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Background: Screening of patients for cancer-driving mutations is now used for cancer prognosis, remission scoring and

treatment selection. Although recently emerged targeted next-generation sequencing-based approaches offer promising

diagnostic capabilities, there are still limitations. There is a pressing clinical need for a well-validated, rapid, cost-effective

mutation profiling system in patient specimens. Given their speed and cost-effectiveness, quantitative PCR mutation detection

techniques are well suited for the clinical environment. The qBiomarker mutation PCR array has high sensitivity and shorter

turnaround times compared with other methods. However, a direct comparison with existing viable alternatives are required to

assess its true potential and limitations.

Methods: In this study, we evaluated a panel of 117 patient-derived tumour xenografts by the qBiomarker array and compared

with other methods for mutation detection, including Ion AmpliSeq sequencing, whole-exome sequencing and droplet digital

PCR.

Results: Our broad analysis demonstrates that the qBiomarker’s performance is on par with that of other labour-intensive and

expensive methods of cancer mutation detection of frequently altered cancer-associated genes, and provides a foundation for

supporting its consideration as an option for molecular diagnostics.

Conclusions: This large-scale direct comparison and validation of currently available mutation detection approaches is extremely

relevant for the current scenario of precision medicine and will lead to informed choice of screening methodologies, especially in

lower budget conditions or time frame limitations.

Tumorigenesis is known to progress through a series of
genetic alterations. Despite the molecular heterogeneity of the
disease, a subset of well-established cancer driver genes are
frequently mutated across various solid tumour types at mutation
hot spot regions. These genetic alterations are responsible for the
initiation and maintenance of the malignancy (Tamborero et al,
2013), and therefore, detection of cancer-driving mutations in
clinical samples offers opportunity for improved risk assessment,

early cancer detection, therapeutic intervention and tumour
surveillance.

Remarkable advances in next-generation sequencing (NGS)
technologies have allowed rapid generation of high-quality genetic,
transcriptomic and epigenetic data, and have opened up numerous
opportunities for translation into the clinic. Due to decreases
in sequencing cost and concomitant development of the infra-
structure needed to effectively apply individual genomic data in
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clinical care, whole-genome sequencing (WGS) is likely to become
more routinely available over the next few years and may
ultimately displace other mutation detection tests. However, until
that moment arrives, and for clinical settings that still will not have
access to high-end complex technologies, there is an unmet clinical
need for a rapid, accurate and affordable assay for cancer-driving
mutation profiling.

Studies of cancer-driving genes have flourished over the last
decade and a variety of platforms have emerged for surveying the
hot spot regions of numerous tumour-promoting and tumour-
suppressor genes. Targeted NGS assays, such as CancerSelect-R by
Personal Genome Diagnostics (PGDx, Baltimore, MD, USA), seem
to be the best approach for profiling tumour-specific mutations
with a high sensitivity and specificity. Nevertheless, its clinical
application is limited due to the high cost and long turnaround
time (3 weeks) required for the data analysis. Moreover, germline
variation, alignment artefacts and inherent massively parallel
sequencing errors may considerably affect the assay’ sensitivity to
accurately detect rare and low-prevalence bona fide somatic events.
Ultra-sensitive droplet digital PCR (ddPCR) overcomes these
complications, and enables rapid and highly sensitive quantitative
genotyping of mutated genes. However, this new technology is not
readily available in every research or diagnostic centres, where high
cost of establishing ddPCR facilities is still an impediment for the
widespread use of this technique. Furthermore, the limited
throughput approach further delays its clinical adoption for
large-scale mutations screening as a routine personal genomics
practice. At present, quantitative PCR (qPCR) instruments are
more common in laboratory and diagnostic settings and
researchers are more comfortable with handling this platform.
qBiomarker, a real-time PCR method for detection of cancer-
associated mutations and copy number variations, has been
successfully used in both basic research (Sangodkar et al, 2012;
Luo et al, 2013) and with diagnostic potential (Jimenez et al, 2013).
By combining allele-specific amplification, achieved by Taq
polymerase’s discrimination between a match and a mismatch at
the 30 end of the PCR primer (amplification refractory mutation
system technology) and hydrolysis probe detection, qBiomarker
can detect somatic mutations at 1% minimum mutant allele
fraction, making it one of the most sensitive qPCR methods for the
detection of DNA mutations. Optimised for robust performance,
qBiomarker array is presented as a plate with up to 382 targets
analysed at the same reaction. Although this method is an
attractive candidate for clinical applications due to its high
sensitivity, rapid protocol (o30min hands-on time), and relatively
low cost, a rigorous evaluation and comparison with viable
alternatives are required to assess its true potential and limitations.

Patient-derived xenograft (PDX) models are established by
directly implanting tumour tissue samples into an immunodefi-
cient mouse and are increasingly recognised as representative
in vivo clinical models, as they maintain global gene expression
patterns, DNA copy number alterations, mutational status,
metastatic potential, clinical predictability and tumour architecture
of the parental primary tumours (Rubio-Viqueira et al, 2006;
Garber, 2007; Hidalgo et al, 2011; Morelli et al, 2012; Stebbing et al,
2014). Therefore, personalised PDXs can be successfully used as
model platforms for cancer-driving mutation screening and
improving decision-making in tumour treatment (Gao et al, 2015).

In the current study, qBiomarker somatic mutation PCR array
(Qiagen, Germantown, MD, USA) was evaluated in a panel of 117
PDX models of various tumour origins, and its efficacy was
compared with that of other methods for mutation detection, such
as targeted Ion AmpliSeq sequencing (Thermo Fisher Scientific,
Waltham, MA, USA), Whole Exome Sequencing (WES, Illumina,
San Diego, CA, USA) and ultra-sensitive ddPCR (Bio-Rad,
Hercules, CA, USA). Our comprehensive comparative analysis
demonstrates that qBiomarker array accurately detects cancer-

associated somatic aberrations and has high concordance with
other routinely used, but more complex mutation detecting tests.
Moreover, the mutational landscape discovered by the qBiomarker
platform in PDX models closely reflects the spectrum of genetic
alterations reported in primary tumours, further supporting the
credibility of the qBiomarker platform. Taken together, our work
demonstrates that qPCR-based qBiomarker, WES, AmpliSeq and
ddPCR are reliable methods for cancer-driving mutations assess-
ment and validates qBiomarker array as a simple, rapid and cost-
effective mutation detection method that enables potential
translational and clinical implementations.

MATERIALS AND METHODS

Generations of PDX models. All patients that agreed to have PDX
models generated from their tumours signed informed consent
document following federal regulatory requirements. All animals
were maintained according to approved Institutional Animal Care
and Use Committee protocols. Patient-derived xenograft has been
generated as previously described (Bertotti et al, 2011; DeRose et al,
2011; Hidalgo et al, 2011; Villarroel et al, 2011; Morelli et al, 2012;
Stebbing et al, 2014). A detailed approach for PDX model
generation from a tumour biopsy is available in the
Supplementary Materials and Methods.

DNA extraction. Genomic DNA was isolated from fresh-frozen
samples by the QIAamp DNA Kit (Qiagen) and quantified with the
Nanodrop spectrophotometer (Thermo Fisher Scientific).

qBiomarker somatic mutation PCR array. A Qiagen customised
mutation array containing 353 mutations and 29 copy number
assays was designed based on comprehensive somatic mutation
databases (e.g., COSMIC, cancer.sanger.ac.uk/cosmic) and peer-
reviewed scientific literature data on significant known mutations
in cancer (Figure 1B). The selected mutations are biologically or
therapeutically relevant in different cancer types and for this
specific array we have prioritised relevant mutations reported in
lung and colorectal tumours. The exact qBiomarker array method
and analysis are detailed in the Supplementary Materials and
Methods.

Ion torrent ampliseq sequencing. From the list of hot spot
regions of 50 oncogenes and tumour-suppressor genes included
in the Ion Torrent NGS AmpliSeq Cancer Hot spot Panel v2
(Thermo Fisher Scientific), we focused on analysis of 297 non-
synonymous genetic aberrations (253 missense/nonsense muta-
tions and 44 indels) across 23 genes. All selected targets overlapped
with the qBiomarker panel. Contemporary normal NA12878 cell
line was used as a ’normal’ tissue. The Ion Torrent AmpliSeq
sequencing (Thermo Fisher Scientific) and data analysis are
detailed in the Supplementary Materials and Methods.

WES. Genomic DNA from tumour and normal samples were
fragmented and whole exome was captured in solution using the
Sure Select human all exon kit (Agilent, Santa Clara, CA, USA)
according to the manufacturer’s instructions. Paired-end sequen-
cing, resulting in 125 bases from each end of the fragments, was
performed using a HiSeq System (Illumina, San Diego, CA, USA).
Candidate somatic mutations were identified by applying Genome
Analysis Toolkit recommended preprocessing and alignment.
Sequence reads were aligned against the human reference genome
(GRC37/hg19) and mouse reference genome (GRCm38/mm10)
using the Burrows-Wheeler Alignment tool (Li and Durbin, 2009)
and reads that do not align to human reference have been
removed. Somatic variants were identified using multiple callers:
(muTect, Virmid, Strelka, LoFreq, SomaticIndelDet; Saunders et al,
2012; Wilm et al, 2012; Cibulskis et al, 2013; Kim et al, 2013) using
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a standard normal cell line (NA12878) as matched normal, and all
calls were aggregated into a single vcf. Detailed sequencing and
data analysis approaches are available in the Supplementary
Materials and Methods.

Digital droplet PCR. All ddPCR assays used in this study were
designed and optimised to work in the ddPCR QX200 system by
Bio-Rad (Hercules, CA, USA). The detailed ddPCR protocol used
in this study is available in the Supplementary Materials and
Methods.

Statistical analysis. Sensitivity, specificity, negative predictive
value and positive predictive value were calculated as the
percentage on the basis of KRAS/BRAF mutations correctly
detected by ddPCR in 104 patients.

RESULTS

Mutational landscape detected by the qBiomarker platform in
human PDX tumour models. We first used a customised
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Figure 1. Mutation screening by qBiomarker array and validation with AmpliSeq next-generation sequencing platform in patient-derived tumour
xenografts (PDX). (A) Tumour site distribution of 117 PDX models selected for mutation screening. (B) Number of somatic mutations (non-
synonymous and indels) covered by the customised qBiomarker array. (C) Number of mutations identified per gene using the qBiomarker array
(cyan bars). Mutation rates comparison for the most frequently mutated genes detected by qBiomarker (green inserts) in colorectal cancers,
pancreatic carcinomas, non-small cell lung cancers and melanoma with mutation frequencies reported for these genes (including all reported
mutations, not only the ones we analysed) in primary tumours by COSMIC (red inserts). (D) List of genes and number of somatic mutations
concurrently covered by qBiomarker and AmpliSeq mutation detection platforms. (E) Schematic representation of all mutations detected by
qBiomarker and AmpliSeq approaches in 59 PDX models. Green and blue dots represent mutations detected by either qBiomarker or AmpliSeq
assay, respectively, whereas red dots indicate mutations concurrently detected by both methods. Cases with no mutation detected are not shown.
(F) Venn diagram summarises mutations concurrently detected by both methods and each one of the tested techniques alone.
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qBiomarker array to profile somatic mutation status in 117 early-
passaged human PDX models of various tumour origin
(Supplementary Figure 1; 35 colorectal cancers, 31 pancreatic
cancers, 29 lung cancer, 25 non-small cell lung cancers and 4 small
cell lung cancers, 10 melanomas, 7 ovarian cancers and 5 breast
cancers; Figure 1A; Supplementary Table 1). The panel of
genetic changes selected for the customised assay consists of 353
(260 single-nucleotide substitutions and 63 indels) non-synon-
ymous alterations in 29 well-characterised driver genes common to
many solid tumour types (see Materials and Methods for selection
criteria; Figure 1B; Supplementary Table 2A).

Our analysis identified 149 genetic alterations across 16 of 29
targeted genes in 86 (73%) of the tumours tested. Over 80% of all
identified alterations were attributed to KRAS, TP53, PIK3CA, APC
and BRAF (Figure 1C; Supplementary Table 3). These genes are
frequently mutated in various solid malignancies and were
therefore highly represented in our customised mutation detection
assay (Supplementary Table 2A). Notably, mutation frequencies of
mostly mutated genes (mutated in45% of cases) observed in PDX
models of different tumour types (Figure 1C, green inserts) highly
resembled mutation frequencies reported for these genes in
primary human tumours by COSMIC (Figure 1C, red inserts).
For example, KRAS and TP53 mutations, the most frequent genetic
alterations in colorectal cancer patients (Neumann et al, 2009;
Figure 1C, red inserts), were also identified as such by qBiomarker
assay in colorectal PDX models (Figure 1C, green inserts).
Likewise, mutations in the APC gene, which frequently occur in
colorectal carcinomas (Segditsas and Tomlinson, 2006; Anastas
and Moon, 2013), were detected in nearly 20% of colorectal
xenografts (Anastas and Moon, 2013). Consistent with previous
reports, nearly 80% of the pancreatic models harboured muta-
tionally activated KRAS (Bryant et al, 2014), whereas more than
half of the melanoma tumours harboured activating BRAF
mutations (Ascierto et al, 2012; Figure 1C; Supplementary

Table 3). Of note, 7 (20%) of 35 colorectal tumours and 9 (29%)
of 31 pancreatic models harboured concurrent KRAS activating
(Smith et al, 2010) and TP53 inactivating (Kato et al, 2003)
mutations (Supplementary Table 2A). A similar range of coexistent
KRAS/TP53 mutant genotype has been recently reported in human
colorectal (De Bruijn et al, 2011) and pancreatic (Yachida et al,
2012) tumours, further suggesting that the frequency of driver
genes discovered by qBiomarker cancer mutations panel in PDX
models is likely reflective of the true frequencies reported in human
tumours.

Validation of qBiomarker-detected mutations with ion torrent
AmpliSeq assay and WES. We next used Ion Torrent AmpliSeq
technology to confirm mutations detected by qBiomarker in a
panel of 59 selective PDX tumour models (Supplementary
Figure 1). The customised targeted AmpliSeq cancer panel
comprises 297 non-synonymous genetic aberrations (253 mis-
sense/nonsense mutations and 44 indels in hot spot regions of 25
oncogenes and tumour-suppressor genes), that were also included
in the qBiomarker panel (Figure 1D; Supplementary Table 2B).
Altogether, both approaches detected 95 genetic aberrations in 16
genes (Supplementary Table 4). Sixty-nine (73%) of these
mutations were detected by both methods (Figure 1E), revealing
that AmpliSeq and qBiomarker assays identify genetic alterations
with high concordance. Whereas 18 and 9 genetic changes were
exclusively identified by either the qBiomarker assay or AmpliSeq
sequencing respectively (Figure 1F).

To further benchmark the qBiomarker array, we used WES to
assess the presence of genetic aberrations detected by qBiomarker
approach in 59 randomly selected samples of 117 models used in
this study (Figure 2A; Supplementary Figure 1). WES data was
analysed for 260 single-nucleotide substitutions targeted by the
Biomarker panel (indels were not included). Strikingly, WES
confirmed 65 of 71 (92%) mutations detected by the qBiomarker
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Figure 2. Validation of qBiomarker-detected mutations with whole-exome sequencing (WES). (A) Schematic representation of all mutations
detected by qBiomarker and WES approaches in 59 PDX models. Red dots represent mutations detected by both methods, while green (only
qBiomarker) and blue (only WES). Cases with no mutation detected are not shown. (B) Venn diagram summarising the number of mutations
identified by both methods or by each technique. (C) Schematic representation of all mutations detected by qBiomarker, WES and AmpliSeq
approaches in 43 PDX models. Blue dots represent mutations detected by one of the methods, whereas red crosses represent wild-type loci

(no mutation detection). The mutations detected concurrently by all three methods are represented by the red squares. Cases with no mutation
detected by any platform are not shown. (D) Venn diagram summarising the number of mutations detected by qBiomarker, WES and AmpliSeq
alone, by any combination of two of the methods and the total number of genetic aberrations detected by all three approaches.
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assay (Figure 2A; Supplementary Table 5A) and only 5 mutations
positively identified by qBiomarker have been reported as
wild-type by deep-exome sequencing (Figure 2B). Notably, there
was greater agreement between WES and qBiomarker mutation
calls (Figure 2B) than between AmpliSeq and qBiomarker
(Figure 1F). To test whether variants that were false positively
detected by qBiomarker assay result from probes’ cross-reactivity
with actual somatic mutations located within their immediate
vicinity, we have analysed our sequencing data for the presence of
any genetic aberrations 15 nt up- or downstream from these false-
positive calls. A frameshift deletion mutation was detected nearby
the false-positive TP53 variant in one out of five PDX tumour
models (CTG-0198). These findings suggest that some of the calls
unique to qBiomarker may be false positives, resulting from cross-
reactivity of probes with the true adjacent genetic aberration.

Forty-three of 117 PDX tumour models were concurrently
analysed for mutation detection by the qBiomarker assay, targeted
AmpliSeq sequencing and WES (Figure 2C; Supplementary
Figure 1; Supplementary Table 5B). WES data were analysed for
253 missense/nonsense mutations included in the qBiomarker and
AmpliSeq target panels (Supplementary Table 2B). Of the 59

mutations discovered across 43 tumours, 47 (80%) mutations have
been concomitantly detected by all three platforms, (Figure 2D;
Supplementary Table 5B), demonstrating the high level of
concurrence between the sequencing- and qPCR-based screening
approaches. The fractional abundance of mutations detected by
AmpliSeq or WES was at least 20% and the prevalence of the
mutant reads were mostly consistent between WES and AmpliSeq
assays (Supplementary Table 5B). Nonetheless, there was slightly
greater concordance between WES and qBiomarker than AmpliSeq
mutation calls. Notably, the AmpliSeq-targeted screening approach
appears to be more prone to false negatives, as five mutations
discovered by qBiomarker and WES were reported as wildtype by
AmpliSeq (Figures 2C and D).

Validation of selective KRAS and BRAF mutations with ultra-
sensitive ddPCR. Although our data display high concordance
between genetic aberrations calls from qPCR- and NGS-based
screening assays (Figures 2C and D), 28% of tested mutations were
not consistently detected across all approaches. As the detection of
true point mutations requires a high degree of sensitivity, we next
utilised ultra-sensitive ddPCR to further validate the accuracy of
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Figure 3. Validation of selective KRAS and BRAF mutations detected by qBiomarker with ultra-sensitive ddPCR. (A) List of cancer-associated
KRAS and BRAF mutation loci assessed by qBiomarker and validated with ddPCR assay. (B) Serial dilution curve using DNA with known KRAS

mutation (extracted from the PDX tumour CTG-0288). The blue markers indicate the concentration of mutant DNA (copies per ml) and the orange
markers indicate the fractional abundance (%) of the KRAS mutated loci in a wild-type DNA background. All error bars generated by QuantaSoft
software (Bio-Rad, Hercules, CA, USA) represent a 95% confidence interval. (C) To assess cross-reactivity of ddPCR probes targeting KRAS p.G12D
and p.G12V mutations, DNA with known KRAS p.G12D mutation was probed with either specific ddPCR assay or with a probe designed for
detection of p.G12V substitution. Alternatively, DNA isolated from tumour carrying the KRAS p.G12V mutation (D) was probed with either a
specific or off-target ddPCR probe. Blue dot clusters indicate KRAS mutation detected by the specific assay. Black dot cluster indicates empty
droplets. Mutated KRAS p.G12V cases when probed with the assay for p.G12D, and vice-versa, presented with an extra shifted cluster of black
dots (identified by a star), probably resulted due to non-specific probes cross-reactivity. Green clusters indicate droplets containing wild-type KRAS

alleles. (E) Schematic representation of the comparative analysis of qBiomarker and ddPCR approaches in a panel of 104 PDX tumours. Green and
blue dots represent mutations discovered by either qBiomarker or ddPCR, respectively, although red dots indicate mutations concurrently
detected by both platforms. Cases with no mutation detected are not shown. (F) Venn diagram summarising the number of KRAS and BRAF

cancer-associated mutations detected by qBiomarker and ddPCR alone or concurrently. (G) Summary of detection accuracy (specificity, sensitivity,
positive predictive value (PPV) and negative predictive value (NPV) of the qBiomarker approach when referenced to ddPCR.
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the qBiomarker assay by probing for three KRAS and two BRAF
cancer-associated substitutions (Figure 3A). We first used serially
diluted DNA isolated from a tumour model with known KRAS
p.G12D mutation to evaluate assay sensitivity. The presence of
mutant DNA was detected even at DNA input as low as 0.4 ng,
whereas the fractional abundance remained unchanged across all
serially diluted samples (Figure 3B). To ensure specific detection of
mutations located within the adjacent nucleotides, we next assessed
the cross-reactivity of ddPCR probes targeting KRAS p.G12D and
p.G12V mutations (hence these probes differ by only one base).
DNA with known KRAS p.G12D mutation was probed with either
specific ddPCR assay or with a probe designed for detection of
p.G12V substitution (Figure 3C). Similarly, DNA isolated from
tumour carrying the p.G12V mutation was probed with either a
specific or off-target ddPCR probe (Figure 3D). Although in both
cases (Figures 3C and D), non-specific probes caused a minor
inwards and upwards cluster shift (labelled with a star) compared
with the negative droplets (suggesting that some of the non-specific
probes bind to the nonperfect sequences and undergo cleavage),
specific assays resulted in much greater cluster shifts (blue
clusters), indicating that this low level of cross-reactivity will not
affect the assay’s ability to specifically detect tumours positive for
KRAS p.G12D or p.G12V mutations.

We next used ddPCR to analyse 104 of 117 tumour models,
previously assessed with qBiomarker for presence of five selective
cancer-associated KRAS and/or BRAF mutations (Figure 3E;
Supplementary Figure 1; Supplementary Table 6). The fractional
abundance of cancer-driving mutations detected by ddPCR was at least
20%. Of 41 KRAS/BRAF mutations detected across all tested tumours
by ddPCR, 36 mutations (over 87%) were correspondingly discovered
by qBiomarker approach (Figure 3F). Due to its high sensitivity,
ddPCR might be considered as a gold-standard method for detecting
the tumour-associated mutations in research settings (Huggett et al,
2015). Using the ddPCR data as a reference, our findings have further
confirmed that qBiomarker array provides a reliable framework for
cancer-associated mutations screening (Figure 3G).

Furthermore, the presence of selective KRAS/BRAF substitu-
tions has been assessed in 51 PDX tumour models in parallel by
qBiomarker, AmpliSeq and ddPCR techniques (Figure 4A;
Supplementary Figure 1; Supplementary Table 7). Notably, 23

(85%) of 27 mutations have been successfully discovered by all
three methods (Figure 4B). Finally, the WES data was also available
for 31 of these 51 PDX tumours. As indicated in Figure 4C, most
(11 of 12) of the KRAS/BRAF mutations assessed in these patients
were simultaneously detected by all four mutation detection
approaches (Supplementary Table 8), further supporting a high
cross-platform concurrency and providing additional evidence that
qPCR-based qBiomarker approach is an accurate and reliable
method for cancer mutations screening.

DISCUSSION

The cell growth and survival advantages acquired by malignant
tumour cells are consequences of cumulative genetic and epigenetic
aberrations (Stratton et al, 2009; Vogelstein et al, 2013). Despite the
mutational heterogeneity of neoplastic diseases, a subset of cancer-
driving genes are commonly mutated in a high proportion of
various solid tumour types, and correlate with disease prognosis
and clinical response to therapeutic agents. Over the past decade,
genotyping for driver mutations has gained wide acceptance and it
is now used for cancer prognosis, remission scoring and treatment
selection options. Although recently emerged WES and WGS
approaches with promising diagnostic capabilities will probably
displace other mutation detection techniques over the next few
years, their use as a modality for large-scale population-based
screening has recognised limitations, such as: long processing
times, cost and most notably, difficulties in calling functional and
actionable genetic variants in cancer (Rehm, 2013; Royer-Bertrand
and Rivolta, 2015). To make NGS more amenable for diagnostic
needs, sequencing kits targeting known cancer-associated genes
have been offered by various manufacturers and are CLIA certified
for clinical use. Although targeted tests are quicker and provide
accurate results due to better coverage (Singh et al, 2013; Tsongalis
et al, 2014), the prices have largely remained high, posing a
practical barrier to clinical translation. Likewise, although ultra-
sensitive ddPCR technology offers an advantageous approach for
targeted mutation detection, its clinical implementation requires
large volumes of expensive reagents (Huggett et al, 2015) and
delays its adoption for mutation screening as a routine practice.
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On the other hand, the detection sensitivity of most commonly
used methods for mutation detection, Sanger sequencing and
pyrosequencing, is B20% and 5%, respectively (Tsiatis et al, 2010).
Therefore, mutations occurring below the detection limit would
not be identified.

Given their speed, throughput capabilities and cost-effective-
ness, qPCR mutation detection techniques are well suited for the
clinical environment and provide a method of choice for various
diagnostic uses (Martinez-Llordella et al, 2008; Maurin, 2012;
Warhurst et al, 2015). Although several qPCR cancer mutation
detection methods have been reported in the literature and are
commercially available (Didelot et al, 2012; Bolton et al, 2015), the
lack of rigorous validation in tumour specimens has limited their
application in the clinical diagnostic setting. This poses a pressing
clinical need for a well-validated, rapid and cost-effective mutation
profiling method with optimal analytical performance in patient
specimens.

In this study, we have directly compared the recently developed
qBiomarker (Qiagen) array with NGS-based Ion Torrent AmpliSeq
(Thermo Fisher Scientific), WES (Illumina) and ultra-sensitive
ddPCR (Bio-Rad) to validate these techniques for cancer-
associated mutation analysis in a large panel of early passage
PDX tumours. As we have previously demonstrated, PDX models
are biologically stable and accurately reflect the patient’s tumour
histopathology, mutational landscape and therapeutic response,
and represent a unique in vivo setting for preclinical evaluation of
cancer-driving events (Rubio-Viqueira et al, 2006; Garber, 2007;
Hidalgo et al, 2011; Morelli et al, 2012; Stebbing et al, 2014; Gao
et al, 2015). Further supporting this concept, mutational landscape
detected by qBiomarker array in our PDX cohort was highly
compatible with the spectrum of genetic alterations in primary
tumours reported in the comprehensive cancer mutational
database COSMIC. Although our data is likely biased, as
qBiomarker targets highly selected cancer-associated mutations,
these aberrations have greater frequency and represent a large
share of all genetic events reported for these genes in human
databases. Consequently, these observations support the credibility
of the qBiomarker mutation detection approach.

By comparing detection of 297 non-synonymous aberrations,
we found an overall 72% agreement between qBiomarker and
AmpliSeq in 59 PDX samples. Despite the high concordance,
18.8% and 9.4% of mutations were identified only by qBiomarker
or AmpliSeq, respectively. As most of the techniques were
performed using the same DNA extraction aliquot to minimise
effects of intratumoral heterogeneity, these differences may be
attributed to vulnerability of both methods to false-positive and
false-negative calls. Results of the qPCR-based approaches may be
affected by a number of compounding factors that reduce the
specificity of primers and probes leading to a relatively high level of
signal background. On the other hand, in general, the amplicon-
based approaches, such as AmpliSeq (Thermo Fisher Scientific,
Waltham, MA, USA), TruSeq (Illumina, San Diego, CA, USA),
Microdroplet PCR (RainDance, Billerica, MA, USA), ddPCR
(Bio-Rad, Hercules, CA, USA), real-time PCR and Access Array
(Fluidigm, San Francisco, CA, USA), may not be suitable for
screening of a large number of targets due to the difficulties
associated with primer design for multiplex purposes. As the
number of primers in the reaction increases, the level of non-
specific amplification caused by the interaction between the
primers increases as well, and therefore affects the assay reliability
(Mamanova et al, 2010). For the same reason, the addition of
targets into an established amplicons panel requires primer
redesign to accommodate the new targets and minimise non-
specific primer–primer interactions. Accordingly, recent studies
have demonstrated that ‘false-positive’ variant calls in clinically
relevant genes were frequently detected by an AmpliSeq cancer
panel (Zhang et al, 2014) and other amplicon-based approaches

(Samorodnitsky et al, 2015). It was reported that hybridisation
capture-based methods provide better coverage uniformity and are
less likely to nominate false-positive calls than amplicon-based
approaches (Samorodnitsky et al, 2015). Notably, results obtained
from a direct comparison between qBiomarker, AmpliSeq and
capture-based WES for the detection of 253 cancer-associated
mutations in 43 PDX models were highly concordant (79.6%
detected by all three platforms), and show that qBiomarker assays
had greater correspondence with WES than with amplicon-based
AmpliSeq platform, further supporting the notion that results from
hybridisation-based NGS significantly correlate with those
observed by real-time qPCR (Tuononen et al, 2013).

KRAS and BRAF mutations are usually associated with poor
prognosis and chemotherapeutic resistance in various solid
malignancies (Davies et al, 2002; Pylayeva-Gupta et al, 2011).
Although KRAS and BRAF mutations are routinely assessed in
tumour tissues, their detection can be challenging due to the high-
testing volume frequency and low tumour content. Due to its
superior sensitivity, ddPCR has quickly become an approach of
choice for KRAS and BRAF genotyping in tumours and bodily
fluids (Bettegowda et al, 2014; Diaz and Bardelli, 2014; Oxnard
et al, 2014) in research settings. To further evaluate the
qBiomarker’s diagnostic accuracy, we analysed 104 of 117 PDX
tumour samples for presence of three KRAS and two BRAF
clinically relevant mutations with ddPCR assay. The qBiomarker
results were confirmed by ddPCR analysis with 88% concordance,
demonstrating that qBiomarker assay can detect low-prevalence
mutations in a wild-type genomic background. Furthermore,
almost 85% of selective KRAS/BRAF mutations were concurrently
detected by qBiomarker, AmpliSeq and ddPCR in 51 PDX models
and 91.7% of mutations were detected by all four platforms in a
panel of 31 tumour samples, demonstrating that the qBiomarker’s
performance is on par with that of other routinely used but more
complex and expensive methods of BRAF/KRAS mutation
detection. Nevertheless, further evaluation is warranted to validate
its suitability for noninvasive mutation profiling.

The workflow complexities and turnaround times of the
different mutation detecting methods compared in this study
differ considerably. Unlike the qBiomarker, the workflow for NGS-
based AmpliSeq and WES are lengthier and more labour intensive,
owing the different steps needed to construct sequencing libraries
and template preparation. An AmpliSeq protocol requires two
multiplex PCR amplifications: enrichment with sequence-specific
primers followed by barcoding needed for simultaneous sequen-
cing of multiple patient samples. Although the AmpliSeq library
construction hands-on time can be considerably shortened (from
DNA to results in 2 days) by using an automated library
preparation system, Ion Chef, its high list price impedes the
widespread access to this technology and it may not be ideal for
smaller labs. As qBiomarker PCR instrument-independent work-
flow involves only one setup step, the status of up to 360 mutations
can be screened in o3 h. Although qBiomarker requires a low
input of 5–10 ng of fresh-frozen DNA per well, more DNA input is
needed for samples extracted from FFPE specimens (depending on
the DNA degradation level) to achieve sufficient effective
amplification fractions, making this platform less suitable for
studies where FFPE-derived input material is limited. As AmpliSeq
requires just 10 ng of FFPE DNA, this platform may be preferred
over the qPCR for sequencing of hard to obtain FFPE samples.
Notwithstanding this limitation, our comprehensive comparative
analysis of various cancer mutation detection approaches indicates
that the qPCR-based qBiomarker is an accurate, simple, rapid and
cost-effective method that compares favourably to more expensive
and labour-intensive methodologies that are currently in use. This
observation provides a foundation for advancing the use of
qBiomarker assay for cancer-driving mutations profiling in clinical
diagnostics.
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In summary, our comprehensive large-scale direct comparison
and validation of currently available mutation detection methods is
of extreme importance for the current scenario of precision
medicine. Better understanding the sensitivity, turnaround time
and cost-effectiveness of mutation detection techniques will lead to
informed choice of screening methodologies, especially in lower
budget conditions or time frame limitations.
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