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Comparative performance analysis 
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algorithm and its different variants 
for disease prediction
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Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used 
machine learning algorithms to solve this challenge. The k‑nearest neighbour (KNN) algorithm is the 
most frequently used among the wide range of machine learning algorithms. This paper presents a 
study on different KNN variants (Classic one, Adaptive, Locally adaptive, k‑means clustering, Fuzzy, 
Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison 
for disease prediction. This study analysed these variants in‑depth through implementations and 
experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI 
Machine learning repository and OpenML. The datasets were related to different disease contexts. We 
considered the performance measures of accuracy, precision and recall for comparative analysis. The 
average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed 
the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative 
performance index is also proposed based on each performance measure to assess each variant and 
compare the results. This study identified Hassanat KNN as the best performing variant based on 
the accuracy‑based version of this index, followed by the ensemble approach KNN. This study also 
provided a relative comparison among KNN variants based on precision and recall measures. Finally, 
this paper summarises which KNN variant is the most promising candidate to follow under the 
consideration of three performance measures (accuracy, precision and recall) for disease prediction. 
Healthcare researchers and stakeholders could use the findings of this study to select the appropriate 
KNN variant for predictive disease risk analytics.

Abbreviations
KNN  K-nearest neighbour
A-KNN  Adaptive K-nearest neighbour
LA-KNN  Locally adaptive K-nearest neighbour
F-KNN  Fuzzy K-nearest neighbour
kM-KNN  K-means K-nearest neighbour
W-KNN  Weighted K-nearest neighbour
H-KNN  Hassanat K-nearest neighbours
GMD-KNN  Generalised mean distance K-nearest neighbour
M-KNN  Mutual K-nearest neighbour
EA-KNN  Ensemble approach K-nearest neighbour
TP  True positive
TN  True negative
FP  False positive
FN  False negative
RPI  Relative performance index
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The k-nearest neighbour (KNN) algorithm is a supervised machine learning algorithm predominantly used 
for classification purposes. It has been used widely for disease  prediction1. The KNN, a supervised algorithm, 
predicts the classification of unlabeled data by taking into account the features and labels of the training  data2. 
Generally, the KNN algorithm is able to classify datasets using a training model similar to the testing query by 
taking into account the k nearest training data points (neighbours), which are the closest to the query it is test-
ing. Finally, the algorithm performs a majority voting rule to check which classification to finalise. Among all 
machine learning algorithms, the KNN algorithm is one of the simplest forms and is widely used in classification 
tasks because it has a very adaptive and easy-to-understand  design3. The algorithm is renowned for its usage in 
solving regression and classification challenges for data of different sizes, label numbers, noise levels, ranges, 
and  contexts4. Thus, this paper is forming a study around this algorithm based on classifying medical datasets, 
as predicting diseases is a real-world challenge. It is compelling to identify how it can adapt to aid this problem.

The algorithm is simplistic in its workings and calculations. It gives itself options to be modified in various 
aspects to decrease its limitations and challenges and increase its accuracy and applicability to be used in a wider 
variety of datasets. The classic KNN algorithm suffers from various limitations that abate its classification prowess, 
such as being unbiased to all its classification-dependent neighbours, lack of distance calculation features between 
data points, and taking into account unnecessary dataset  features5. However, as KNN is adaptable to numerous 
modifications, it gives rise to different KNN forms or variants. The KNN variants differ in various algorithmic 
aspects, such as optimising the k parameter, improving distance calculations, adding weight to different data 
points, and truncating training datasets to resolve the challenges mentioned  earlier6.

From the wide variety of research papers proposing different variants, the lion’s share of the KNN variants 
focuses on creating optimal k values. Wettchereck et al.7 and Sun and  Huang8 proposed an algorithm called the 
adaptive KNN. They proposed training the training dataset itself to find the k value for each training dataset 
within a limited range. Then, through the k values of the training data, the testing data are classified to obtain 
the closest training data and attain its k value, through which it restarts its classification based upon the obtained 
parameter. While they proposed a widely adaptive k value finding a formula, Pan et al.9 proposed a super variation 
of the adaptive KNN called the locally adaptive KNN based on the discrimination class. This paper proposes a 
locally adaptive approach that considers multiple ranking methodologies. The paper states how their proposed 
algorithm decreases the limitation of only taking into account the majority classes by considering the minor-
ity classes and calculating an optimal k value through multiple probabilistic ranking formulae. There are also 
non-parametric KNN variants, such as the algorithm proposed by Cherif et al.10, that focus on finding optimal k 
values. They proposed a combination of two different algorithms to reduce the need to find an optimal k value. 
Their algorithm uses the k-means algorithm, which truncates the dataset into cluster points, and then runs the 
classic KNN algorithm to find the one nearest neighbour for the final classification. Another KNN variant that 
focuses on combining multiple algorithms to remove the need to find the optimal k value is the variant proposed 
by Hassanat et al.11, where the authors detail out a KNN algorithm with an ensemble approach. Their algorithm 
removes the need for a k parameter, as it performs iterative classifications using k values of a limited range.

Other than the variants focusing on finding the optimal k values, others focus on different internal aspects 
to improve accuracy. The KNN variant introduced by Han et al.12 and  Yigit13 is an algorithm that focuses on 
weight attribution. Their algorithms take into account the weight factors of each nearest neighbour according to 
their distance and class frequency. These accounts decrease the limiting factor of taking all k nearest neighbours 
equally and increase the chances of the algorithm in predicting final classifications. Another KNN variant that 
focuses on weight attribution is the weighted mutual KNN algorithm proposed by Dhar et al.14. The algorithm 
works by truncating the training dataset into only mutual sets and running the testing dataset through it to clas-
sify the output from the nearest mutual neighbours. Their algorithm helps remove the noise from the training 
dataset and add weight attributes for the final classification. Keller et al.15, on the other hand, introduce an extra 
mathematical addition to the classic KNN algorithm, known as fuzzy sets. Their proposed algorithm, fuzzy KNN, 
focuses on membership assignment. The membership assignments are a different form of weight attribution, 
which calculates the probabilistic chances of a neighbour class becoming the final classification. Alkasassbeh 
et al.16 detailed another type of KNN variant that centres the point of attention on regular distance metrics. The 
paper states the usages of a new distance metric called Hassanat distance, which proves to be more efficient in 
classifying datasets than the traditional metrics of Euclidean and Manhattan distances. Another distance focusing 
KNN variant is the variant proposed by Gou et al.17. Their variation is different from the previous paper, as they 
do not propose a new distance metric but an algorithm that enhances the outputs of any distance formulae being 
used. The paper proposes generalised mean distance calculations and vector creations for the nearest neighbours 
of each different class. The algorithm is said to remove the limitations of being unbiased to weight attributions 
and enhance the accuracies by using their local mean vector calculations.

As discussed above, while most KNN variants focus on finding the optimal k values, other variants empha-
sise the overall classification accuracy. Each variant has its unique design and rationale. Each revealed the best 
performance in the corresponding study that first introduced it to the literature. No previous research attempts 
to make a performance comparison among different KNN variants. Therefore, to fill this gap, it is required to 
make a comparative performance analysis of these variants using the same datasets and experimental setup. By 
considering the parameter values leading to the best performance for each variant, this study used eight different 
disease datasets to compare the performance of 10 KNN variants.

K‑nearest neighbour algorithm and its different variants
The Classic KNN Algorithm. The classic KNN algorithm is a supervised machine learning algorithm that 
is predominantly used for classification  purposes18. The algorithm consists of a variable parameter, known as k, 
which translates to the number of ‘nearest neighbours’. The KNN algorithm functions by finding the nearest data 
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point(s) or neighbour(s) from a training dataset for a query. The nearest data points are found according to the 
closest distances from the query point. After locating the k nearest data points, it performs a majority voting rule 
to find which class appeared the most. The class that appeared the most is ruled to be the final classification for 
the query.

Figure 1 illustrates an example. As k is 3 for Query B, it searches for the 3 nearest neighbours and finds that 
from the 3 nearest neighbours, two are of class 1, and 1 is of class 0. It then uses the majority voting rule to classify 
its class as 1. Similarly, as k is 5 for Query A, as there are a greater number of neighbours that are characterised 
as Class 0, it classifies its class as 0.

KNN variants considered in this study. Adaptive KNN (A‑KNN). The adaptive KNN algorithm is a 
variant that focuses on selecting the optimal k value for a testing data  point7,8. It works by implementing a sepa-
rate algorithm to determine the optimal k value for each data point of the training dataset. The main algorithm 
then finds the nearest neighbour from the training dataset and inherits its k value for a given testing data point. 
This KNN variant proceeds to function as the classic KNN algorithm to predict the output using this inherited 
k value.

Locally adaptive KNN with Discrimination class (LA‑KNN). This variant considers information from discrimi-
nation classes to determine the optimal k value. The discrimination class concept considers quantity and distri-
bution from the majority class neighbours and the second majority class neighbours in the k-neighbourhood of 
a given testing data  point9. The algorithm uses various steps to define discrimination classes. After selecting one 
of those classes, it proceeds to form a ranking table with different k values, distances from centroids and their 
ratio. From the table, it follows a ranking process to output the optimal k value.

Fuzzy KNN (F‑KNN). The fuzzy KNN algorithm revolves around the principle of membership  assignment15. 
Similar to the classic KNN algorithm, the variant proceeds to find the k nearest neighbours of a testing dataset 
from the training dataset. It then proceeds to assign “membership” values to each class found in the list of k near-
est neighbours. The membership values are calculated using a fuzzy math algorithm that focuses on the weight of 
each class. The class with the highest membership is then selected for the classification result.

K‑means clustering‑based KNN (KM‑KNN). The clustering-based KNN variant involves the combination of 
two popular algorithms: k‑means and  1NN10. This variant uses the k-means algorithm to cluster the training 
dataset according to a preset variable (number of clusters). It then calculates the centroids of each cluster, thus 
making a new training dataset that contains the centroids of all the clusters. The 1NN algorithm is performed on 
this new training dataset, where the single nearest neighbour is taken for classification.

Weight adjusted KNN (W‑KNN). This version of the KNN algorithm focuses on applying attribute weighting. 
This algorithm first assigns a weight to each of the training data points by using a function known as the kernel 
 function12. This weight assignment aims to give more weight to nearer points while giving less weight to faraway 
points. As the distance increases, any function that decreases the value can be used as a kernel function. The 
frequency of all nearest neighbours is then used to predict the output class of a given testing data point. This 
KNN variant considers the classification importance of different attributes in defining the kernel function for a 
multiattribute dataset.

Figure 1.  Visual illustration of the KNN algorithm.
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Hassanat distance KNN (H‑KNN). The Hassanat KNN algorithm is a variant that has its focal point on the 
distance measurement formula. This variant follows the simple design of the KNN algorithm, but it proposes an 
advanced way to find the distance between two data  points16. The new distance formula is called the Hassanat 
distance, and it revolves around the usage of maximum and minimum vector points, similar to weight attribu-
tions in other variants. The Hassanat distance metric of this variant calculates the nearest neighbours of a testing 
query and performs the majority voting rule, similar to the classic KNN algorithm.

Generalised mean distance KNN (GMD‑KNN). The generalised mean distance KNN or GMD-KNN is a variant 
that revolves around the principle uses of local vector creations and repeated generalised mean distance calcula-
tions 17. The algorithm works by first storing sorted lists of k nearest neighbours for each class. It then proceeds 
to convert each list to local mean vectors, from which multiple iterative mean distance calculations are computed 
to output a final value for the distance of each class to the testing query. The class with the smallest distance is 
then deemed to be the correct prediction for the testing query.

Mutual KNN (M‑KNN). The mutual KNN algorithm focuses on the principle of mutual  neighbours14. The 
algorithm first transforms the training dataset by removing sets that have no mutual k nearest neighbours with 
the other sets. This creates a truncated training dataset that consists of less noise and anomalies. The algorithm 
then uses the testing dataset to find the k nearest neighbours from the training dataset and finds the k nearest 
neighbours of the testing datasets nearest neighbours. This allows the algorithm to determine the mutual nearest 
neighbours, which can be assessed as a candidate for classification. The testing datasets are classified using the 
majority voting rule.

Ensemble approach KNN (EA‑KNN). The KNN variant EA-KNN is based on an ensemble approach to remove 
the problem of having a fixed “k” parameter for classification. This algorithm works by using a Kmax value of √
n , with n being the size of the training dataset, to find the k-nearest neighbours of a testing  query11. It then 

sorts the list of nearest neighbours according to the distance and performs weight summation operations on it. 
The weight summation operations are performed by iteratively adding an inverse logarithm function for “k” 
values starting from 1 to Kmax in increments of 2. The class with the largest weight summation is then deemed 
to be the predicted classification for the testing query.

Methods
Research datasets. The research that is being undertaken is based upon one primary domain, medical 
domains, and other secondary domains, which are purely random, to eliminate bias. Table 1 presents the datasets 
that are being used in this study and their respective attributes in terms of the number of features, data size and 
domain. They were taken from  Kaggle19, UCI Machine Learning  Repository20 and  OpenML21. The datasets have 
different characteristics in terms of features, attributes, and sizes, and most belong to the medical domain for the 
relevance of disease risk prediction.

Performance comparison measures. Confusion matrix. The performance measures used to analyse 
the results are academically renowned and revolve around the usage of the confusion  matrix28. Figure 2 presents 
the visual for the matrix. The matrix is the amalgamation of results from classifications and has four primary 
attributes that present the result data. If the classification is predicted to be 1 and the true value is 1, the result 
is classified as true positive (TP). The same principle revolves around the value 0 and is classified as true nega-
tive (TN). When the prediction is 1 and the true value is 0, the result is classified as false positive (FP), with the 
inverse being called false negative (FN).

In this research, the confusion matrix is used to create three performance measures: accuracy, precision and 
recall.

The accuracy measure is calculated by taking all the true predictions and dividing them among all the pre-
dicted values, including the true predictions.

Table 1.  A brief list of eight disease datasets considered in this study.

ID Datasets Features Data size References

D1 Heart Attack Possibilities 13 303 Bhat22

D2 Heart Failure Outcomes 12 299 Chicco et al.23

D3 Diabetes 8 768 Mahgoub24

D4 Heart Disease Prediction 13 270 Bhat22

D5 Chronic Kidney Disease Preprocessed 24 400 Soundarapandian25

D6 Chronic Kidney Disease Prediction 13 400 Soundarapandian25

D7 Pima Indians Diabetes 8 767 Smith et al.26

D8 Breast Cancer 5 569 Suwal27



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6256  | https://doi.org/10.1038/s41598-022-10358-x

www.nature.com/scientificreports/

where TP, TN, FP and FN are the true positive, true negative, false positive and false negative cases of the result 
data, respectively.

The precision measure is calculated by taking the true positive values and dividing them among both true 
and false positive values.

where TP and FP are the true positive and false positive cases of the result data, respectively.
The recall measure is calculated similarly to the precision measure by taking the true positive values and 

dividing them among the true positive and false negative values.

where TP and FN are the true positive and false negative cases of the result data, respectively.
These three performance measures will be used to assess the classification results of the variants implemented 

in this paper. The complete set of these three performance measures will be used to create a new measure that 
will be discussed in the next section.

Relative performance index (RPI). The relative performance index is a breakthrough assessor that collects data 
results of any other measure (accuracy, precision and recall, etc.) and produces a probabilistic result for the final 
assessment. The new performance measure that is being proposed here is inspired by another RPI measure 
proposed by  Nagle29. The author proposed a new probabilistic calculation that removes bias by considering the 
range of results produced by a particular field and extracting the number of times the results of that field were 
above other fields. The RPI for a field is calculated using the extracted values and the number of fields that exist.

The following equation describes the new performance measure of this study:

where a∗i  is the minimum accuracy/precision/recall value among all variants for dataset i , ai is the accuracy/
precision/recall value for the variant under consideration for dataset i , and d is the number of datasets consid-
ered in this study.

A higher RPI value indicates prediction superiority considering the underlying performance measures (e.g., 
accuracy and precision) and vice versa.

Results
The variants that require a k parameter were tested using k values of 1, 3, 5, 7 and 9. For this results section, the 
results of the k values with the highest performance in each variant were selected. The accuracy, precision and 
recall of the different KNN variants based on the research datasets are presented in Tables 2, 3 and 4, respectively. 
Table 5 shows the number of times a variant results in having the highest measure, and Fig. 3 introduces the RPI 
scores of each measure in average values.

For the accuracy measure, according to Table 2, Hassanat KNN showed the highest average accuracy (83.62%), 
followed by the ensemble approach KNN (82.34%). However, according to Table 5, the ensemble approach KNN 
outputted the highest number of accuracies throughout the datasets (three times), followed by the locally adaptive 

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Relative Performance Index(RPI) =
d

∑

i=1

(

ai − a∗i
)

d

Figure 2.  Confusion Matrix.
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KNN (two times). Regarding Fig. 3, Hassanat KNN had the highest accuracy score, followed by the ensemble 
approach KNN, with K-means clustering-based KNN showing the lowest score in terms of RPI accuracy.

Concerning the precision measure, according to Table 3, Ensemble Approach KNN showed the highest aver-
age precision (82.88%), followed by the Hassanat KNN (81.10%). The ensemble approach KNN outputted the 
highest precision in seven out of eight datasets, followed by Hassanat, weight adjusted and fuzzy KNNs (each 
with four times), according to Table 5. In Fig. 3, the ensemble approach KNN also obtained the highest RPI score 
regarding the precision measure, followed by the Hassanat KNN. The K-means clustering-based KNN variant 
also obtained the lowest RPI in this measure.

For the recall measure, as presented in Table 4, the generalised mean distance KNN showed the highest aver-
age recall (76.84%), followed by the locally adaptive KNN (76.27%). According to the results presented in Table 5, 
the highest number of times a KNN variant outputted the highest recall was the generalised mean distance KNN 
variant in three out of eight datasets, followed by locally adaptive and k-means clustering KNN (each with two 

Table 2.  Accuracy (%) comparison among KNN variants.

Dataset ID Classic KNN
Adaptive 
KNN

Locally 
adaptive KNN Fuzzy KNN

K-means 
clustering-
based KNN

Weight 
adjusted KNN

Hassanat 
KNN

Generalised 
mean distance 
KNN Mutual KNN

Ensemble 
approach 
KNN

D1 76.35 73.64 69.59 73.65 39.86 73.65 85.14 69.59 71.62 77.03

D2 58.87 63.83 58.87 63.83 47.52 63.83 67.38 62.41 65.96 68.79

D3 75.25 75.00 75.51 74.24 68.18 74.24 76.26 74.24 74.24 79.29

D4 79.51 78.69 76.23 81.97 68.85 81.97 80.33 77.05 80.33 81.15

D5 96.26 96.26 98.40 95.72 67.38 95.72 96.79 98.40 95.72 93.05

D6 96.92 97.44 97.95 97.44 64.10 97.44 96.41 97.44 94.87 92.31

D7 73.88 73.60 75.00 73.60 68.82 73.60 75.56 74.44 74.44 76.69

D8 90.38 92.10 90.03 91.07 89 91.07 91.07 91.41 90.72 90.38

Average 80.93 81.32 80.20 81.44 64.22 81.44 83.62 80.62 80.99 82.34

Table 3.  Precision (%) comparison among different KNN variants.

Dataset ID Classic KNN
Adaptive 
KNN

Locally 
adaptive KNN Fuzzy KNN

K-means 
clustering-
based KNN

Weight 
adjusted KNN

Hassanat 
KNN

Generalised 
mean distance 
KNN Mutual KNN

Ensemble 
approach 
KNN

D1 80.90 77.42 77.11 76.84 51.52 76.84 86.96 77.11 73.53 78.57

D2 39.13 46.51 42.65 46.15 34.15 46.15 52.78 46.27 50 54

D3 62.16 60.32 60.61 61.17 49.12 61.17 63.48 58.91 60.75 74.71

D4 82.98 81.25 77.55 85.42 75 85.42 84.78 78 78.57 85.11

D5 100 100 100 100 67.38 100 100 100 100 100

D6 100 99.18 98.40 100 64.10 100 99.17 98.39 100 100

D7 60 58.49 60 59.78 50.75 59.78 62.63 58.97 62.07 71.64

D8 98.98 98.06 97.52 98.99 97.49 98.99 98.99 97.12 98.99 98.98

Average 78.02 77.65 76.73 78.54 61.19 78.54 81.10 76.85 77.99 82.88

Table 4.  Recall (%) comparison among different KNN variants.

Dataset ID Classic KNN
Adaptive 
KNN

Locally 
adaptive KNN Fuzzy KNN

K-means 
clustering-
based KNN

Weight 
adjusted KNN

Hassanat 
KNN

Generalised 
mean distance 
KNN Mutual KNN

Ensemble 
approach 
KNN

D1 80 80 71.11 81.11 18.89 81.11 88.89 71.11 83.33 85.56

D2 37.50 41.67 60.42 37.50 58.33 37.50 39.58 64.58 25 56.25

D3 55.20 60.80 64 50.40 22.40 50.40 58.40 60.80 52 52

D4 69.64 69.64 67.86 73.21 48.21 73.21 69.64 69.64 78.57 71.43

D5 94.44 94.44 97.62 93.65 100 93.65 95.24 97.62 93.65 89.68

D6 95.20 96.80 98.40 96 100 96 95.20 97.60 92 88

D7 50.89 55.36 61.61 49.11 30.36 49.11 55.36 61.61 48.21 42.86

D8 88.24 91.40 89.14 89.14 87.78 89.14 89.14 91.40 88.69 88.24

Average 71.39 73.76 76.27 71.27 58.25 71.27 73.93 76.80 70.18 71.75
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times). As illustrated in Fig. 3, both the generalised mean distance and locally adaptive variants obtained the 
highest RPI score in the recall, followed by the locally adaptive variant. Finally, similar to previous RPI score 
measures, the K-means clustering-based KNN obtained the lowest score once more.

Table 6 presents the summary of each variant that resulted in the highest values in terms of its average, the 
number of times it showed the highest value and RPI scores for each of the three measures. This table provides 
essential insights into the potential candidate of the KNN variant to consider for disease prediction. For exam-
ple, if the target performance measure of a research design is the average accuracy and RPI (accuracy), then the 
Hassanat KNN will be the most suitable one to consider. Similarly, one should consider the ensemble approach 
KNN if the target performance measure is precision.

Although different variants perform differently across all datasets for the three performance measures consid-
ered in this study (from Tables 2, 3, 4), we did not find any statistically significant difference in their group-wise 
values when we applied the one-way ANOVA. Table 7 presents the results from the one-way ANOVA test. None 
of the significance values is ≤ 0.05.

Finally, the advantages and limitations are distinguished and explained in Table 8.

Discussion
The experiments and the results from the performance measures were comprehensive in themselves. The tables 
provided in the results section show that most of the variants outperformed the classic or general KNN in terms 
of accuracy, precision and recall. The measures of the variants were taken as the k values of 1, 3, 5, 7 and 9. These 
values were used across all the KNN variants that required a k parameter to run. The k value that performed the 
best for each measure was selected for the comparison for each variant. Although it is best known to use k =

√
n , 

with n being the size of the dataset, for measuring  performances30, the equal application of the same range of k 
values for each KNN variant returns the same non-biased results for a proper comparison. This study aims to 

Table 5.  Comparison of KNN variants showing the number of times they presented the highest measurement 
values.

KNN Variants Accuracy measure (#) Precision measure (#) Recall measure (#)

Classic KNN 0 2 0

Adaptive KNN 1 1 1

Locally Adaptive KNN 2 1 2

Fuzzy KNN 1 4 0

K-means Clustering-based KNN 0 0 2

Weight Adjusted KNN 1 4 0

Hassanat KNN 1 4 1

Generalised Mean Distance KNN 1 1 3

Mutual KNN 0 3 1

Ensemble Approach KNN 3 7 0

0

5

10

15

20

25

30

RPI Scores (in percentage)

RPI Score (Accuracy) RPI Score (Precision) RPI Score (Recall)

Figure 3.  Average relative performance index (RPI) scores for the three performance measures.
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compare the performance of each variant and not to output the optimal performance for each, as it would create 
biased results on the understanding that each algorithm runs optimally. Hence, the usage of equal parameter 
settings (i.e., considering the k value that generates optimal results) for each variant validates the juxtaposition 
of the performance measures.

The K-means clustering-based KNN variant performs the least in all aspects, even less than the classic KNN 
algorithm. This may be because the algorithm is formed around the principle of creating cluster centroids and 
using 1NN for the final classification. The research datasets are noisy and have outliers; thus, the low measures 
can be theorised to be due to the inaccurate creation of the clusters and their corresponding centroids. Addi-
tionally, the usage of 1NN only takes the nearest neighbour for classification, which is not enough to produce 
high accuracy. The algorithm could have been improved if a greater k value was used to increase the number of 
nearest neighbours to be used for the final majority voting rule. This would have decreased the bias from taking 
one nearest neighbour and enhanced the results in all three measures.

For choosing a variant to implement solely for accurate values, the Hassanat KNN variant is the most suit-
able option, as the improved distance metric of this variant proved its uniqueness and ability to handle data of 
different scales and noise levels very well. The ability to handle different scales of data proved well in this study, 
as the datasets that it was tested on were of all different types and scales of features. This variant might be ahead 
with respect to accuracy; however, it is lacking in terms of precision and recall results. The change in distance 
metrics is still not the optimal weight attribution replacement, and the variant is dependent on the k parameter. 
The variant can be theorised to be improved further if it consists of calculations to remove further noise from the 
training dataset or if it contains another step for better weight attribution during its majority voting rule process.

With regard to choosing a variant for improved precision values, the ensemble approach KNN variant is more 
fitting, as the variant is built on the principle of looking at class weights and consists of multiple iterations of 
different primary k values. The multiple iterations of primary k values abated one of the limitations of searching 
or needing an optimal k parameter. This variant’s unique design makes its classification highly precise. The vari-
ant is also not thus far off from producing high accuracy measures from the other variants, as seen from other 
result tables. The ensemble approach KNN algorithm could have been improved further if an optimal range of 
k values could have been found instead of constant primary values, as it would have increased its accuracy and 
precision measure results further.

Moreover, in terms of choosing a variant for greater recall, the generalised mean distance KNN variant 
would be the most appropriate selection. With its local vector and generalised mean distance calculations, this 
variant proves itself to work in generalising the need for weight attribution. Its unique characteristics make its 

Table 6.  Summary of the different characterisations of measures of all KNN variants this study considered in 
terms of revealing the highest values.

KNN Variants

Accuracy Precision Recall

Average # of times RPI Average # of times RPI Average # of times RPI

Classic KNN

Adaptive KNN

Locally Adaptive KNN

Fuzzy KNN

Kmeans Clustering KNN

Weight Adjusted KNN

Hassanat KNN X X

Generalised Mean Distance KNN X X X

Mutual KNN

Ensemble Approach KNN X X X X

Table 7.  Results from the one-way ANOVA test for checking the significance of the difference of three 
performance measures across the ten KNN variants considered in this study.

Sum of Squares df Mean Square F Sig

Accuracy

Between Groups 2200.496 9 244.500 1.594 0.134

Within Groups 10,735.168 70 153.360

Total 12,935.664 79

Precision

Between Groups 2468.842 9 274.316 0.670 0.733

Within Groups 28,675.727 70 409.653

Total 31,144.569 79

Recall

Between Groups 1915.288 9 212.810 0.424 0.918

Within Groups 35,172.935 70 502.470

Total 37,088.223 79
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classification results showcase the truest values on average throughout all the datasets. However, this variant is 
not high in other measures due to its variable k parameter. Not being able to find the optimal k parameter is a 
considerable limitation, which this variant does not consider. Knowing the optimal k parameter for each dataset 
can be theorised to increase the results of the other measures and improve the overall performance of this variant.

This study expectedly did not find any significant difference in performance measures for all variants (Table 7). 
All variants were intended to improve the baseline KNN when developed. An improvement of even 1% for any 
performance measures is considered a significant achievement for any classifications. However, such a slight 
difference would not make it statistically significant since the scale for each performance measure is 0–100%.

Conclusion
Overall, Hassanat, ensemble approach and generalised mean distance can be selected as the most suitable KNN 
variants for disease prediction according to their high accuracy, precision and recall measures, respectively. These 
variants approached different limitations of the classic KNN and outperformed the rest in overall performance. 
Considering the top three performing variants, the individual measures of the three showcase that the ensemble 
approach KNN variant obtained average performance measurement values higher than the rest. This variant 
achieved the highest measurement precision and subsequently performed well in both accuracy and recall meas-
urements. The ensemble approach KNN is the prime variant to be chosen among the rest. Its unique design for 
tackling multiple limitations proves to handle medical datasets most prominently in disease risk prediction. In 
general, most of the variants prove how effectively they can be used in the medical domain by presenting their 
abilities to obtain high-performance measures in a wide set of research datasets. The medical field consists of 
different scales and ranges of data. Overall, these variants demonstrated their capabilities to subside the general 
constraints and classify datasets in this domain. The variants are also adaptable, capable of further enhancement, 
and can be revamped to abate more general limitations.

Throughout the research analyses conducted in this study, the potential of one of the simplest machine learn-
ing algorithms can be viewed clearly. The KNN algorithm is an algorithm with many limitations. However, the 
research has shown how it also has one of the most adaptable designs. The variants considered in this study have 
presented results that prove how their algorithmic mutations can aid in solving problems by searching for optimal 
k values, adding better weight attributions, calculating local mean vectors of neighbours, truncating datasets to 
remove noise, taking into account mutual neighbours, and more. The study has shown how these variants can 
diminish the limitations and be used in various real-world classification purposes, especially in disease predic-
tion. Disease risk prediction is a rising challenge, close to a grand challenge. The classification accuracies of this 
algorithm’s variants provide proof of their potential to be improved further to limit constraints.

Table 8.  Comparison of KNN variants through advantages and limitations.

KNN Variant Advantage(s) Limitation(s)

Classic KNN
Low time complexity
Can classify at high speeds compared to other machine learning 
algorithms

It does not consider minority class and weight of data points, 
which may cause the accuracy to fall for noisy datasets

Adaptive KNN (A-KNN) Perform consistently better with small scale datasets It does not provide the optimal k value, creating a disparity in 
choosing the optimal k values

Locally Adaptive KNN (LA-KNN)
It generally improves the classification performance by consid-
ering classes that are discriminated by the classic KNN properly 
rank the accuracies resulting from multiple k values

The variant is prone to a higher computational complexity than 
other variants
The high time complexity makes the algorithm undesirable to 
be used for large scale datasets

Fuzzy KNN (F-KNN) It considers class frequency and weight making it more prob-
able in making a correct prediction

This variant does not provide an optimal k value, thus requiring 
additional changes in parameter settings

K-means Clustering-based KNN (KM-KNN)
The KM-KNN variant reduces the time complexity of the 
classic KNN algorithm by truncating the training dataset by 
forming clusters

The algorithm is unsuitable to noisy datasets as it clusters the 
training data
Noisy datasets would produce uneven clusters and thus affect 
the classification process

Weight Adjusted KNN (WA-KNN) It considers different k values for neighbourhood searching for 
a given query, making it more probable for greater accuracy

The algorithm discriminates the points which have a greater 
distance from the query, thus causing a bias

Hassanat KNN (H-KNN)
The H-KNN variant uses the Hassanat Distance metric, which 
allows the algorithm to measure the distance in terms of maxi-
mum and minimum vector points, making it prone to biased 
outcomes

It does not consider minority classes, which may affect its 
performance
Inconsistent outcomes for noisy datasets

Generalised Mean Distance KNN (GMD-KNN)

It breaks the limitations of biasing the majority classes by 
considering all classes using a generalised distance algorithm 
formula
It can eliminate biases resulting from variance in class weight 
and majority

It has many dependable variables, making it a high time com-
plexity KNN variant

Mutual KNN (M-KNN)
The M-KNN variant removes noisy data from the dataset, thus 
improving the neighbourhood findings of the underlying query 
points and increasing the chances of correct classification

The algorithm incurs a high computational complexity cost due 
to its reiteration of nearest neighbour searches for training and 
the testing datasets
This variant may be unsuitable for large scale datasets due to its 
high computational complexity

Ensemble Approach KNN (EA-KNN)
The Ensemble Approach variant involves using multiple k 
values within a suggestive range for the highest accuracy, thus 
removing the problem of inputting the optimal k parameter

If k takes a high number of values, the computational complex-
ity will be an issue. Such complexity would make it undesirable 
to be used for large scale datasets
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In terms of future work, the variants concluded earlier can be studied further to be modified individually 
or merged. These variants can be integrated with one another, e.g., the generalised mean distance KNN can 
inherit the distance metric of the Hassanat KNN variant. This would allow the underlying variant to diminish 
more limitations than originally designed. These merged KNN variants can be studied based on disease risk 
classifications. Further variants, in addition to the variants considered in this study, can be studied as well in the 
context of disease risk prediction, with a greater number of medical datasets. The designs of KNN are versatile 
and are open to change. Medical domain-specific datasets are expanding; however, mutations of KNN have the 
capabilities to handle a wide variety of dataset characteristics. Last but not least, another possible future scope is 
to compare the best performing KNN variants with other related algorithms, such as reptile search  algorithm31 
and Aquila  optimiser32, available in the literature for disease prediction.

Data availability
This study obtained research data from publicly available online repositories. We mentioned their sources using 
proper citations. The datasets analysed during the current study are available in the following repositories: Kag-
gle (https:// www. kaggle. com/), UCI Machine learning repository (https:// archi ve. ics. uci. edu/ ml/ index. php), 
OpenML (https:// www. openml. org/).
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