slurry [17]. The species Alkaliphilus pepti-

dofermentans, isolated from a soda lake, is described to fer-

ment peptides to acetate and formate [28]. The functional

profile of EGTs assigned to the genus Alkaliphilus in the

wet fermentation process includes various peptidase fam-

ilies (PF00768 and PF05343).

Table 2 Metagenome sequencing statistics of the DNA samples from the wet (BGP_WF) and dry (BGP_DF) fermentation

biogas plants

Unfiltered sequencesa Filtered sequencesa

BGP_DF BGP_WF BGP_DF BGP_WF

Reads (bp) 1,347,644 1,532,780 1,019,333 1,097,549

Average read length (bp) 368 387 366.0 387.5

Sequence information (Mbp) 495.5 593.7 373.1 424.3
aSequencing data summary is shown before (unfiltered sequences) and after (filtered sequences) the filtering step for duplicates and GC bias. Mbp: mega

base pairs.
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Figure 1 Taxonomic composition of microbial communities from the wet and dry fermentation processes. Taxonomic structure of the
microbial community associated with a (A) dry (BGP_DF) or (B) wet (BGP_WF) fermentation process: The taxonomic composition of the microbial
communities residing in the biogas plants analyzed was determined using CARMA3 and visualized by Krona plots. Only the ranks from superkingdom
to family were considered.

Figure 2 Scatterplot of sequence counts assigned to the taxonomic rank family for microbial communities from the wet and dry

fermentation processes. For each taxonomic family, sequence abundances, normalized on the smallest dataset, with pseudocounts (for an explanation
see Methods section) are plotted as a logarithm to the base 10. Red symbols indicate archaeal and green symbols indicate bacterial families. Only families
for which the sum of the relative read abundances measured was at least 0.01% were considered.
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Members of the genus Ruminococcus belonging to the

family Ruminococcaceae (order Clostridiales) are cellulo-

lytic organisms, which occur in the rumen community

[29] and in biogas plants [17]. They play an important

role in the digestion of plant cell wall material and pro-

duce acetate [29,30]. Among the functional profile of

EGTs assigned to Ruminococcus, protein families for gly-

cosyl hydrolase family 9, 26 and 48 (PF00759, PF02156

and PF04616) representing cellulose-, cellobiose- and

hemicellulose-degrading enzymes were observed. Fur-

thermore, gene fragments for dockerin and cohesin

(PF00404 and PF00963), the scaffoldin units of cellulo-

somes, were detected in the functional profile of the wet

fermentation process. Recently, the genome of Acetivi-

brio cellulolyticus of the family Ruminococcus was se-

quenced [31]. The genome carries genes for a complex

cellulosome system including endoglucanases and cello-

biohydrolases. Glycosyl family 8 and 9, both representing

these enzymes, were detected among the EGTs assigned

to the genus Acetivibrio.

The family Spirochaetaceae dominates the phylum Spiro-

chaetes with 68% of the reads assigned to this phylum in

BGP_DF (Figure 1). It is the third largest family, with 1.2%

of all reads in the wet fermentation sample, whereas it be-

longs to the minor groups in the dry fermentation process

(0.2%). Microorganisms related to Treponema have already

been described in a mesophilic biogas digester treating pig

manure using 16S rRNA clone libraries [10]. Genomes of

the Treponema species encode proteolytic enzymes [32]

and glycoside hydrolases [33]. EGTs classified to the genus

Treponema in BGP_WF were also assigned to carbohydrate

phosphorylase (PF00343), alpha amylase (PF00128) and 4-

alpha-glucanotransferase (PF02446), which participate in

starch and sucrose metabolism, carbohydrate phosphoryl-

ase (PF00343) and alphaamylase (PF00128). The family

Succinivibrionaceae belonging to the Gammaproteobac-

teria is only predicted in the biogas plant operating wet

fermentation (0.04% of all analyzed sequenced reads) and

was sparsely detected in the dry fermentation process

(Figures 1 and 2). This family is noted to use glucose and

other carbohydrates as an energy source and to produce

succinate and acetate [34]. Likewise, the family Fibrobac-

teraceae is more frequently present in the wet fermenta-

tion process. The known species Fibrobacter succinogenes

is described to play a key role in the degradation process

of cellulose [35].

Prevotellaceae belonging to the phylum Bacteroidetes is

more abundant in the BGP_WF, with 0.18% of all analyzed

sequences in the corresponding dataset as compared to

0.8% of all sequences in the BGP_DF (Figures 1 and 2).

Species of the genus Prevotella are described to decompose

hemicellulose, starch and pectin [36,37]. Various Pfam

families were discovered in the wet fermentation digester

that were assigned to Prevotella and are predicted to be

involved in the degradation of hemicellulose (such as gly-

cosyl hydrolase family 3 (PF00933, PF01915), glycosyl

hydrolase 92 (PF07971) and alpha-L-arabinofuranosidase

(PF06964)) or starch (such as glycosyl hydrolase family 31

(PF01055)).

Synergistaceae of the phylum Synergistetes belongs to

the core-set of the families represented in both biogas

plants (0.4% in BGP_WF and 0.1% in BGP_DF of all

analyzed reads) (Figures 1 and 2). Anaerobaculum and

Aminobacterium are genera within the phylum Synergis-

tetes, which are both predicted in the biogas plants. Re-

cently, Anaerobaculum was detected in anaerobic digestion

of slaughterhouse waste mixture [38] and thermophilic

sludge [11]. Species of Anaerobaculum are associated with

the fermentation of peptides and produce short-chain fatty

acids. Likewise, species of the genus Aminobacterium were

isolated from anaerobic sludge and are described to fer-

ment a range of amino acids to acetate, propionate and

hydrogen [39,40].

Community profiles of the dry and wet fermentation

process differ at lower taxonomic ranks

There are also a number of taxa that are slightly in-

creased in the biogas plant operating the dry fermenta-

tion technology (Figures 1 and 2). For example, the two

biogas plants differ in the proportion of sequences be-

longing to the family Acholeplasmataceae, of the phylum

Tenericutes. The species Acholeplasma laidlawii was iso-

lated from wastewater [15] and also has been identified

in other biogas plants [1]. As a source for carbon, A. lai-

dlawii utilizes glucose, fructose and galactose [15]. The

genome of A. laidlawii harbors genes for enzymes that

degrade starch, amino sugars and other sugars. In the

functional profile of EGTs assigned to this family are gly-

coproteases (PF00814) and peptidases (PF01546) (data

not shown).

In the dry fermentation process, Candidatus Cloacamo-

nas is more prevalently present (Figure 2). The species

Candidatus Cloacamonas acidaminovorans was recently

detected to be highly abundant in other anaerobic di-

gesters [17,41]. Previously, the genus was also identified in

a 16S rRNA clone library of the same biogas plant [42].

Proteome analysis indicated that C. acidaminovorans

might attain energy from sugars in the Embden-Meyerhof

pathway and from the fermentation of amino acids, and

thereby produces hydrogen and carbon dioxide [41].

Overall, the taxonomic profiles are similar for the

wet and dry anaerobic digestion, especially at higher

taxonomic ranks. In the BGP_WF, the families Erysi-

pelotrichaceae, Fibrobacteraceae, Succinivibrionaceae

and Clostridiaceae were found to be more abundant,

whereas more sequences were assigned to Achole-

plasmataceae and Candidatus Cloacamonas in the

BGP_DF.
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Hydrogenotrophic methanogens are dominant in the dry

and wet fermentation processes

A detailed taxonomic analysis was performed for the ar-

chaeal sequences of both fermentation processes. In the

wet fermentation process, less EGTs were assigned to

Methanomicrobiaceae (3.4%) as compared to the dry fer-

mentation digester (4.4%) (Figures 1 and 2). In both fer-

mentation processes, Methanomicrobiaceae is the most

abundant methanogenic family with Methanoculleus be-

ing the prevalent genus. Methanoculleus species conduct

the hydrogenotrophic methanogenesis pathway, synthe-

sizing methane from carbon dioxide and hydrogen. Fur-

ther identified families that are capable of performing

methanogenesis are Methanosarcinaceae, Methanosaeta-

ceae and Methanobacteriaceae [43]. These families are

only detected in low abundance in the microbial com-

munities. In the BGP_WF, the acetoclastic methanogen

Methanosaeta was measured in slightly higher frequencies

as compared to the dry fermentation process (Figure 2).

This genus was noted to be more dominant in biogas plants

with low acetate concentrations [44], as it has a high affinity

to acetate. The observation is supported by this study as

the abundance of Methanosaeta correlates with the lower

concentration of acetic acid in BGP_WF compared to

BGP_DF (see Table 1).

In addition to the taxonomic comparison of the biogas

plants, enzymes involved in the acetoclastic and hydroge-

notrophic methanogenesis were categorized according to

Pfam families and were searched in the functionally char-

acterized metagenomes obtained from BGP_WF and

BGP_DF. Reads assigned to the selected Pfam families and

classified to the superkingdom Archaea were used for the

subsequent analysis (see Figure 3). No EGTs were assigned

to acetate kinase and phosphotransacetylase, which are

key enzymes in the initial step of acetoclastic methano-

genesis in Methanosarcina [45]. However, EGTs for all en-

zymes relevant in the hydrogenotrophic methanogenesis

pathway were identified with a slightly higher amount in

the dry fermenter (data not shown). Rarefaction analyses

on the mean EGT richness showed a saturation at ap-

proximately 800,000 reads, which indicates that the major-

ity of the microbial community has been captured (see

Additional file 1: Figure S1B). Moreover, we emphasized

the EGTs that are unique in each of the biogas plants’

metagenomes, which means that they are absent in the

one plant while they have an abundance of at least

Figure 3 Comparative analysis of archaeal environmental gene tags (EGTs) representing methanogenesis-related enzymes in metagenome

datasets for the wet or dry fermentation process. Comparison of the relative abundances of EGTs representing enzymes involved in the
acetyl-CoA pathway, methanogenesis and Wood-Ljungdahl pathway. Only EGTs assigned to Archaea were considered and relative abundances
were normalized based on the smallest dataset.
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five in the other plant (normalized on the smallest data-

set). This analysis showed that there are more unique

EGTs in the wet fermentation process metagenome. How-

ever, none of the identified unique EGTs can be correlated

to functions directly associated with the fermentation pro-

cesses leading to methane production (Additional file 2:

Table S1).

Differentiation of the methanogenic sub-community

within the wet and dry fermentation process

To analyze the archaeal sub-community at a higher reso-

lution, high-throughput 16S rRNA gene amplicon se-

quencing was carried out. The sequencing procedure for

BGP_WF yielded 83,719 sequencing reads. A previous

rRNA gene amplicon sequencing run of the sample ob-

tained from BGP_DF resulted in 170,941 sequencing

reads [46]. In total, 37 operational taxonomic units

(OTUs) were of archaeal origin, representing 2,753 se-

quences of the BGP_WF dataset (8%). After manual in-

spection for chimeric sequences and excluding those

sequences with a length below 100 bp, 15 OTUs

remained comprising 2,691 reads. In the dry fermenta-

tion process, 22 OTUs representing 1,118 sequences

(2%) were assigned to Archaea. After removing manually

detected chimeric and short (<100 bp) sequences, nine

OTUs remained representing 1,095 sequences. The

number of sequences included in the OTUs was normal-

ized to the number of the smallest filtered 16S rRNA

gene amplicon dataset. Phylogenetic analysis of repre-

sentative OTU sequences that were assigned to the

superkingdom Archaea was carried out using FastTree.

Rarefaction analyses on the mean OTU richness showed

saturation at approximately 30,000 reads, which indi-

cates that the majority of the microbial community has

been captured (see Additional file 1: Figure S1C).

The largest archaeal OTUs of the wet fermentation

and dry fermentation plant are similar to Methanocul-

leus bourgensis with 2,184 and 680 sequences, respect-

ively (Figure 4). The presence of a phylogenetic cluster

related to M. bourgensis is in agreement with previous

studies based on 16S rRNA clone library analyses ob-

tained from the biogas plant BGP_DF [42]. The repre-

sentative sequences of the second largest OTU of each

biogas plant cluster together. The representative ampli-

con sequences comprise 359 and 51, respectively, and

are located in a large cluster formed by known Methano-

culleus species. However, no sequence of a described

Methanoculleus species could be identified in close

proximity of these representative sequences, indicating a

so far unknown archaeal species related to Methanocul-

leus (unknown Methanoculleus cluster II).

A further unknown Methanoculleus species is highly

represented in the wet fermentation plant (unknown

Methanoculleus cluster I). The corresponding OTU

contains 98 sequence reads. A representative sequence

of the dry fermentation biogas plant clusters close to the

latter OTU, comprising only four reads. A so far un-

known Methanoculleus species has also been described

in the same biogas plant based on 16S rRNA library

clones [42].

Moreover, representative sequences are located outside

the phylogenetic cluster formed by the described Metha-

noculleus species. Corresponding archaeal species also

belong to the class Methanomicrobia (cluster I and cluster

II). The phylogenetic tree distantly affiliated a sequence

from the dry fermentation plant to the recently identified

species Methanomassiliicoccus luminyensis B10 from a

human gut microbiome sample [47]. The representative

sequence also clusters close to a so far unknown archaeal

clone [48], which originates from an agricultural biogas

plant supplied with water, maize silage and barley grains

[49]. The distribution of similar sequences in various habi-

tats suggests a wide occurrence of species related to M.

luminyensis.

Besides Methanomicrobia, Methanobacteria were identi-

fied in the biogas plants based on phylogenetic analysis.

Corresponding species are related to Methanobrevibacter

and Methanobacterium. Both were identified in the 16S

rRNA gene amplicon dataset, as well as in the whole meta-

genome approach, in the two biogas plants with minor fre-

quencies. Some representative sequences (BGP_DF_8,

BGP_WF_7 and BGP_WF_14) form a phylogenetic cluster

with the 16S rRNA gene sequence of Methanobacterium

kanagiense [50], a hydrogenotrophic archaeon isolated from

an anaerobic propionate-oxidizing soil sample. Another

representative sequence (BGP_WF_12) is 96% identical to

the 16S rRNA gene sequence of Methanobrevibacter

olleyae [51]. This species is present in sheep and bovine

rumen and was described to use hydrogen and formate for

methane formation. Further representative sequences

(BGP_DF_9 and BGP_WF_15) are associated with Metha-

nobrevibacter woesei and feature an identity of 97 to 98% to

this species. M. woesei was isolated from goose gut and is a

hydrogenotrophic archaeon that mainly uses hydrogen and

carbon dioxide for methane production.

Finally, no representative sequences related to aceto-

clastic methanogens were identified in the biogas plants,

showing a dominance of hydrogenotrophic methanogens

in the biogas production process of these plants.

Overall, the constructed archaeal phylogenetic tree il-

lustrates differences in the composition of the methano-

genic sub-communities of both biogas plants. Besides

the dominating M. bourgensis further Methanoculleus

species are also present in the dry fermentation process

(unknown Methanoculleus cluster I and II). In BGP_WF

other methanogens comprising species related to un-

known Methanomicrobiaceae species (cluster II and

cluster III (see Figure 4) are prominent.
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Fragment recruitments revealed that methanogens of the

dry fermentation plant are closely related to the type strain

Methanoculleus bourgensis MS2T at the genomic level

To analyze the degree of relatedness of biogas-producing

community members to completely sequenced reference

microorganisms, and to differentiate the metagenome

datasets of both biogas plants referring to this, fragment

recruitments were conducted as described previously [19].

Another objective of this analysis was to determine simi-

larities of methanogens of both biogas plants to the gen-

ome of the type strain M. bourgensis MS2T [43]. For this

purpose, metagenome sequence reads were searched for

matches to completely sequenced microbial genomes

stored in the National Center for Biotechnology Informa-

tion (NCBI) database applying the BLASTn algorithm

[Basic Local Alignment Search Tool on nucleotide level].

Counts of metagenome reads that match to reference ge-

nomes with more than 90% sequence similarity are listed

for the top 20 genomes in Table 3. Reference organisms

appearing in this analysis taxonomically represent the

orders Methanomicrobiales, Clostridiales, Lactobacillales,

Thermoanaerobacterales and Synergistales and could be

classified to belong to one of the following functional

groups: cellulolytic organisms, secondary fermenters (acido-

genic), syntropic organisms (acetogenic) and methanogens

(see Table 4). Also, for BGP_DF, the orders Thermotogales

Figure 4 Archaeal phylogenetic tree of representative operational taxonomic units (OTUs) sequences from the wet and dry fermentation

processes. Representative OTU sequences and corresponding counts assigned from the wet (BGP_WF, red) or dry fermentation (BGP_DF, green)
process are labeled with an OTU identifier in brackets, and the nodes are labeled with the respective boot strap values. Representative sequences were
assigned to one known Methanobacteriaceae and three unknown Methanomicrobiaceae clusters (I to III), and to one known and two unknown
Methanoculleus bourgensis clusters (I and II), respectively. Sequence counts were normalized according to the smallest dataset.

Stolze et al. Biotechnology for Biofuels  (2015) 8:14 Page 9 of 18



and Bacillales were identified among the top 20

recruitments.

Additionally, BLASTn results were graphically evalu-

ated in fragment recruitment plots, in which the degree

of similarity of a single hit is plotted against the position

of this hit on the reference genome sequence. This was

done for those three microorganisms showing the high-

est sequence similarities to matching metagenome se-

quence reads (see Table 3), namely M. bourgensis MS2T,

C. clariflavum DSM 19732 and C. thermocellum ATCC

27505 (see Figure 5). Hit distribution plots show the

numbers of hits with a similar degree of similarity to the

reference genome sequence. Fragment recruitments re-

vealed that methanogens within fermentation samples of

both biogas plants are related to the reference type

strain M. bourgensis MS2T. It was observed that domin-

ant methanogens of BGP_DF are more closely related to

the reference genome as compared to those of BGP_WF

(see Figure 5A). It was supposed that M. bourgensis may

be very well adapted to adverse conditions prevailing in

BGP_DF, such as high ammonium concentrations and

osmolarity [12,77,78], due to the fed substrate, which

was chicken dry excrement.

Surprisingly, M. bourgensis MS2T represents the only

organism that can be regarded as reasonable reference

for members of the biogas-producing communities ana-

lyzed in this study. All other microorganisms listed in

Table 3 feature a lesser degree of conservation to biogas

community members and hence are more distantly re-

lated to them (exemplarily see Figure 5B,C). Moreover,

differentiation of the microbial communities of both

biogas plants is not apparent from these fragment re-

cruitment analyses, since results obtained for both meta-

genome datasets uncovered nearly the same set of

prominent reference organisms, with only slight differ-

ences in rankings (see Tables 3 and 4). This result confirms

deduced taxonomic profiles for both biogas plants at

higher taxonomic ranks which did not uncover pro-

nounced differences between both microbial communities

(see previous sections). However, it was observed that

the diversity within the genus Streptococcus is greater

for BGP_WF which was fed with swine manure. It is

known that particular Streptococcus species such as

Streptococcus suis and Streptococcus pasteurianus be-

long to the common microbiome of the pig’s intestinal

tract [52,79,80]. Moreover, it should be noted here

that Desulfotomaculum carboxydivorans was identified

at rank nine for BGP_WF and at rank eight for

BGP_DF in fragment recruitments. This bacterium is

able to catabolize low-molecular weight compounds

Table 3 List of 20 reference genomes showing the highest similarities to the metagenome datasets from biogas plants

operating under wet or dry fermentation conditions as analyzed by fragment recruitment analysis

Reference sequence Wet fermentationa Dry fermentationa

Methanoculleus bourgensis MS2T 15,992 (1.19%) 59,969 (4.45%)

Clostridium clariflavum DSM 19732 3,840 (0.28%) 3,282 (0.24%)

Clostridium thermocellum ATCC 27405 2,464 (0.18%) 2,201 (0.16%)

Clostridium kluyveri DSM 555 1,423 (0.11%) 807 (0.06%)

Streptococcus infantarius subsp. infantarius CJ18 1,360 (0.1%) 367 (0.03%)

Thermoanaerobacterium thermosaccharolyticum DSM 571 1,234 (0.09%) 1,454 (0.11%)

Mahella australiensis 50–1 BON 1,179 (0.09%) 1,319 (0.1%)

Methanoculleus marisnigri JR1 1,014 (0.08%) 3,298 (0.24%)

Desulfotomaculum carboxydivorans CO-1-SRB 944 (0.07%) 682 (0.05%)

Clostridium difficile M120 776 (0.06%) 386 (0.03%)

Thermoanaerovibrio acidaminovorans DSM 6589 688 (0.05%) 387 (0.03%)

Syntrophomonas wolfei subsp. wolfei str. Goettingen 622 (0.05%) 358 (0.03%)

Streptococcus gallolyticus UCN34 621 (0.05%) 191 (0.01%)

Streptococcus suis GZ1 575 (0.04%) 444 (0.06%)

Streptococcus pasteurianus ATCC 43144 556 (0.04%) 176 (0.01%)

Streptococcus macedonicus ACA-DC 198 523 (0.04%) 153 (0.01%)

Thermoanaerobacter sp. X514 502 (0.04%) 310 (0.02%)

Pelotomaculum thermopropionicum SI 452 (0.03%) 533 (0.04%)

Clostridium cellulolyticum H10 437 (0.03%) 321 (0.02%)

Clostridium cellulovorans 743B 386 (0.03%) 210 (0.01%)
aNumber and percentage of reads recruited for each strain determined by BLASTn analyses (reads featuring at least 90% sequence similarity to the reference

genome were counted).
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Table 4 Species identified during a fragment recruitment analysis using metagenome sequence data of wet and dry fermentation biogas plants

(x)a Species (y)b Functional
role

Taxonomyc (phylum,
class, order)

Origin; attributes; metabolic features Reference

(1) Methanoculleus bourgensis (1) Methanogenic Euryarchaeota, Methanomicrobia,
Methanomicrobiales

Isolated from activated sludge; methanogen; hydrogenotroph [43]

(2) Clostridium clariflavum (3) Cellulolytic Firmicutes, Clostridia, Clostridiales Isolated from thermophilic anaerobic sludge; Cluster III Clostridium;
cellulolytic; cellulosome

[52]

(3) Clostridium thermocellum (4) Cellulolytic Firmicutes, Clostridia, Clostridiales Isolated from hot spring (Yellowstone), cotton bales, farm soil and
other habitats; thermophilic; cellulolytic; cellulosome

[26,53]

(4) Clostridium kluyveri (7) Secondary
fermenters

Firmicutes, Clostridia, Clostridiales Isolated from canal mud; fermentation of ethanol and acetate to
butyrate, caproate and H2

[54]

(5) Streptococcus infantarius (13) Secondary
fermenters

Firmicutes, Bacilli, Lactobacillales Isolated from fermented dairy and plant products; associated with
different human and animal infections; fermentative metabolism

[27]

(6) Thermoanaerobacterium
thermosaccharolyticum (5)

Syntrophic Firmicutes, Clostridia,
Thermoanaerobacterales

Isolated from geothermal sites (Yellowstone); class V Clostridia;
saccharolytic; fermentation of a wide range of carbohydrates to
ethanol, acetic acid, lactic acid, H2 and CO2

[55,56]

(7) Mahella australiensis (6) Secondary
fermenters

Firmicutes, Clostridia,
Thermoanaerobacterales

Isolated from oil field (Queensland, Australia); predicted to utilize
pentoses; xylose metabolism

[57]

(8) Methanoculleus marisnigri (2) Methanogenic Euryarchaeota, Methanomicrobia,
Methanomicrobiales

Isolated from marine sediment; methanogen; hydrogenotroph [58,59]

(9) Desulfotomaculum carboxydivorans (8) Secondary
fermenters

Firmicutes, Clostridia, Clostridiales Isolated from anaerobic bioreactor sludge; moderately thermophilic;
fermentation of pyruvate, lactate, glucose and fructose;
chemolithoheterotrophic; sulfate reduction

[60]

(10) Costridium difficile (12) Secondary
fermenters

Firmicutes, Clostridia, Clostridiales Human isolate; pathogenic for humans and animals; causes diarrhea
and colitis; mesophilic; chemoorganotroph

[61]

(11) Thermoanaerovibrio
acidaminovorans (11)

Syntrophic Synergistetes, Synergistia, Synergistales Isolated from anaerobic reactor of a sugar refinery; fermentation of
amino acids to acetate and propionate; metabolism enhanced by
hydrogen scavenger

[62]

(12) Syntrophomonas wolfei subsp. wolfei
(15)

Syntrophic Firmicutes, Clostridia, Clostridiales Isolated from anaerobic digester sludge; syntrophic fatty acid
metabolism, syntrophic association with methanogenic archaeon

[63]

(13) Streptococcus gallolyticus (-) Secondary
fermenters

Firmicutes, Bacilli, Lactobacillales Isolated from endocarditis patient; part of the rumen flora;
pathogenic for ruminants, birds and humans; fermentation of
carbohydrates of plant origin

[18,64-67]

(14) Streptococcus suis (10) Secondary
fermenters

Firmicutes, Bacilli, Lactobacillales Clinical origin; zoonotic pathogen for pigs and humans;
fermentation of carbohydrates

[2,32,67]

(15) Streptococcus pasteurianus (-) Secondary
fermenters

Firmicutes, Bacilli, Lactobacillales Isolated from human blood; pathogenic; fermentation of
carbohydrates

[52,67]

(16) Streptococcus macedonicus (-) Secondary
fermenters

Firmicutes, Bacilli, Lactobacillales Isolated from fermented (dairy) foods; pathogenic; fermentation
of carbohydrates

[67,68]

(17) Thermoanaerobacter sp. (18) Secondary
fermenters

Firmicutes, Clostridia,
Thermoanaerobacterales

Isolated from deep sub-surface sample; thermophilic; fermentation
of monomeric and polymeric carbohydrates to ethanol

[69,70]
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Table 4 Species identified during a fragment recruitment analysis using metagenome sequence data of wet and dry fermentation biogas plants (Continued)

(18) Pelotomaculum thermopropionicum (9) Syntrophic Firmicutes, Clostridia, Clostridiales Isolated from granular sludge of an upflow blanket reactor;
thermophilic; fermentation of volatile fatty acids (propionate)
in syntrophic association with methanogen

[71,72]

(19) Clostridium cellulolyticum (16) Cellulolytic Firmicutes, Clostridia, Clostridiales Isolated from decayed grass compost; cellulolytic; cellulosome [55]

(20) Clostridium cellulovorans Cellulolytic Firmicutes, Clostridia, Clostridiales Isolated from methanogenic fermentation of hybrid poplar wood;
mesophilic; cellulolytic; cellulosome

[73]

(-) Petrotoga mobilis (14) Secondary
fermenters

Thermotogae, Thermotogae,
Thermotogales

Isolated from hot oil-field water from oil reservoir; heterotrophic;
fermentation of different carbohydrates including xylan

[74]

(-) Bacillus coagulans (17) Secondary
fermenters

Firmicutes, Bacilli, Bacillales Isolated from spoiled canned milk; thermotolerant; slightly
acidophilic; carbohydrate utilization; production of lactic acid

[75]

(-) Geobacillus sp. (19) Secondary
fermenters

Firmicutes, Bacilli, Bacillales thermophilic; chemoorganotrophic CP001638 (GenBank
Accession No., unpublished)

(-) Syntrophothermus lipocaldicus (20) Syntrophic Firmicutes, Clostridia, Clostridiales Isolated from thermophilic upflow anaerobic sludge blanket;
utilization of fatty acids (butyrate); syntrophic association with
hydrogenotrophic organisms

[76]

aRanking of fragment recruitments within the BGP_WF dataset.
bRanking of fragment recruitments within the BGP_DF dataset.
cTaxonomic classification of the reference microorganism identified by fragment recruitment. Identified microorganisms were classified according to their functional role.
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Figure 5 Fragment recruitment plots and hit distribution for metagenome sequence reads from the wet and dry fermentation processes

on three reference genomes. Visualization of BLASTn analyses of metagenomic sequence reads to the reference genomes of Methanoculleus

bourgensis MS2T (A), Clostridium clariflavum DSM 19732 (B) and Clostridium thermocellum ATCC 27405 (C). Within the fragment recruitment plot (I) the
sequence identities (>55%) between each hit of a metagenomic sequence read and the chromosomal reference sequence are plotted against the
position of the alignment. In the hit distribution plot (II) the normalized numbers of reads featuring hits to the reference genome were plotted in
intervals of 1% for metagenome reads showing 55 to 100% sequence identity to the reference.
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(pyruvate, lactate, glucose etc.) and reduces sulfate as

terminal electron acceptor to sulfide (hydrogen sulfide),

which is deleterious in biogas since it leads to corrosion of

combustion units and in pipelines.

In summary, fragment recruitments revealed that rep-

resentation of biogas community members in databases

is currently insufficient. The only exception is M. bourgen-

sis MS2T which is very similar to dominant members of

the methanogenic sub-community, at least in BGP_DF.

Conclusions
The methane-producing community of an agricultural

biogas plant applying wet fermentation technology was

characterized by means of a metagenomic approach and

taxonomically compared with the microbial community

of a biogas plant applying dry fermentation that was pre-

viously characterized [16]. This is the first study in

which metagenomes of different biogas plants are com-

pared using the same DNA preparation technique, se-

quencing technology and bioinformatics methods. Both

communities’ metagenomes were sequenced using 454-

pyrosequencing, and the sequence data were analyzed

based on their taxonomic composition and functional

profile, with focus on the methanogenic sub-community

and genes involved in methanogenesis, using the same

bioinformatics tools and pipelines. Despite differences in

the process parameters, such as acetic acid concentration

and pH value and the biogas plant’s substrate compositions,

the microbial communities of BGP_WF and BGP_DF are

similar in their composition on higher taxonomic ranks.

Only a minor number of taxa on lower ranks differed be-

tween BGP_WF and BGP_DF. Accordingly, the majority of

the taxa belonged to the core set of microorganisms resid-

ing in both biogas plants. Even though in both fermenters,

the family of Methanomicrobiaceae is most dominant and

Methanoculleus is the prevalent genus within this family,

the composition of this genus differs between the different

plants. As fragment recruitments revealed, within the

genus Methanoculleus, M. bourgensis was the most domin-

ant species in dry fermentation while this was not the case

for the wet fermentation process.

The presented results clearly indicate that the hypoth-

esis of a core community being present in biogas fer-

menters, operating either under wet or dry fermentation

conditions, can be confirmed. This is in accordance with

several studies examining the microbial taxonomic com-

position in biogas fermenters. Identified differences in

taxonomic profiles can be associated with different

process parameters of the fermenters, such as fed sub-

strate, pH, acid and ammonium concentrations, as espe-

cially methanogens are sensitive regarding changes in

acetate and propionate concentrations.

To further verify the hypothesis of a core microbiome

and an adaptation of specific species to particular

process parameters, further comparative studies with

more biogas fermenters are required. Analyzing microbiota

in biogas plants with altered physiochemical characteristics

(temperature, pH and concentration of relevant metabo-

lites) and substrate supply would aid in identifying the core

species essential for the anaerobic digestion process, which

in turn would provide information to control the biogas

production process and prevent unstable conditions.

Moreover, the metatranscriptome of the microbial biogas

communities should be studied and compared to corre-

sponding metagenomes to enable characterization not only

of the taxonomic composition, but also to deduce the

actual metabolic activity within the biogas fermenters.

Methods
Total community DNA isolation, purification and sequencing

The biogas plant featuring the mesophilic continuous

dry fermentation technology (hereafter noted as

BGP_DF) was designed for a capacity of 530 kWel (com-

bined heat and power (CHP)) and a daily input of maize

silage (63%), green rye (35%) and chicken manure (2%),

divided into 24 feedings per day. The process comprises

two digesters; the primary digester (BIOGAS NORD

GmbH, Bielefeld, Germany) (1,557 m3
net volume, height of

6 m, diameter of 19 m) has an organic load of 4.8 kg

oDM m−3 d−1, a theoretical retention time of 59 days

and a temperature of 40°C. At the end, the digestate is

stored in a closed non-heated final storage reactor (BIO-

GAS NORD GmbH, Bielefeld, Germany) (2,987 m3
net

volume, height of 6 m, diameter of 26 m). The biogas and

methane yields at the time of sampling were at 698.2 and

350.5 l/kg oDM, respectively.

The biogas plant applying the mesophilic wet fermen-

tation technology (hereafter BGP_WF) was designed for

a capacity of 537 kWel CHP. The daily input of maize

silage (approximately 72%) and liquid pig manure (ap-

proximately 28%) was divided into 24 feedings per day.

The biogas plant is composed of two digesters and the

storage tank (BIOGAS NORD GmbH, Bielefeld,

Germany). The digester (2,041 m3
net volume, height of 6.4

m, diameter of 21 m) has an organic load of 4.0 kg oDM

m−3 d−1, a theoretical retention time of 55 days and a

temperature of 40°C. The digestate is stored in a closed

non-heated final storage tank (4,742 m3
net volume, height

of 6 m, diameter of 32 m). The biogas and methane

yields at the time of sampling were at 810.5 and 417.8 l/

kg oDM, respectively.

Samples were taken from the primary digester of

BGP_WF and total community DNA was extracted in

triplicates applying the same procedure as described pre-

viously for the biogas plant featuring dry fermentation

(BGP_DF). The triplicates were pooled prior to sequen-

cing applying high-throughput sequencing using the Gen-

ome Sequencer FLX system (Roche Diagnostics GmbH,
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Mannheim, Germany) [22]. The BGP_WF metagenomic

DNA was sequenced omitting the additive for high-GC

DNA in order to ensure comparability between the

metagenomes of the BGP_DF and BGP_WF. Subse-

quently, both sequence datasets were processed to re-

move emulsion-PCR duplicates and sequences affected

by GC-biases in the course of sequencing, as described

previously [22].

Taxonomic and functional analysis of metagenome

sequence data

The filtered metagenome sequences of BGP_DF and

BGP_WF were imported into MetaSAMS [81] and

taxonomically characterized using CARMA3 [23].

CARMA3 computes taxonomic and functional assign-

ments for EGTs derived from a microbial community.

The filtered metagenome sequences of BGP_DF and

BGP_WF were imported into MetaSAMS to apply

CARMA3, which is implemented in MetaSAMS. More-

over, MetaSAMS enables exploration, analysis, manage-

ment and visualization of calculated observations for

metagenome sequences. Using MetaSAMS, rarefaction

curves were calculated based on the levels ‘family’ and

‘genus’. Rarefaction analysis addresses the assessment of

‘taxon’ richness from different sub-sample sizes regarding

metagenome sequence reads. In a rarefaction curve,

the number of assigned taxa (on a specified level) is

plotted as a function of the number of sequences within

a selected sub-sample. The functional profile was calcu-

lated by searching for Pfam families matching with an

E-value threshold of 10−5. Subsequently, the functional

profile for selected taxonomic units was evaluated regard-

ing their functional roles in the anaerobic digestion

process.

To determine whether the relative abundance of spe-

cific taxa changed in the biogas fermenters, abundances

were visualized in a scatter plot. First, the absolute

counts of reads assigned to a specific family were nor-

malized according to the smallest dataset. Then, the

logarithm was used to decrease the influence of more

dominant families. To allow the logarithm of zero, a

pseudo-count of one sequence was added for each family

prior to the logarithm. Moreover, differences in the

methanogenesis step were studied. Briefly, EGTs which

were taxonomically characterized as originating from

archaeal species and functionally assigned to genes

involved in the acetyl-CoA, methanogenesis or Wood-

Ljungdahl pathway were counted and normalized ac-

cording to the smallest sample [19]. The metagenomic

sequence data of BGP_WF can be found at the European

Molecular Biology Laboratory - European Bioinformatics

Institute (EMBL-EBI) database under the accession num-

ber [EMBL: PRJEB5813].

16S rDNA amplicon generation, sequencing and analysis

16S rRNA gene amplicons were generated and se-

quenced as described recently [24], applying high-

throughput sequencing using the Genome Sequencer

FLX system (Roche Diagnostics GmbH, Mannheim,

Germany). First, a PCR was performed to amplify a re-

gion covering V3 and V4 using universal 16S rDNA

primers. Next, gel electrophoresis and gel extraction

were applied to obtain only amplicons with the correct

length. The PCR was repeated in order to attach

barcode tags as well as adaptors to the amplicons.

Finally, the amplicons were sequenced on a 454

Genome Sequencer (GS) device using FLX Titanium

chemistry.

16S rRNA amplicon sequences of the BGP_DF and

BGP_WF were simultaneously processed using the

QIIME (Quantitative Insights Into Microbial Ecology)

pipeline [82]. First, barcode and primer sequences were

removed allowing 0 and 2 mismatches, respectively, and

sequences with ambiguous bases were discarded. The

option ‘truncate_only’ was used meaning that reverse

primer sequences will be trimmed only if they are identi-

fied at the end of the amplicon sequences. To obtain

high quality sequences for phylogenetic analyses, strict

quality processing was carried out (window size of 25

bases, average quality score 25). Subsequently, the soft-

ware package USEARCH version 6.0 was applied for

denoising, chimera detection (de novo mode) and clus-

tering into OTUs based on a 97% sequence identity

[83,84]. Afterwards, representative sequences were se-

lected for each cluster and assigned to taxonomic groups

using the RDP Classifier 2.5 [85]. Only assignments with

a confidence value of at least 0.8 were considered. Rare-

faction curves based on OTUs were calculated to deter-

mine the coverage of the microbial community by the

sequenced metagenome reads. For phylogenetic analysis,

representative sequences assigned to Archaea with a

confidence value of at least 0.8 were selected and aligned

with the Infernal 1.1 software [86] using the Archaea

SSU rRNA model (RF01959) from Rfam [48]. Finally,

the alignment was used as a basis for tree reconstruction

using FastTree [87]. The tree was rooted with the se-

quence of the Crenarchaeota Sulfolobus acidocaldarius

covering the V3-V4 region.

Fragment recruitments

Fragment recruitments were performed as described

previously [19,20] to compare the relatedness of metage-

nomic reads to the genomes of reference microorgan-

isms. BLASTn analyses of metagenomic reads against a

database containing all genomes of completely sequenced

microorganisms were accomplished. Identity values of hits

were computed by dividing the number of identical bases

by the sequence length of the read. Hits with an identity

Stolze et al. Biotechnology for Biofuels  (2015) 8:14 Page 15 of 18



value below 55% were discarded. Results of the BLASTn

analysis were then visualized by plotting the calculated

identity of each sequence read against the alignment pos-

ition on the reference sequence. Moreover, a histogram

was generated to display the distribution of hit identities.

Numbers of hits displayed in fragment recruitments and

in histograms were normalized based on the smallest sam-

ple size.

Additional files

Additional file 1: Figure S1. Rarefaction analyses of sequenced
metagenomes and 16S rRNA gene amplicons originating from dry
(BGP_DF)
and wet fermentation biogas plants (BGP_WF) microbial communities.
Rarefaction analysis plots on (A) taxonomic mean richness at the family rank
derived from metagenome data, (B) environmental gene tags (EGT) derived
from metagenome data and (C) operational taxonomic unit (OTU) richness
derived from 16S rRNA gene amplicons in correlation with the sampled
reads.

Additional file 2: Table S1. Unique environmental gene tags (EGTs)
encoding different proteins found in metagenome datasets for the wet and
dry fermentation processes. Only EGTs featuring an abundance of 0 in the
one and at least five in the other metagenome dataset were taken into
account. Relative abundances were normalized based on the smallest dataset.
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BGP_DF: Biogas plant operating under dry fermentation conditions;
BGP_WF: Biogas plant operating under wet fermentation conditions;
EGT: Environmental gene tag; oDM: Organic dry matter; OTU: Operational
taxonomic unit.
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