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Abstract

Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with
endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW
suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic
rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different
NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW
countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L.
infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However,
the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean
strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1,
although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L.
infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L.
infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest
European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East
and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This
study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL
in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe.
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Introduction

In 1937 the causative agent of visceral leishmaniasis (VL) in the

New World (also referred to as American visceral leishmaniasis –

AVL) was designated as a distinct species, Leishmania (L.) chagasi

Cunha & Chagas [1]. Many studies have subsequently concluded

that the causative agent is indistinguishable from L. infantum, derived

from Europe [2–4]. To explore the molecular epidemiology of AVL,

we have applied a high resolution population genetic analysis to a

vast collection of New World (NW) and Old World (OW) isolates.

Visceral leishmaniasis in the New World extends from the

southern parts of the USA [5,6] and Mexico to the North of

Argentina, including countries such as Brazil, Paraguay, Bolivia,

Venezuela, Suriname, Guyana, Colombia, Honduras, Panama,

Costa Rica, El Salvador, Guadeloupe, Guatemala, and Nicaragua

[7–11]. Brazil is the country that accounts for the highest number

(,90%) of cases [12,13]. The principal foci are located in drier,

poorly forested areas, although there are several foci in the densely

forested Amazon region and the Guianan Ecoregion Complex

(GEC), which covers some States of Venezuela and all of Guyana,

Suriname and French Guiana and the upper parts of the Brazilian

states Amazonas, Roraima, Pará, and Amapá. The main foci here

are in Pará, Roraima (Brazil), Bolivar (Venezuela) and parts of

Guyana. There are few cases reported from Suriname and no

cases from French Guiana except a recently imported canine case

[14–17].
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To a lesser extent, NW L. infantum also causes atypical cutaneous

leishmaniasis (atypical CL). This clinical manifestation has been

reported since the 1970s mainly from Caribbean countries such as

Venezuela, Honduras, Costa Rica, Nicaragua, but sporadically

also from Brazil [18–23]. Except in Brazil, atypical CL cases are

characterised by non-ulcerative skin lesions that are often

misidentified as nodular infantile tuberculoid leprosy. Host

immuno-genetic factors and/or parasite factors in combination

with socio-economical and environmental factors are likely to play

a role in determining the varied clinical picture, as in the case of

Mediterranean L. infantum infections.

In the NW, domestic dogs are primary reservoirs of infection for

humans, but foxes (Cerdocyon thous), native marsupials (Didelphis

marsupialis, D. albiventris) and rodents (e.g. domestic rats) have also

been found infected not only in urban areas but also in the

Amazonian region [11,14,15]. The sand fly Lutzomyia longipalpis is

the primary vector of L. infantum in the NW [12,15], however,

differences in the sand fly populations [24–28] and perhaps also

the involvement of other sand fly species (e.g. Lu. evansi)

[11,15,29,30] may contribute to the variable clinical manifesta-

tions of the disease seen in different geographic regions.

Taxonomically NW L. infantum (syn. L. chagasi) belongs to the L.

donovani species complex of the subgenus Leishmania Ross 1903, which

in addition includes L. infantum and L. donovani from the OW [7].

There are two different hypotheses on the origin of NW L. infantum, of

which the first one is now widely accepted: (1) L. infantum has been

imported from Europe during the Spanish and Portuguese

colonization carried by dogs or rats, and (2) L. chagasi is indigenous

to the Americas [8,31–36]. As summarized by Dantas-Torres [34,35]

these two hypotheses have led to much confusion regarding the

nomenclature and at least 6 different nomenclatures are used in the

literature. Until now, there have been no extensive studies of the

population structure of NW L. infantum with a reasonable number of

strains from different regions, environments, hosts and reservoirs and,

therefore the taxonomic status of NW L. infantum is still not clear.

To detect structure of Leishmania populations it is essential to use

a typing method with a high discriminatory potential. Many

previously used methods were not adequate for discriminating at

this taxonomic level. One of the most powerful and discriminative

DNA-based methods for strain differentiation and population

genetics is the analysis of highly variable, co-dominant microsat-

ellite markers. Recently, multilocus microsatellite typing (MLMT)

has been used successfully to differentiate L. infantum populations in

the Mediterranean region of Europe and North Africa, the Middle

East and Uzbekistan [4,37–41] as well as L. donovani populations in

the Indian subcontinent and East Africa [42,43]. This method

enabled differentiation even at the intra-zymodeme level, as shown

for the predominant MON-1 zymodeme of L. infantum.

In the present study we have applied MLMT for an extensive

population survey of NW L. infantum originating mainly from

different endemic regions within Brazil, but also from other

countries. To our knowledge this is the first comprehensive study

of population structure of L. infantum in the NW. We show that

NW L. infantum, indeed, was introduced on multiple occasions in

recent times from European source populations of L. infantum and

is inseparable from them. We also provide substantial new insight

into the molecular epidemiology of AVL.

Materials and Methods

Parasite cultures and DNA extraction
Sources, designation, geographical origins, MLEE identification,

if known, and clinical manifestation for the 426 studied strains,

including NW L. infantum, OW L. infantum and L. donovani are listed in

Table S1. NW L. infantum was represented by 98 strains from Brazil,

Paraguay, Colombia, Venezuela, Honduras, Panama, and Costa

Rica (Figure 1A, Table 1). Most NW L. infantum came from Brazil

and Figure 1B shows the number of strains used from the

respective Brazilian endemic regions. Figure 1C depicts the

percentages of NW L. infantum strains causing different clinical

pictures. The 308 L. infantum from seven European and two North

African Mediterranean countries, four countries from the Middle

East and Asia, as well as 20 L. donovani strains from East Africa and

India were analysed in previous population genetic studies and have

been incorporated here to elucidate the phylogenetic position of NW

L. infantum in relation to OW L. donovani complex species. Table 1
summarises the number of strains per species according to

geographical origin (continent and country), zymodeme and clinical

picture. Most of the Brazilian strains were obtained from the

Leishmania collection of the Oswaldo Cruz Institute (CLIOC,

WDCM731, http://clioc.ioc.fiocruz.br). All strains from CLIOC

were typed by MLEE as IOC/Z1 which corresponds to zymodeme

MON-1 [44] (unpublished data) (Table S1). Strains from Paraguay

were collected in 2000 (Programa Nacional de Leishmaniosis,

SENEPA, Ministry of Public Health, Paraguay), and the strains from

Venezuela were provided by the Universidad de Carabobo, Centro

Nacional de Referencia de Flebotomos de Venezuela (CNRFV-

BIOMED-UC). DNA of strains from Panama, Costa Rica and some

from Brazil were obtained from the Royal Tropical Institute (KIT),

Amsterdam, The Netherlands and from the WHO’s Jerusalem

Reference Centre for Leishmaniases, Hebrew University – Hadas-

sah Medical School, Jerusalem. Strains from Honduras, which were

previously typed by kDNA-RFLP [20] were given by the London

School of Hygiene and Tropical Medicine, London, UK.

DNA was isolated using proteinase K- phenol/chloroform

extraction [45] or the WizardTM Genomic DNA Purification System

(Promega, Madison, WI, USA) according the manufacturer’s protocol,

suspended in TE-buffer or distilled water and stored at 4uC until use.

PCR amplification assays and electrophoretic analysis of
the microsatellite markers

The standard set of 14 primer pairs (Lm2TG, TubCA, Lm4TA,

Li41-56, Li46-67, Li22-35, Li23-41, Li45-24, Li71-33, Li71-5/2,

Author Summary

Leishmaniasis is a vector borne disease with a broad
spectrum of clinical forms caused by protozoan parasites
of the genus Leishmania. Visceral leishmaniasis is the most
severe, systemic form of the disease. It is caused by
parasites belonging to the Leishmania donovani complex,
which includes L. infantum and L. donovani in the Old
World (OW) and L. infantum (syn. L. chagasi) in the New
World (NW). The identity and origin of the causative agent
of VL in the Americas have been the subjects of much
debate for decades. Different scientific approaches led to
different conclusions, either favouring the hypothesis of
indigenous origin of this parasite and its status as distinct
species, or a recent importation of L. infantum by European
colonists and synonymy of L. infantum and L. chagasi. We
performed the first broad population study of these
parasites from the NW using highly variable microsatellite
markers. The level of heterogeneity and population
structure was very low in contrast to the OW. Using a
combined data analysis of NW and OW strains we have
provided conclusive evidence of recent multiple introduc-
tions of L. infantum from Southwest Europe into the New
World and for synonymy of L. infantum and L. chagasi.

Origin and Population Structure of NW L. infantum
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Figure 1. Distribution of the populations and subpopulations of NW L. infantum in the studied endemic regions. The first number
refers to the number of strains belonging to the indicated population (specified by the color), the second number gives the overall number of studied
strains from the respective region. Additional endemic regions that were not studied are marked by grey color. (A): Colors of the respective
population correlate with those in Fig. 2 (Pop1-INFNW - blue; Pop2-INFNW - red). In Honduras all but one strain belong to Population 1. In Colombia
shared memberships in both populations could be recognized, with the predominant part of membership in Population 1. (B): Sub-populations
found in Population 1. Colors correlate with those of the sub-populations in Fig. 2 (Sub-Pop1A-INFNW - dark blue, Sub-Pop1B-INFNW - light blue).

Origin and Population Structure of NW L. infantum
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Li71-7, CS20, kLIST7031, LIST7039) that we have previously

applied for the L. donovani complex was used for amplification of

microsatellite containing fragments, as previously described

[38,43]. PCRs were performed with fluorescence-conjugated

forward primers. Screening of length variations of the amplified

markers was done by automated fragment analysis using capillary

sequencers. PCR products from amplified microsatellites were

analysed either with the fragment analysis tool of the CEQ 8000

automated genetic analysis system (Beckman Coulter, USA) or the

ABI PRISM GeneMapper (Applied Biosystems, Foster City, CA).

In Pará one strain belongs to Sub-Pop1A-INFNW, and two strains have shared membership in both sub-populations 1A and 1B with predominating 1B
traits, and two strains belong to sub-population 1B. Strains from Colombia belong to the 1B subpopulation (light blue), the Hondurian strains to 1A
(dark blue) (not shown). (C): Distribution of clinical pictures among the 98 studied strains. VL – visceral leishmaniasis, CL – cutaneous leishmaniasis,
CanL – canine leishmaniasis, nd – not determined.
doi:10.1371/journal.pntd.0001155.g001

Table 1. Numbers of strains per species, region, clinical picture and host of the studied sample set.

species continent country
Strains
overall VL

VL/
HIV+ CL CanL fox Didel-phis

Sand
fly nd zymodeme

L. infantum Central Costa Rica 1 1 nd

NW America Panama 2 2 nd

(total 98) Honduras 15 2 13 nd

South America Venezuela 5 3 1 1 nd

Colombia 3 1 1 1 nd

Paraguay 10 2 7 1 nd

Brazil 62 28 3 25 4 2 MON-1, IOC/Z1, nd

Rio de Janeiro 3 2 1

Espı́rito Santo 10 5 5

Ceará 5 2 3

Bahia 3 1 2 2

Pará 5 1 4

Rio Grande do Norte 2 2

Pernambuco 4 1 3

Piauı́ 3 1 2

Mato Grosso do Sul 24 16 1 7

nd 3 1

L. Infantum OW Europe Spain 65 6 27 2 30 MON-1,24,27,34,
37,183,198, 199

(total 308) Portugal 44 6 12 2 20 1 3 MON-1, 80

France 32 21 2 7 3 MON-1, 11, 29,
108

Italy 30 8 7 2 9 1 cat 3 MON-1,188, 228

Greece 15 9 1 5 MON-1, 98

Turkey 2 1 1 MON-1

Malta 1 1 MON-78

Africa Tunisia 24 16 8 MON-1, 24

Algeria 41 18 11 12 MON-1, 24, 80

Middle East Israel 27 1 26 MON-1

Palestine 10 10 MON-1, 281

Asia Uzbekistan 14 6 8 MON-1

China 3 2 1 nd

L. donovani Africa Sudan 8 7 1 MON-
30,82,257,258, 274

(total 20) Ethiopia 2 2 MON-18, 31

Kenya 5 1 2 PKDL 2 MON-37, nd

Asia India 5 4 1 MON-2, nd

VL – visceral leishmaniasis, CL – cutaneous leishmaniasis, PKDL – post Kala Azar dermal leishmaniasis, CanL – canine leishmaniasis, nd – not defined, MON – zymodeme
according to the Montpellier MLEE typing system [86], IOC/Z –zymodemes according to the CLIOC system [44], with zymodeme IOC/Z1 corresponding to MON-1.
doi:10.1371/journal.pntd.0001155.t001

Origin and Population Structure of NW L. infantum
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Data analysis
Population structure was investigated by the STRUCTURE

software [46], which applies a Bayesian model-based clustering

approach. This algorithm identifies genetically distinct populations

on the basis of allele frequencies. Genetic clusters are constructed

from the genotypes identified, estimating for each strain the

fraction of its genotype that belongs to each cluster. This clustering

method proved superior to distance-based approaches for

Table 2. Characterization of the 14 microsatellite markers used for population analysis of NW L. infantum.

Marker Population K2 n Repeat array
Fragment size
array [bp] A He Ho FIS

Lm2TG Pop1 89 TG 24–29 140–150 6 0.597 0.225 0.625

Pop2 9 TG 20–25 132–142 3 0.391 0 1.000

overall 98 TG 20–29 132–150 8 0.652 0.204 0.688

TubCA Pop1 89 CA 4–9 70–80 2 0.011 0.011 0

Pop2 9 CA 8–10 78–82 3 0.621 0.111 0.830

overall 98 CA 4–18 70–82 4 0.089 0.020 0.772

Lm4TA Pop1 87 TA 12–28 79–111 5 0.481 0.103 0.786

Pop2 9 TA 10–26 75–107 3 0.627 0 1.000

overall 96 TA 10–28 75–111 7 0.567 0.094 0.835

Li 41-56 (B) Pop1 89 CA 9–11 88–92 3 0.033 0.011 0.665

Pop2 9 CA 10–14 90–98 3 0.307 0.111 0.652

overall 98 CA 9–14 88–98 6 0.198 0.020 0.897

Li 46-67 (C) Pop1 89 CA 9 80 1 0 0 0

Pop2 9 CA 8 78 1 0 0 0

overall 98 CA 8–9 78–80 2 0.168 0 1.000

Li 22-35 (E) Pop1 89 CA 5–16 78–100 4 0.066 0.022 0.661

Pop2 9 CA 12–39 92–146 5 0.791 0.333 0.593

overall 98 CA 5–39 78–146 8 0.165 0.051 0.693

Li 23-41 (F) Pop1 87 GT 15–17 83–87 3 0.110 0.023 0.792

Pop2 9 GT 2–21 57–95 3 0.627 0 1.000

overall 96 GT 2–21 57–95 6 0.266 0.021 0.922

Li 45-24 (G) Pop1 87 CA 15–16 105–107 2 0.034 0.011 0.664

Pop2 9 CA 16–18 107–111 3 0.601 0 1.000

overall 96 CA 15–18 105–111 4 0.202 0.010 0.949

Li 71-33 (P) Pop1 88 TG 8–11 99–105 4 0.067 0.045 0.322

Pop2 9 TG 8–11 99–105 2 0.209 0 1.000

overall 97 TG 8–11 99–105 4 0.080 0.041 0.489

Li 71-5/2 (Q) Pop1 89 CA 8–9 108–110 2 0.011 0.011 0

Pop2 9 CA 6–9 104–110 4 0.706 0 1.000

overall 98 CA 6–9 104–110 4 0.108 0.010 0.906

Li 71-7 (R) Pop1 89 CA 12–21 98–116 4 0.044 0.022 0.496

Pop2 9 CA 6–13 86–100 3 0.569 0.111 0.814

overall 98 CA 6–21 86–116 6 0.109 0.031 0.719

CS20 Pop1 89 TG 18–22 83–91 2 0.022 0 1.000

Pop2 9 TG 18–23 83–93 5 0.667 0.444 0.347

overall 98 TG 18–23 83–93 5 0.182 0.041 0.776

LIST7031 Pop1 89 CA 10–23 109–135 3 0.044 0 1.000

Pop2 9 CA 11–21 111–131 2 0.111 0.111 0

overall 98 CA 10–23 109–135 4 0.050 0.010 0.798

LIST7039 Pop1 87 CA 10–15 197–207 2 0.023 0 1.000

Pop2 9 CA 18 213 1 0 0 0

overall 96 CA 10–18 197–213 3 0.190 0 1.000

Two main populations were inferred by STRUCTURE analysis of the 98 strains of NW L. infantum. The 14 microsatellite markers used for population studies were
characterized for each of these two populations as well as overall for all studied strains of NW L. infantum. N, number of strains; A, number of alleles; Ho, observed
heterozygosity; He, expected heterozygosity; FIS, inbreeding coefficient.
doi:10.1371/journal.pntd.0001155.t002

Origin and Population Structure of NW L. infantum
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processing data sets of low variability like those presented by L.

infantum. The following parameters were used: ‘‘burn-in’’ period of

20,000 iterations, probability estimates based on 200,000 Markov

Chain Monte Carlo iterations. The most appropriate number of

populations was determined by calculation of DK, which is based on

the rate of change in the log probability of data between successive K

values [47].

Phylogenetic analysis was based on microsatellite genetic

distances, calculated with the program POPULATIONS 1.2.28

(http://bioinformatics.org/,tryphon/populations) for the num-

bers of repeats within each locus using the Chord-distance [48],

which follows the infinite allele model (IAM). Neighbor-joining trees

were constructed with the POPULATIONS software and visualized

with MEGA [49]. Microsatellite markers as well as populations

were analysed with respect to diversity of alleles (A), expected (gene

diversity) and observed heterozygosity (He and Ho, respectively), and

the inbreeding coefficient FIS applying GDA (http://hydrodictyon.

eeb.uconn.edu/people/plewis/software.php).

Genetic differentiation and gene flow was assessed by F-statistics

[50] calculating the FST (theta) values (IAM) [51] with the

corresponding p-values (confidence test) using the MSA software

[52] (for details see Methods S1).

Ethics statement
Research in this study was subject to ethical review by the

European Commission and approved as part of contract

negotiation for Project LeishEpiNetSA (contract 01547): the

work conformed to all relevant European regulations. The

research was also reviewed and approved by the ethics committee

of the London School of Hygiene and Tropical Medicine

(approval 5092). The Leishmania strains analysed in this consol-

idated microsatellite analysis were principally reference strains

derived from international cryobanks as CLIOC (registered at the

World Data Centre for Microorganisms under the number

WDCM731 and recognized as depository authority by the

Brazilian Ministry of the Environment, MMA/CGEN Deliber-

ação CGEN 97 de 22/03/2005, Processo 02000.003672/2004-

34), the cryobank of the London School of Hygiene and Tropical

Medicine (LSHTM), the Centro Nacional de Referencia de

Flebotomos de Venezuela (CNRFV-BIOMED-UC), the cryo-

bank of the Royal Tropical Institute (KIT) in Amsterdam,

Netherlands and the WHO’s Jerusalem Reference Centre for

Leishmaniases, Hebrew University, Jerusalem, Israel. They have

already been object of many publications. Several other strains

were from small prior studies also using other methods, such as

the strains from Honduras that were isolated 16–23 years ago and

deposited at the LSHTM cryobank [4,20,22]. In all cases

Leishmania were isolated from patients as part of normal diagnosis

and treatment with no unnecessary invasive procedures and with

written and/or verbal consent recorded at the time of clinical

examination. Data on isolates were coded and anonymised.

Isolation of Leishmania during the course of this study and not

Figure 2. Estimated population structure and substructure of NW L. infantum as inferred by the STRUCTURE program. Results are
based on MLMT of 14 microsatellite markers obtained for the 98 strains of NW L. infantum studied. In the barplots each strain is represented by a
single vertical line divided into K colors, where K is the number of populations assumed. Each color represents one population, and the length of the
colors segment shows the strain’s estimated proportion of membership in that population. Isolates are organized by membership coefficients.
According to DK the most probable number of populations in the data set is two, corresponding to MON-1 (blue) and non-MON-1 (red) isolates. In
each of these main populations DK calculations suggest two sub-populations. VL – visceral leishmaniasis, CL – cutaneous leishmaniasis, CanL – canine
leishmaniasis.
doi:10.1371/journal.pntd.0001155.g002

Origin and Population Structure of NW L. infantum
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obtained from historical reference collections, whether from

patients or animals, was subject to a local ethical review and

approval in Paraguay (human and animal samples) by the

Ethical-Scientific Committee at the IICS-UNA, under Code

P42/07. All L. infantum and L. donovani strains origin from

different central cryobanks (Table S1) and were already the

object of many publications [4,37,39–41,43].

Results

Genetic diversity and population structure of NW L. infantum
Ninety-eight strains of L. infantum from seven South and Central

American countries with emphasis on Brazil have been studied by

microsatellite analysis (Figure 1 and Table 1). Most of these

strains were isolated in the drier, poorly forested regions and

represented human or canine isolates, but several were isolated from

wild animal reservoirs, foxes (Cerdocyon thous) and opossums (Didelphis

marsupialis), in the Amazonian forest region (Pará, Colombia).

Isolates from different clinical forms (human VL and ACL), as well

as three strains from VL/HIV co-infections were included. Table 2
shows the variability measures for the 14 microsatellite loci in NW L.

infantum. The number of alleles varied between 2–8, with a mean

value of 5.1. The most variable markers were, as in a previous study

on OW L. infantum [4], Lm2TG and Li 22–35. The observed

heterozygosity was very low (mean Ho = 0.04) and always much

lower than the expected (mean He = 0.216). Inbreeding coefficients

Figure 3. Neighbor-joining tree inferred from the Chord-distance calculated for the MLMT profiles of NW L. infantum. This unrooted
tree was derived based on the MLMT profiles of 14 microsatellite markers for the studied sample set of 98 strains of NW L. infantum as used for
Bayesian model-based analysis with the STRUCTURE program. The two populations inferred by STRUCTURE (K2) are found also by this distance –
based method and are indicated on the tree. Strain origins are explained in the window beside. Marsupial and fox isolates are marked by triangles.
VL – visceral leishmaniasis, CL – cutaneous leishmaniasis, CanL – canine leishmaniasis.
doi:10.1371/journal.pntd.0001155.g003

Origin and Population Structure of NW L. infantum
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varied between 0.489 and 1 (mean FIS = 0.818). This disparity

between expected and observed heterozygosity and the high FIS

values points to a considerable amount of inbreeding and/or

population substructuring, reflecting possible Wahlund effect.

STRUCTURE analysis indicated that the sample set of NW L.

infantum comprised two main populations as inferred by DK

calculation (Figure 2). This population structure has been

confirmed by distance analysis and the inferred neighbor-joining

tree (Figure 3). Population 1 (Pop1-INFNW) which includes 89 of

the 98 strains consists of all strains from Brazil, Paraguay and

Colombia, and all but one strain from Honduras, regardless of

whether they were isolated from cases of VL, VL/HIV+ or CL, or

from different animal reservoirs, such as dogs and foxes. It also

included the single opossum isolate. Population 2 (Pop2-INFNW)

comprises only 9 strains, mostly from the Caribbean region (all

strains from Costa Rica, Panama, Venezuela and one strain from

Honduras) isolated from VL, CL and canine leishmaniasis (CanL)

cases (Table S1). The distribution of the respective populations 1

and 2 among the Central and South American countries is shown

in Figure 1A. F-statistics showed significant genetic differentiation

between these two populations: FST = 0.761 and p = 0.0001.

A very important observation was that Pop1-INFNW is very

homogeneous with only 35 genotypes identified for the 89 strains

(proportion of polymorphic strains in pop1 = 39%), whereas in

Pop2-INFNW all strains had unique genotypes. Table 3 gives a

detailed overview of the number of genotypes found in each

country studied and Figure S1 shows a neighbor-joining tree,

which is based only on distinct genotypes. Interestingly, 13 out of

the 15 Honduran strains in Pop1-INFNW including all CL cases,

shared an identical MLMT profile. Another cluster of identical

MLMT profiles was found for eight strains of human and canine

origin from Mato Grosso do Sul. A third big cluster of identical

genotypes comprised 23 strains from Espı́rito Santo, Rio de

Janeiro, Pernambuco, Ceará, and three from Paraguay. Also here

an identical MLMT profile was shared by human VL, VL/HIV+
and canine isolates (Figure S1, Figure S2). The difference in the

degree of polymorphism between Pop1-INFNW and Pop2-INFNW

is also reflected by the mean number of alleles (MNA) of 3.1 for

population 1 (N = 89) and of 2.9 for population 2 (N = 9) (Table 4).

In both populations the observed heterozygosity was much lower

than the expected, leading to high FIS values (Tables 2 and 4).

Both main populations have been tested by STRUCTURE for

sub-structures. Two sub-populations were found for each of the

main populations (Figure 2). Sub-Pop1B-INFNW (34 strains)

comprised 22 of the 24 strains from Mato Grosso do Sul, all fox

isolates from Pará, all Colombian strains including the D.

marsupialis isolate, and three canine strains from Paraguay. The

other 55 strains were members of Sub-Pop1A-INFNW consisting of

all strains from Honduras, seven strains from Paraguay and the

strains from all other Brazilian foci. Both 1A and 1B sub-

populations included strains isolated from all clinical forms of

human disease as well as from dogs. Population 2 was divided into

Sub-Pop2B-INFNW comprising all Venezuelan strains isolated

from human cases of VL and CL and from dogs, and Sub-Pop2A-

INFNW consisting of the CL strains from Panama and Costa Rica,

and a single VL strain from Honduras. Distance analysis

confirmed the inferred subpopulations (Figures S1 and S2).

FST analysis however showed that genetic differentiation of the

sub-populations was statistically not significant. The assignment of

the strains to the respective populations and sub-populations is

given in Table S1.

Combined population analysis of NW and OW
L. infantum

To address questions about the nomenclature and the origin of

NW L.infantum we have included in the analysis previously

identified MLMT profiles of 308 L. infantum strains from different

countries of southern Europe, North Africa, the Middle East and

Asia and, as an outgroup, 20 L. donovani strains from East Africa

and India [4,37,39–41,43] (Table S1, Table 1). Most of the L.

infantum strains belong to the zymodeme MON-1, the most

Table 3. Number of MLMT genotypes found for each country
and the studied endemic regions of Brazil.

Country Region No. of strains
No. of MLMT
genotypes

Costa Rica 1 1

Panama 2 2

Honduras 15 3

Venezuela 5 5

Colombia 3 3

Paraguay 10 3

Brazil 62 36

Rio de Janeiro 3 1

Espı́rito Santo 10 5

Ceará 5 2

Bahia 3 3

Pará 5 4

Rio Grande do Norte 2 2

Pernambuco 4 3

Piauı́ 3 3

Mato Grosso do Sul 24 13

nd 3 2

doi:10.1371/journal.pntd.0001155.t003

Table 4. Characterization of the two main populations found for the analysed 98 NW L. infantum strains.

Population Origin N P MNA Ho He FiS

Pop1-INFNW Brazil, Paraguay,
Honduras, Colombia

89 0.786 3.1 0.035 0.110 0.676

Pop2-INFNW Venezuela, Honduras,
Panama, Costa Rica

9 0.857 2.9 0.087 0.445 0.813

overall 98 0.821 5.1 0.040 0.216 0.818

N, number of strains; P, proportion of polymorphic loci; MNA, mean number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; FIS, inbreeding
coefficient.
doi:10.1371/journal.pntd.0001155.t004
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ubiquitous in the Old World, however several non-MON-1 strains

have been also included. All these strains represented different

clinical pictures in humans, namely VL, CL, VL/HIV+, PKDL,

as well as canine, fox and sand fly isolates (Table 1).

STRUCTURE analysis of the combined NW and OW L.

infantum strains revealed 3 main populations, as deduced from DK

calculation (Figure 4), which showed significant genetic differen-

tiation (Table 5). The largest population (Pop1-INFNW+OW) was

formed by 224 strains from Spain, Portugal, France, Italy (all

identified as MON-1) as well as from Brazil, Paraguay, Honduras

(all but one strain) and Colombia. The second population (Pop2-

INFOW) comprised 121 MON-1 strains from Algeria, Tunisia,

Greece, Turkey, Israel, Palestine, Uzbekistan, China, and few

from France and Italy. Strains from the New World were not

found in this population. The third population (Pop3-INFNW+OW)

consisted of 59 strains from southwestern Europe and North Africa

(all identified as non-MON-1) as well as from Venezuela, Panama,

Costa Rica and a single strain from Honduras. Consequently,

population 1 of NW L. infantum (Pop1-INFNW) is part of the

southwestern European L. infantum MON-1 population, and

population 2 of NW L. infantum (Pop2-INFNW) of the Mediterra-

nean non-MON-1 L. infantum population. The non-MON-1

population was the most variable one, as shown by the highest

values for the MNA (9.6), Ho (0.27) and He (0.777), although the

sample size was much smaller than that of the other two

populations. This is in agreement with previous observations for

Mediterranean L. infantum [4]. All three populations showed high

FIS values, especially the two MON-1 populations (Table 6).

The two main populations which included the NW L. infantum

strains were tested for sub-structures. Population 1 (Pop1-

INFNW+OW) was clearly divided into two sub-populations, as

inferred by DK (Figure 4), with significant genetic differentiation

between them (FST = 0.223, p = 0.0001). Sub-Pop1A-INFNW+OW

(N = 149 strains) comprised the majority of strains and included

strains from the Iberian mainland, Italy, and France as well as the

NW strains. Sub-Pop1B-INFOW (N = 75 strains) contained all

Balearic strains, strains from Sicily and Campania (Italy) and from

the Provence region of France. The sub-structures of the non-

MON-1 population 3 (Pop3-INFNW+OW) were not very clear,

however a first split led to Sub-Pop3A-INFOW formed by 28 strains

from North Africa and Malta. Sub-Pop3B-INFNW+OW comprised

31 strains from Europe and the NW (Figure 4). There is significant

genetic differentiation between these sub-populations (FST = 0.25,

p = 0.0001). Table 7 presents the variability measures for each of

the detected sub-populations. The most homogeneous population

was Sub-Pop1A-INFNW+OW, which comprised L. infantum MON-1

Figure 4. Estimated population structure and substructure of the combined New World and Old World sample set. MLMT profiles
based on 14 microsatellite markers for 308 OW strains and 98 NW strains of L. infantum were analysed by Bayesian statistics implemented in the
STRUCTURE software. In the barplots each strain is represented by a single vertical line divided into K colors, where K is the number of populations
assumed. Each color represents one population, and the length of the colors segment shows the strain’s estimated proportion of membership in that
population. Isolates are organized by membership coefficients. According to DK the most probable number of populations in the data set is three,
corresponding to MON-1 isolates from Southwest Europe and the New World (blue), MON-1 isolates from North Africa, Southeast Europe and Asia
(green), and non-MON-1 islates from the Old and New World (red). DK calculations suggest two sub-populations in the main populations Pop1 and
Pop3.
doi:10.1371/journal.pntd.0001155.g004

Table 5. FST values and corresponding p-values for the main three populations.

FST-values: Population 1 INFNW+OW Population 2 INFOW Population 3 INFNW+OW

Pop1- INFNW+OW MON-1 (224) 0 0.376 0.459

Pop2-INFOW MON-1 (121) 0.0003 0 0.277

Pop3-INFNW+OW non-MON-1 (59) 0.0003 0.0003 0

Data are based on the combined analysis of NW and OW L. infantum and the populations inferred by STRUCTURE. FST values are in the upper triangle, p-values in the
lower triangle. Number of strains in parentheses. Without ES9III and ES10III (mixed genotypes/hybrids).
doi:10.1371/journal.pntd.0001155.t005
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(MNA = 3.3), even though its sample size was the largest. High FIS

values were detected for each of these sub-populations.

The same clustering and population structure was found by

distance analysis of the MS data. Figure 5 shows the neighbor-

joining tree inferred from the combined sample set of 426 strains

from the Old and New World with L. donovani as outgroup. NW

strains of L. infantum are intermingled among the European L.

infantum MON-1 and non-MON-1 strains. Identical genotypes

were found multiple times for strains of NW and OW L. infantum in

population 1 (Pop1-INFNW+OW), e.g. between strains from Mato

Grosso do Sul (Brazil) and a strain from Portugal, between strains

from eastern Brazil, Paraguay, and from France and Spain.

Furthermore, one of the Honduran VL strains was identical to

strains from Portugal and France (data not shown). NW strains of

L. infantum were concentrated in few major clusters that also

contained strains from the Iberian peninsula and France,

indicating an expansion of single clones (Figure S3, Figure 5).

Discussion

Population structure of NW L. infantum and comparison
with OW L. infantum population structure

Knowledge of the population structure of NW L. infantum was so

far very restricted and essentially based on clinical observations

and the population structure of the vector. With the development

of MLMT an adequate and powerful tool based on highly

polymorphic genetic markers that differentiate at intra-species

level became available for analysing population structure of the

parasite. The present paper shows that there are two main

populations of NW L. infantum, that correlate with the separation of

L. infantum into MON-1 and non-MON-1 strains [4,43]. Ninety-

one per cent of the 98 NW strains analysed fell into the MON-1

population (Pop1-INFNW), which extends over a huge geograph-

ical and ecological range, including strains from all Brazilian,

Paraguayan and some Colombian foci, and from Honduras. This

situation is very similar to that in the OW, where ,70% of L.

infantum strains isolated in foci in southern Europe, Middle East,

Central Asia and North Africa belong to zymodeme MON-1 [53].

The remaining 9% of the NW L. infantum strains belong to the

non-MON-1 population 2 (Pop2-INFNW) and, interestingly, all

these strains come from the Caribbean region, from Panama,

Costa Rica and Venezuela, and a single strain from Honduras.

Whether the non-MON-1 strains are generally present exclusively

in the Caribbean region needs to be further elucidated.

The focal point of our sampling was Brazil, including most of

the known foci. Although Brazil is an ecologically diverse country

and different reservoirs and vector populations have been

reported, all the 64 Brazilian strains from different VL foci

belonged to the MON-1 population 1. The same was true for the

neighboring country Paraguay.

The degree of polymorphism in NW L. infantum is much lower

than among OW L. infantum. Only 39% of the NW MON-1 strains

had individual MLMT profiles compared to about 75% of the

OW MON-1 strains analysed in this and in a previous study [4].

The lower variability of NW L.infantum is also reflected by lower

MNA and He values for both the MON-1 and non-MON-1

populations (Table 4 and Table S2). Moreover, in contrast to

the NW genetically clearly separated geographically determined

sub-populations were observed in the OW MON-1 cluster. The

lower diversity of NW L. infantum supports the hypothesis of a

recent import of selected strains of L. infantum from the Old to the

New World [54]. In the case of indigenous parasites we would

expect a much higher diversity and more complex population

structures.

Table 6. Characterization of the main populations found by STRUCTURE analysis for the 406 L. infantum strains.

Population Origin N P MNA Ho He FIS

Pop1-INFNW+OW Brazil, Paraguay, Honduras, Colombia
Spain, Portugal, France, Italy

224 0.929 6.5 0.034 0.231 0.853

Pop2-INFOW Algeria, Tunisia, Greece, Turkey, China,
Uzbekistan, Israel, Palestine, few France+Italy

121 1.000 5.4 0.071 0.420 0.832

Pop3-INFNW+OW Venezuela, Panama, Honduras, Costa Rica
Spain, Portugal, France, Italy, Malta
Algeria, Tunisia

61 1.000 9.6 0.272 0.777 0.651

N, number of strains; P, proportion of polymorphic loci; MNA, mean number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; FIS, inbreeding
coefficient.
doi:10.1371/journal.pntd.0001155.t006

Table 7. Characterization of sub-populations of populations 1 and 3 of combined NW and OW L. infantum.

Sub-Population Origin N P MNA Ho He FIS

Sub-Pop1A-INFNW+OW Brazil, Paraguay, Honduras, Colombia
Spain (mainland), Portugal, France, Italy

149 0.714 3.3 0.023 0.135 0.829

Sub-Pop1B-INFOW Spain (Baleares), Italy (Sicily, Campania),
France (Provence)

75 1.000 5.9 0.056 0.343 0.839

Sub-Pop3A-INFOW Algeria, Tunisia, Malta 28 1.000 6.5 0.414 0.715 0.426

Sub-Pop3B-INFNW+OW Venezuela, Panama, Honduras, Costa Rica
Spain, Portugal, France, Italy

31 1.000 6.4 0.118 0.613 0.811

Populations and sub-populations were inferred by STRUCTURE analysis. N, number of strains; P, proportion of polymorphic loci; MNA, mean number of alleles; Ho,
observed heterozygosity; He, expected heterozygosity; FIS, inbreeding coefficient; FR – France; IT – Italy.
doi:10.1371/journal.pntd.0001155.t007
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Despite the low diversity of NW L.infantum we found indications

for population sub-structures. The MON-1 sub-populations are

mostly geographically determined. Two sub-populations were

recognized in Brazil and Paraguay, Sub-Pop1B-INFNW comprised

three strains from central Paraguay, all but two strains from the

Mato Grosso do Sul focus and those from rural foci in Pará. All

other strains were members of the Sub-Pop1A-INFNW. Strains

from Colombia and Honduras belonged to the sub-populations 1B

Figure 5. Neighbor-joining tree derived for the combined New World and Old World data set. This unrooted tree was inferred from the
Chord-distance calculated for the MLMT profiles of 14 microsatellite markers for the studied sample set of 98 NW strains of L. infantum (marked by
blue squares), 308 OW strains of L. infantum (marked by dots of different colors, depending on their origin) and 20 strains of L. donovani (marked by
grey triangles). The three populations inferred by Bayesian model-based analysis with the STRUCTURE program (K3) and shown in Fig. 4 are indicated.
MON-1 strains are marked by blue branches, non-MON-2 strains by red branches, and L. donovani by black branches. NW strains of L. infantum are
present in population 1 and 3. Strains isolated from Didelphis marsupialis and Cerdocyon thous are interspersed among population1 that included the
majority of NW strains (human and canine) together with strains of L. infantum from the Iberian mainland (Spain, Portugal), France and Italy. Strain
origins are listed in the legend beside.
doi:10.1371/journal.pntd.0001155.g005
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and 1A, respectively. There is some hint that the Colombian

strains may form a separate population, but this has to be proven

with more strains from that country.

Three big clusters were detected that contain genetically

identical strains. The first two included strains from the same

focus, eight strains from Mato Grosso do Sul and 13 from

Honduras, respectively. The third comprised 26 strains from seven

states of Brazil, mostly from the eastern part of the country and

some from Paraguay. This is evidence for the spread of several

single clones in the New World. The homogeneity of strains in

Honduras where only three genotypes were identified for 15

strains collected between 1987 and 1994 was surprising and needs

further investigation.

The strong heterozygote deficiency and high inbreeding

coefficients found for NW and OW L. infantum could result from

population subdivision (Wahlund effect), presence of null alleles,

natural selection, gene conversion, and inbreeding. Since similar

FIS patterns were obtained across all 14 microsatellite loci in this

study, null alleles, selection and gene conversion are unlikely to be

responsible for the heterozygote deficiency found. Recent studies

[55,56] have demonstrated the existence of Wahlund effect in

Leishmania populations which did however account only partially

for the high inbreeding and suggested the ‘‘existence of population

foci at a microgeographic scale, where clonality alternates with

sexuality of an endogamic nature’’. The strains of NW L. infantum

analysed herein were sampled over large areas and further

geographic subdivision of the subpopulations identified seems to

be quite likely. For clarifying whether the high inbreeding is

exclusively due to population subdivision or also to the presence of

sexual recombination, mainly among identical or similar organ-

isms, sampling at finer geographical scale would be essential.

Clinical picture, reservoirs and vectors versus NW
L. infantum populations and sub-populations

There was no strict correlation between clinical pictures and

population assignment. Strains isolated from human VL and CL

cases, including the atypical CL cases collected exclusively in the

Caribbean, were assigned to both the MON-1 and non-MON-1

populations. VL/HIV+ coinfections were found only in the

MON-1 population, but due to the small number of these samples

so far analysed we cannot draw conclusions. In Pop1-INFNW

strains from CL cases from Honduras formed a single cluster of

identical genotypes and one of the two VL strains from Honduras

was similar to this CL cluster. This confirms previous reports

showing by kDNA RFLP and RAPD that the two clinical forms in

Honduras and Nicaragua were caused by genetically similar

parasites [20,21]. In addition, we found that at least two different

parasite populations circulate in Honduras. Disease susceptibility

and clinical manifestation is, however not only affected by parasite

factors but also by host conditions, such as malnutrition and the

age of the patient (status of the host immune system). In Honduras

VL patients were much younger than CL patients. The vector may

also play a role, as two species, Lu. longipalpis and Lu. evansi, are

present in the Honduran endemic foci.

Obviously, we cannot link the restricted occurrence of CL cases

in the Caribbean region with the general population assignment to

MON-1 and non-MON-1 strains. From the Old World it is

known, that only 20% of the CL cases are due to MON-1 strains

and that the majority of CL cases is caused by strains of zymodeme

MON-24, besides other dermotropic zymodemes, some of which

were represented by several strains in this study. Ninety percent of

all VL cases of immunocompetent individuals are caused by

MON-1 strains, but there are also several other viscerotropic

zymodemes [57,58]. The tropism of many zymodemes is not clear

cut, they are known to cause both VL and CL and the reasons

leading to the respective clinical picture seem to be very complex.

The dog is the main reservoir host for NW L. infantum [59] and

this was confirmed by the detection of identical MLMT profiles for

human and canine strains from different VL foci, such as Mato

Grosso do Sul, Ceará, Espı́rito Santo, Rio de Janeiro (Brazil) and

Paraguay. All canine strains were found in the MON-1 population

except one from Venezuela which was linked to the non-MON-1

population. This is in agreement with the situation in the OW

where the majority of canine leishmaniasis is due to strains of

zymodeme MON-1 [58,60,61]. Only very few other zymodemes,

MON-98, 77, and 108, which are closely related to MON-1, and

MON-253 and MON-24 have occasionally been found in dogs.

It has been suggested that natural foci of sylvatic zoonotic

transmission may exist beside the main transmission cycle via the

domestic dog [62–64]. Foxes are considered to be a natural

reservoir of VL in different states of Brazil, such as Pará [65],

Mato Grosso do Sul [66], Ceará and Piauı́ [63], Minas Gerais

[67,68], and Amazonas [69]. Didelphis marsupialis has been

incriminated as an important reservoir host of NW L. infantum

only in Colombia [70–72]. Opossums infected by NW L. infantum

have, however also been reported from Bahia and Minas Gerais

[73,74]. The role of these animals in natural infection cycles

remains however, questionable [73,75]. MLMT analysis did not

reveal separate genotypes for strains from wild animals. The four

isolates from foxes and the one from a marsupial were all assigned

to the MON-1 Sub-Pop1B-INFNW and interspersed with the

human and canine strains (Figure 2, Figure 3 and Figures S1,

S2, S33).

The transmission of NW L. infantum, its virulence and clinical

picture are likely influenced by coevolutionary interactions

between specific parasite and sand fly genotypes, as suggested

recently [26], and different sand fly species or subspecies might be

involved in the transmission of different L. infantum genotypes in

the NW. Lu. longipalpis, the major vector of NW L. infantum, is

distributed from Southern Mexico to Northern Argentina and it is

considered to be a complex of sibling species [15,24–26,28].

Arrivillaga et al. (2002) have concluded from mitochondrial

sequence (COI) data that Lu. longipalpis in Central and South

America consists of at least four clades, which constitute species

[27]. These clades may correlate in part with some of the

populations or subpopulations of NW L. infantum identified in this

study.

The Caribbean non-MON-1 population might possibly be

linked to Lu. evansi which was reported as an alternative vector for

NW L. infantum in Latin America [15], but was not found in Brazil.

Interestingly, most strains from Mato Grosso do Sul and three

from Paraguay were found in Sub-Pop1B-INFNW whereas the

strains from all other Brazilian and Paraguyan foci were assigned

to Sub-Pop1A-INFNW. This could be attributed to the fact that in

some foci of Mato Grosso do Sul Lu. cruzi (a species within the Lu.

longipalpis complex) has been established as the vector for NW L.

infantum and it has been found to be sympatric with Lu. longipalpis in

many areas [76–82]. It is perhaps also present in bordering areas

of Paraguay and Bolivia [77,79,80,83]. Whether different

geographically determined L. infantum genotypes correlate with

the occurrence of specific sand fly species in those areas should be

further investigated.

Origin of NW L. infantum
Our results indicate that L. infantum was introduced from

Southwest Europe to the New World several times and at several

points along this continent (Figure 6). The genotypes found in

specific regions in South and Central America were also found in
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Europe, especially among the Spanish, Portuguese, French and

Italian strains of L. infantum. When analysed together the MON-1

population of NW L. infantum was intermingled with MON-1

strains from the Western European Mediterranean countries and

the non-MON-1 population comprised strains from both New and

Old Worlds.

There were several waves of immigration of Europeans into the

New World especially from Leishmania endemic countries such as

Portugal and Spain starting with the arrival of the Conquistadores

up to the immigration of settlers during last century. Brought to

South America with European immigrants, perhaps many times,

the parasites spread rapidly due to migration, urbanization and

trade. There is e.g. some indication of expansion of single

genotypes (clones) among the Northeast of Brazil and Mato

Grosso do Sul, respectively. This introduction of L. infantum is still

ongoing as recently shown for an infected dog which was brought

from France to French Guiana [17].

This study further confirmed that the agent of VL in the New

World is L. infantum and not a separate indigenous species, L.

chagasi. This is also supported by i) the identity of the isoenzyme

profiles [44,54,84–88], ii) the identical genotypes obtained by

analysing different genomic targets with different molecular

techniques [2–4,38,43,89–92], iii) the fact that L. infantum can be

transmitted by several OW sand fly species and infect, develop in

and adapt to Lu. longipalpis [32], and (iv) by the fact that New

World foxes are phylogenetically closer to Old World wolf-like

canids than to Old World foxes and therefore have a high

potential to be a reservoir [93]. It still remains unclear, whether

neotropical wild animals found to be infected with L. infantum are

accidental hosts or real reservoirs. We could show, that parasites

isolated from four foxes and one marsupial did not constitute a

separate population in the NW and are, thus, not part of separate

transmission cycles.

Multiple introductions of the parasite help to explain the

immense spread of L. infantum in the NW Furthermore, Lu.

longipalpis has been proven to be a permissive vector and fast

adaptation is facilitated by modification of the parasite’s surface

molecules [94,95]. Thus L. infantum brought to the NW

could have easily adapted to the respective local sand fly

populations.

Recent, and likely continious migrations to and possibly even

from, the NW are further supported by FST values calculated

between NW and OW L. infantum, which indicate only little genetic

differentiation (data not shown). In contrast, we observed that the

populations of L. infantum from southern Europe are more closely

related to NW L. infantum than to other populations of OW L.

infantum, e.g. from North Africa, Central Asia, the Middle East and

even South Eastern Europe. Moreover, parasites indigenous in the

NW should be more diverse, but we observed them to be much

less diverse than L. infantum or L. donovani from the Old World.

This is consistent with a founder effect, i.e. recent introduction of a

restricted part of the original L. infantum population, with possible

genetic drift or clonal expansion of only some genotypes. As a

consequence there is no justification for a taxonomic separation of

L. chagasi and L. infantum at species or subspecies level .

The present paper represents to our knowledge the first

comprehensive population study of NW L .infantum, in which we

have applied a high resolution typing method sensitive enough to

detect population structures at intra-species level. We found a very

homogenous population structure in Brazil and Paraguay

consisting exclusively of MON-1 strains and a mixed population

structure including MON-1 and non-MON-1 strains in the

Caribbean region. Further studies with refined sampling strategies

based on the populations and sub-populations detected in this

study will enable more intensive microepidemiological analyses of

NW L. infantum genotypes, and their association with reservoirs,

vectors, clinical presentation, host immunological status, ecology,

geography, and socioeconomic or demographic factors. We have

provided conclusive evidence of recent multiple introductions of L.

infantum from the Old into the New World including both MON-1

Figure 6. Map showing the presumable origin of NW L. infantum. The respective populations of L. infantum in the Old and New Worlds are
indicated by the respective colors used in Fig. 2 and 5. NW L. infantum has been introduced from Southwest Europe to the New World multiple times.
doi:10.1371/journal.pntd.0001155.g006
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and non-MON-1 genotypes and for the synonymy of L. infantum

and L. chagasi.

Supporting Information

Figure S1 Neighbor-joining tree of NW L. infantum
genotypes. This midpoint-rooted tree was derived from the

Chord-distance calculated for the MLMT profiles of 14 microsat-

ellite markers. Only different genotypes are scored. Clinical

pictures, reservoir, origin and number of strains sharing the same

genotype are indicated, as well as population and sub-population

assignements according to Bayesian model-based analysis with the

STRUCTURE program (see Fig. 2). MS - Mato Grosso do Sul,

PA - Pará, RJ - Rio de Janeiro, ES - Espı́rito Santo, BA - Bahia,

RN - Rio Grande do Norte, PI - Piauı́, PE - Pernambuco, nd - not

defined. VL - visceral leishmaniasis, CL - cutaneous leishmaniasis,

CanL - canine leishmaniasis.

(TIF)

Figure S2 Midpoint-rooted neighbor-joining tree show-
ing all individual NW L. infantum strains. Phylogenetic

tree derived from the Chord-distance calculated for the MLMT

profiles of 14 microsatellite markers for the 98 NW strains of

L.infantum studied. Clinical pictures and reservoir for each strain

are indicated. The origin of the Brazilian strains (state) is given as

abbreviation: MS - Mato Grosso do Sul, PA - Pará, RJ - Rio de

Janeiro, ES - Espı́rito Santo, BA - Bahia, RN - Rio Grande do

Norte, PI - Piauı́, PE - Pernambuco. Populations and sub-

populations according to STRUCTURE analysis (see Fig. 2) are

shown. T -WHO reference strain of NW L. infantum (PP75). VL –

visceral leishmaniasis, CL – cutaneous leishmaniasis, CanL –

canine leishmaniasis, nd – not determined.

(TIF)

Figure S3 Neighbor-joining tree showing only popula-
tion 1 of the combined NW and OW strains of L.
infantum. This unrooted tree is based on the Chord-distance

of the MLMT profiles of 14 microsatellite markers and it includes

only strains belonging to population1 (MON-1) of the combined

OW (dots) and NW (squares) L. infantum data set (see Fig. 5 and 6).

Isolates of wild animal reservoirs are indicated by arrows. NW L.

infantum strains (all marked by blue squares) are concentrated in

few clusters marked in grey, that also contain L. infantum from

Portugal (pink dots), Spain (red dots) and France (green dots).

Origins of the strains are indicated in the legend beside.

(TIF)

Table S1 bT – Reference strain of the species; 1 – zymdemes

according to the Montpellier system – MON [86] or the CLIOC

system – IOC/Z [44], MON-1 and Z1 are corresponding

zymodemes; 2 – Population assignment according to STRUC-

TURE analysis of the combined dataset of 409 strains of NW and

OW L. infantum; 3 – Population assignment according to

STRUCTURE analysis of the dataset of 98 NW L. infantum

strains; - VL – visceral leishmaniasis; CL – cutaneous leishman-

iasis; PKDL – post Kala-Azar dermal leishmaniasis; CanL –

canine leishmaniasis; cIL – central Israel, nIL – north Israel; nd –

not defined; na – not applicable; CNRFV - BIOMED-Centro

Nacional de Referencia de Flebotomos de Venezuela; SENEPA -

Programa Nacional de Leishmaniosis, SENEPA, Ministry of

Public Health, Paraguay; CLIOC - Coleção de Leishmania do

Instituto Oswaldo Cruz, Brazil; LSHTM - London School of

Hygiene and Tropical Medicine, UK; KIT - Royal Tropical

Institute, Amsterdam, Netherlands; CNRLM - Centre National de

Référence des Leishmania, Université Montpellier, France; ISCM -

WHO Collaborating Centre for Leishmaniasis, Servicio de

Parasitologı́a, Instituto de Salud Carlos III, Mahadahonda

(Madrid), Spain; ISS - Instituto Superiore di Sanità, Italy;.HPI -

Hellenic Pasteur Institute, Athens, Greece; IHMT - Instituto de

Higiene e Medicina Tropical, Universidade Nova de Lisboa,

Portugal; JRCL - WHO’s Jerusalem Reference Centre for

Leishmaniases, Hebrew University, Hadassah Medical School,

Jerusalem, Israel; AQNHI - Al-Quds Nutrition and Health

Research Institute, Faculty of Medicine, Al-Quds University,

Abu-Deis, Palestine; IPA - Institut Pasteur d’Algérie, Algiers,

Algeria; LPMM - Laboratoire de Parasitologie_Mycologie à la

Faculté de Pharmacie, Monastir, Tunisia; BHU - Kala-azar

Medical Research Centre, Banaras Hindu University, Varanasi,

India.

(DOC)

Table S2 N, number of strains; P, proportion of polymorphic

loci; MNA, mean number of alleles; Ho, observed heterozygosity;

He, expected heterozygosity; FIS, inbreeding coefficient; FR –

France; IT – Italy.

(DOC)

Methods S1 Additional information about the methods
of MLMT data analyses.

(DOC)
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