
Comparative Performance Evaluation of

Cache-Coherent NUMA and COMA Architectures

Per Stenstromt, Truman Joe, and Anoop Gupta

Computer Systems Laboratory

Stanford University, CA 94305

Abstract

Two interesting variations of large-scale shared-memory ma-

chines that have recently emerged are cache-coherent mm-

umform-memory-access machines (CC-NUMA) and cache-

only memory architectures (COMA). They both have dis-

tributed main memory and use directory-based cache coher-

ence. Unlike CC-NUMA, however, COMA machines auto-

matically migrate and replicate data at the main-memoty level

in cache-line sized chunks. This paper compares the perfor-

mance of these two classes of machines. We first present a

qualitative model that shows that the relative performance is

primarily determined by two factors: the relative magnitude

of capacity misses versus coherence misses, and the gramr-

hirity of data partitions in the application. We then present

quantitative results using simulation studies for eight prtraUeI

applications (including all six applications from the SPLASH

benchmark suite). We show that COMA’s potential for perfor-

mance improvement is limited to applications where data ac-

cesses by different processors are finely interleaved in memory

space and, in addition, where capacity misses dominate over

coherence misses. In other situations, for example where co-

herence misses dominate, COMA can actually perform worse

than CC-NUMA due to increased miss latencies caused by its

hierarchical directories. Finally, we propose a new architec-

tural alternative, called COMA-F, that combines the advantages

of both CC-NUMA and COMA.

1 Introduction

Large-scale multiprocessors with a single address-space and

coherent caches offer a flexible and powerful computing en-

vironment. The single address space and coherent caches

together ease the problem of data partitioning and dynamic

load balancing. They also provide better support for paral-

lelizing compilers, standard operating systems, and multipro-

gramming, thus enabling more flexible and effective use of the

t Per StenstrOm’s address is Deparlrnent of Computer Engineering,

Lund University, P.O. Box 118, S-221 00 LUND, Sweden.

Permission to copy without fee all or part of this material IS granted

provided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and

Its date appear, and notice IS given that copying is by permission of the

Association for Computmg Machinery. To copy otherwise, or to repubhsh,

requires a fee and/or specific perrmsslon.

machine. Currently, many research groups are pursuing the

design and construction of such multiprocessors [12, 1, 10].

As research has progressed in this area, two interesting vari-

ants have emerged, namely CC-NUMA (cache-coherent non-

uniform memory access machines) and COMA (cache-only

memory architectures). Examples of the CC-NUMA ma-

chines are the Stanford DASH multiprocessor [12] and the MIT

Alewife machine [1], while examples of COMA machines are

the Swedish Institute of Computer Science’s Data Diffusion

Machine (DDM) [10] and Kendall Square Research’s KSR1

machine [4].

Common to both CC-NUMA and COMA machines are the

features of distributed main memory, scalable interconnection

network, and directory-based cache coherence. Distributed

main memory and scalable interconnection networks are es-

sential in providing the required scalable memory bandwidth,

while directory-based schemes provide cache coherence with-

out requiring broadcast and consuming only a small fraction

of the system bandwidth. In contrast to CC-NUMA machines,

however, in COMA the per-node main memory is converted

into an enormous secondary/tertiary cache (called attraction

memory (AM) by the DDM group) by adding tags to cache-

line sized chunks in main memory. A consequence is that the

location of a data item in the machine is totally decoupled

from its physical address, and the data item is automatically

migrated or replicated in main memory depending on the mem-

ory reference pattern.

The main advantage of the COMA machines is that they

cart reduce the average cache miss latency, since data are dy-

namically migrated and replicated at the main-memory level.

However, there are also several disadvantages. Fkst, allowing

migration of data at the memory level requires a mechanism

to locate the data on a miss. To avoid broadcasting such re-

quests, current machines use a hierarchical directory structure,

which increases the miss latency for global requests. Second,

the coherence protocol is more complex because it needs to

ensure that the last copy of a data item is not replaced in

the attraction memory (main memory). Also, as compared to

CC-NUMA, there is additional complexity in the design of

the main-memory subsystem and in the interface to the disk

subsystem.

Even though CC-NUMA and COMA machines are being

built, so far no studies have been published that evsthtate the

performance benefits of one machine model over the other.

Such a study is the focus of this paper. We note that the paper

focuses on the relative performance of the two machines, and

@ 1992 ACM 0-89791 .509.7/92/0005/0080 $1.50 80

not on the hardware complexity. We do so because without a

good understanding of the performance benefits, it is difficult

to argue about what hardware complexity is justified.

The organization of the rest of the paper is as follows. In

the next section, we begin with detailed descriptions of CC-

NUMA and COMA machines. Then in Section 3, we present

a qualitative model that helps predict the relative performance

of applications on CC-NUMA and COMA machines. Section

4 presents the architecturrd assumptions and our simulation en-

vironment. It also presents the eight benchmark applications

used in our study, which include all six applications from the

SPLASH benchmark suite [14]. The performance results are

presented in Section 5. We show that COMA’s potential for

performance improvement is limited to applications where data

accesses by diffetent processors are interleaved at a tine spa-

tial granularity and, in addition, where capacity misses dom-

inate over coherence misses. We also show that for applica-

tions which access data at a coarse granularity, CC-NUMA can

perform nearly as well as a COMA by exploiting page-level

placement or migration. Furthermore, when coherence misses

dominate, CC-NUMA often performs better than COMA. This

is due to the extra latency introduced by the hierarchical di-

rectory structure in COMA. In Section 6, we present a new

architectural alternative, called COMA-F (for COMA-FLAT),

that is shown to perform better than both regular CC-NUMA

and COMA. We finally conclude in Section 7.

2 CC-NUMA and COMA Machines

In this section we briefly present the organization of CC-

NUMA and COMA machines based on the Stanford DASH

muhiprocessor [12] and the Swedish Institute of Computer Sci-

ence’s Data Diffusion Machine (DDM) [10]. We discuss the

basic architecture and the coherence protocols, directory struc-

ture and interconnection network requirements, and finally the

software model presented by the architectures.

2.1 CC-NUMA Architecture

A CC-NUMA machine consists of a number of processing

nodes comected through a bigh-brmdwidth low-latency inter-

connection network. Each processing node consists of a high-

performance processor, the associated cache, and a portion of

the global shared memory. Cache coherence is maintained by a

directory-based, write-invalidate cache coherence protocol. To

keep all caches consistent, each processing node has a direc-

tory memory corresponding to its portion of the shared phys-

ical memory. For each memory line (rdigned memory block

that has the same size as a cache line), the directory memory

stores identities of remote nodes caching, that line. Thrrs, US-

ing the directory, it is possible for a node writing a location

to send point-to-point messages to invalidate remote copies

of the corresponding cache line. Another important attribute

of the directory-based protocol is that it does not depend on

any specific interconnection network topology. Therefore, any

scalable network, such as a mesh, a hypercube, or a multi-stage

network, cart be used to connect the processing nodes.

Hzmdling a cache miss in a CC-NUMA machine requkes

knowledge about the home node for the corresponding physical

address. The home node is the processing node from whose

main memory the data is allocated. (It is usually determined by

the high-order bits of the physical address.) If the local node

and the home node are the same, a cache miss can be serviced

by main memory in the local node. Otherwise, the miss is

forwarded to the remote home node. If the home node has a

clean copy, it returns the block to the requesting cache. (We

call this a 2-hop miss since it requires two network traversals
— one from the requesting node to the home node, and the

other back.) Otherwise, the read request is forwarded to the

node that has the dirty copy. This node returns the block to

the requesting node and also writes back the block to the home

node. (We call this a 3-hop miss, as it takes three network

traversrds before the data is returned to the requesting node.)

If the block is not exclusively owned by a processor that

issues a write request, a read-exclusive request is sent to the

home node. The home node returns ownership and multicasts

invalidation requests to any other nodes that have a copy of the

block. Acknowledgments are returned directly to the issuing

node so as to indicate when the write operation has completed.

A write request to a dirty block is fotwarded (the same way

as a read request) to the node containing the dirty copy, which

then returns the data.

The Startford DASH multiprocessor [12] is an example of a

CC-NLIMA machine. The prototype is to consist of 16 process-

ing nodes, each with 4 processors, for a total of 64 processors.

Each processor has a 64 Kbytes first-level and a 256 Kbytes

second-level cache. The interconnection network is a worm-

hole routed 2-D mesh network, The memory access latencies

for a cache hit, local memory access, 2-hop, and 3-hop read

misses are approximately 1, 30, 100, and 135 processor clocks

respectively.

The CC-NUMA software model allows processes to be at-

tached to specific processors and for data to be allocated from

my specific node’s main memory. However, the granularity at

which data can be moved between different node’s main mem-

ories (transparently to the application) is page sized chunks.

We note that the allocation and movement of data between

nodes may be done explicitly via code written by the applica-

tion programmer, or automatically by the operating system [3].

This is in contrast to the COMA machines where such migra-

tion and replication happens automaticrdly at the granularity of

cache blocks.

2.2 COMA Architecture

LAe CC-NUMA, a COMA machine consists of a number of

processing nodes connected by an interconnection network.

Each processing node has a high-performance processor, a

cache, and a portion of the global shared memory. The differ-

ence, however, is that the memory associated with each node

is augmented to act as a large cache, denoted attraction mem-

ory (AM) using DDM terminology [10]. Consistency among

cache blocks in the AMs is maintained using a write-invalidate

protocol. The AMs allow transparent migration and replication

of data items to nodes where they are referenced.

In a COMA machine, the AMs constitute the only memory

in the system (other than the disk subsystem). A consequence

is that the location of a memory block is totally decoupled from

its physicrd address. This creates several problems. First, when

a reference misses in the local AM, a mechanism is needed to

trace a copy of that block in some other node’s AM. Unlike

CC-NUMA, there is no notion of a home node for a block.

Second, some mechanism is needed to ensure that the last

81

copy of a block (possibly the only valid copy) is not purged.

To address the above problems and to maintain cache and

memory consistency, COMA machines use a hierarchical di-

rectory scheme and a corresponding hierarchical intercormec-

tion network (at least logically so 1). Each directory maintains

state information about all blocks stored in the subsystem be-

low. The state of a block is either exclusive in exactly one

node or shared in several nodes. Note that directories only

contain state information to reduce memory overhead, data are

not stored.

Upon a read miss, a read request locates the closest node

that has a copy of that block by propagating up the hierarchy

until a copy in state shared or exclusive is found. At that

point, it propagates down the hierarchy to a node that has the

copy. The node returns the block rdong the same path as the

request. (A directory read-m odify-tite needs to be done at

each intermediate directory rdong the path, both in the forward

and return directions.) Because of the hierarchical directory

structure, COMA machines can exploit combining [7]; if a

directory receives a read request to a block that is already

being fetched, it does not have to send the new request up the

hierarchy. When the reply comes back, both requesters are

supplied the data.

A write request to an unowned block propagates up the hier-

archy until a directory indicates that the copy is exclusive. This

directory, the root directory, multicasts invrdidation requests to

rdl subsystems having a copy of the block and returns an ac-

knowledgement to the issuing processor.

As stated earlier, decoupling the home location of a block

from its address raises the issue of replacement in the AMs.

A shared block (i.e., one with multiple copies) that is being

replaced is not so difficult to handle. The system simply has to

realize that there exist other copies by going up the hierarchy.

Handling an exclusive block (the only copy of a block, whether

in clean or dirty state) is, however, more complex since it must

be transferred to another attraction memory. This is done by

letting it propagate up in the hierarchy until a directory finds

an empty or a shared block in its subsystem that can host the

block.

Examples of COMA machines include the Swedkh Institute

of Computer Science’s DDM machine [10] and Kendall Square

Research’s KSR1 machine [4]. The processing nodes in DDM

are rdso clusters with multiple processors, as in DASH. How-

ever, the interconnect is a hierarchy of buses, in contrast to

the wormhole-routed grid in DASH. In KSR1, each process-

ing node consists of only a single processor. The intercomect

consists of a hierarchy of slotted ring networks.

In summary, by rdlowing individual memory blocks to be

migrated and replicated in attraction memories, COMA ma-

chines have the potential of reducing the number of cache

misses that need to be serviced remotely. However, because of

the hierarchy in COMA, latency for remote misses is usually

higher (except when combining is successful); this may offset

the advantages of the higher hit rates. We study these tradeoffs

qurditatively in the next section.

1Wallach srrd Daily me investigating a COMA implementation baaed

on a hierarchy embedded in a 3-dimensional mesh network [16].

3 Qualitative Comparison

In this section, we qualitatively evaluate the advantages and

disadvantages of the CC-NUMA and COMA models. In par-

ticular, we focus on application data access patterns that are

expected to cause one modeI to perform better than the other.

We show that the criticrd parameters are the relative magnitudes

of different miss types in the cache, and the spatial granularity

of access to shared data. We begin with a discussion of the

types of misses observed in shared-memory parallel programs,

and discuss the expected miss latencies for CC-NUMA rmd

COMA machines.

3.1 Miss Types and Expected Latencies

Since both CC-NUMA and COMA have private coherent

caches, presumably of the same size, the differences in per-

formance stem primarily because of differences in the miss

latencies. In shared-memory multiprocessors that use a write-

invalidate cache coherence protocol, cache misses may be clas-

sified into four types: cold misses, capacity misses, conflict

misses, and coherence misses.

A cold miss is the result of a block being accessed by the

processor for the first time. A capacity miss is a miss due to

the finite size of the processor cache and a conjlict miss is due

to the limited associativity of the cache. For our discussion

below, we do not distinguish between conflict and capacity

misses since CC-NUMA and COMA respond to them in the

same way. We collectively refer to them as capacity misses.

A coherence miss (or an invalidation miss) is a miss to a block

that has been referenced before, but has been written by another

processor since the last time it was referenced by this processor.

Coherence misses include both false sharing misses as well as

true sharing misses [15]. False sharing misses result from write

references to data that are not shared but happen to reside in

the same cache line. True sharing misses are coherence misses

that would still exist even if the block size were one access

unit. They represent true communication between the multiple

processes in the application.

We now investigate how the two models respond to cache

misses of different types. Beginning with cold misses, we ex-

pect the average miss penalty to be higher for COMA, assum-

ing that data is distributed among the main memory modules

in the same way. The reason is simply that cold misses that are

not serviced locally have to traverse the directory and network

hierarchy in COMA. The only reason for a shorter latency for

COMA would be if combining worked particularly well for art

application.

For coherence misses, we again expect COMA to have

higher miss latencies as compared to CC-NUMA. The reason

is that the data is guaranteed not to be in the local attraction

memory for COMA, and therefore it will need to traverse the

directory hierarchy.z In contrast to CC-NUMA, the latency for

COMA can, of course, be shortened if combining is successful,

or if the communication is localized in the hierarchy.

Finally, for capacity misses, we expect to see shorter miss

latencies for COMA. Most such misses are expected to hit

in the local attraction memory since it is extremely large and

2We assume one processor per node. If seversl processors share the

same AM (or locat memory), a coherence miss can sometimes be serviced

locslly.

82

organized as a cache. In contrast, in CC-NUMA, unless data

referenced by a processor are carefully allocated to locrd main

memory, there is a high likelihood that a capacity miss will

have to be serviced by a remote node.

In summary, since there are some kinds of misses that are

serviced with lower latency by COMA and others that are ser-

viced with lower latency by CC-NUMA, the relative perfor-

mance of an application on COMA or CC-NLIMA will depend

on what kinds of misses dominate.

3.2 Application Performance

In this subsection, we classify applications based on their data

access patterns, and the resulting cache miss behavior, to evd-

uate the relative advantages and disadvantages of COMA and

CC-NUMA. A summary of this classification is presented in

Figure 1. As illustrations, we use many applications that we

evaluate experimentally in Section 5.

On the left of the tree in Figure 1, we group all applications

that exhibh low cache miss-rates. Lktear algebra applications

that can be blocked, for example, fall into this category [11].

Other applications where computation grows at a much faster

rate than- the data set size, e.g., the 0(N2) algorithm used to

compute interaction between molecules irt the Water applica-

tion [14], often also fall into this category. In such cases, since

the data sets are quite small, capacity misses are few and the

miss penalty has ordy a small impact on performance. Overall,

for these applications that exhibit a low miss rate, CC-NUMA

and COMA should perform about the same.

Looking at the right portion of the tree, for applications that

exhibit moderate to high miss rates, we differentiate between

applications where coherence misses dominate and those where

capacity misses dominate. Focusing first on the former, we

note that this class of applications is not that unusual. High

coherence misses can arise because an application programmer

(or compiler) may not have done a very good job of scheduling

tasks or partitioning data, or because the cache line size is too

large causing false sharing, or because solving the problem

actually requires such communication to happen. Usurdly, all

three factors are involved to varying degrees. In all of these

cases, CC-NUMA is expected to do better than COMA because

the remote misses take a shorter time to service. As we will

show in Section 5, even when vety small processor caches

are used (thus increasing the magnitude of capacity misses), at

least half of the applications in our study fall into this category.

The situation where COMA has a potential performance ad-

vantage is when the majority of cache misses are capacity

misses. Almost all such misses get serviced by the local at-

traction memory in COMA, in contrast to CC-NUMA where

they may have to go to a remote node. CC-NUMA can deliver

good performance only if a majority of the capacity misses are

serviced by local main memory.

We believe that it is possible for CC-NUMA machines to

get high hit rates in local memory for many applications that

access data in a “coarse-grained” manner. By coarse grained,

we meam applications where large chunks of data (greater than

page size) ~e primarily accessed by one process in the program

for significant periods of time. For example, many scientific

applications where large data arrays are statically partitioned

among the processes fall into this class. A specific example

is the Cholesky sparse factorization algorithm that we evatuate

later in the paper. In the Cholesky application, contiguous

columns with similar non-zero structure (called supemodes)

are assigned to various processors. If the placement is done

right for such applications, the local memory hit rates can be

very high.

Even if the locus of accesses to these large data chunks

changes from one process to another over time, automatic repli-

cation and migration algorithms implemented in the operating

system (possibly with hardware support) can ensure high hit

rates in local memory for CC-NUMA. In fact, we believe that

an interesting way to think of a CC-NUMA machine is as

a COMA machine where tbe line size for the main-memory

cache is the page size, which is not unreasonable since main

memory is very large, and where this main-memory cache is

managed in software. The latter is also not an unreasonable

policy decision because the very-large line size helps hide the

overheads.

In applications where many small objects that are collocated

on a page are accessed in an interleaved manner by processes,

page-level placement/migration obviously can not ensure high

local hit-rates. An example is the Barnes-Hut application for

simulating the interaction of N-body problems (discussed in

Section 5). In this application multiple bodies that are accessed

by several processors reside on a single page and, as a result,

page placement does not help CC-NUMA.

In summary, we expect the relative performrmce of CC-

NUMA and COMA to be similar if the misses are few. When

the miss rate is high, we expect CC-NUMA to perform better

than COMA if coherence misses dominate; CC-NUMA to per-

form similar to COMA if the capacity misses dominate but the

data usage is coarse grained; and finally, COMA to perform

better than CC-NUMA if capacity misses dominate and data

usage is fme grained.

4 Experimental Methodology

‘his section presents the simulation environment, the architec-

tural models, and the benchmark applications we use to make

a quantitative comparison between CC-NUMA and COMA.

4.1 Simulation Environment

We use a simulated multiprocessor environment to study the

behavior of applications under CC-NUMA and COMA. The

simulation environment consists of two parts: (i) a functional

simulator that executes the parallel applications and (ii) the two

architectural simulators.

The functional simulator is based on Tango [5]. The Tango

system takes a parallel application program and interleaves the

execution of its processes on a uniprocessor to simulate a mul-

tiprocessor. This is achieved by associating a virtual timer

with each process of the application and by always running

the process with the lowest virtual time first. By letting the

architectural simulator update the virtual timers according to

the access time of each memory reference, a correct interleav-

ing of all memoty references is maintained. The architectural

simulator takes care of references to shared datq instruction

fetches and private data references are assumed to always hit

in the processor cache.

83

~=~”_”__....]“ss Rates

~ COMA and CC-NUMA

should perform about the same.

“ Applications that are blockable

(e.g. blocked matrix multiply)

. Appficafions witfr natnraf locaf-
ity or where computation grows
ats much faster rate thsn data
set sire. (e.g. O(N 2) afgorhhms

for N–body problems), e.g. the

Water application.

I CoarseGrained

Application Characteristics
—-- -— ● -—— .- .—

p=Y=j==j==g.
● COMA may have worse

performance due to hierarchy.

“ Misses csrr occur due to false
sharing or due to trne
communication between the
processes (e.g. MP3D).

. Misses need to go to remote

node to get serwced, and

COMA suffers due to hierarchy.

Combining may help in limited

1 sitwdions.
/

L Data Acess ~ -——–—-–--~’

● CC-NUMA can perform almost as
well as COMA with page–level migration
arrd/Or replication.

/’

“ By coarse grained, we mean appii-

crrtions that use large data structures

that are coarsely shared between

processes. (Coarse refers to greater

than page size.)

. Many scientific applications fall into

this category. They have large data

structures that can be suitably

partitioned.

- The hit rate to locnf memory csn be
increased by page placement policies.
Page placement crrrr be supported by
the user, compiler, or OS (e.g., possibly
with some hardware support).

- Cholesky factorization using

supernodes.

- Ocean simulation where domain

decomposition is exploited.

- Particle simulation algorithms

with spatial chunkirvr.

———-——____ .

?

THigh Miss Rates
/H”–

@O:tlYCapaciVMisssesJ

● COMA has a potentisf
~rfomrance advantage.

. COMA expected to perfomr better.

. The data accesses m freely inter–

Ieaved, i.e., data objects that are being

accessed by mnkiple processing

elements sre coffocated on the same
page.

Page placement policies do not help.

Applications that do not esrefully

fiut) or where dataobjectsaresrnall

artition data (e.g. bodies in Barnes-

and dynamically linked fall into this

category.

F&pre 1: Prediction of relative performance between CC-NUMA and COMA based on relative frequency of cache miss types and

application data access pattern.

4.2 Architecture Simulators

Both architectures consist of a number of processing nodes

connected via low-latency networks. In our simulations we

assume a 16 processor configuration, with one processor per

processing node. (Figure 2(a) shows the organization of the

processing node.) We assume a cache line size of 16 bytes. In

the default configurations, we use a processor cache size of 4

Kbytes, and in the case of COMA, infinite attraction memories.

For COMA we assume a branching factor of 4, implying a

two-level hierarchy.

The reasons for choosing this rather small default processor

cache size are several. First, since the simulations are quite

slow, the data sets used by our applications are smaller than

what we may use on a real machine. As a result, if we were

to use full-size caches (say 256 Kbytes), then for some of the

applications rdl of the data would fit into the caches and we

would not get any capacity misses. This would take away all

of the advantages of the COMA model, and the results would

obviously not be interesting. Second, by using very small

cache sizes, we favor the COMA model, and our gord is to

see whether there are situations where CC-NUMA can still do

better. Third, 4 Kbytes is only the default, and we atso present

results for larger cache sizes. As for use of infinite attraction

memories, our choice was motivated by the observation that the

capacity miss-rates are expected to be extremely small for the

attraction memories. As a result, the complexity of modeling

finite sized attraction memories did not seem justified.

We now focus on the latency of cache misses in CC-NUMA

and COMA. To do this in a consistent manner, we have de-

fined a common set of primitive operations that are used to

u
Prxassor

—L ‘C’

[1
Cache

Thus C

H

bus,cmd

Memory

TreatCd
(a) b) (.)

Figore 2: Node organization (a) and latency calculations for

local and remote misses for CC-NUMA (b) and (c).

construct protocol transactions for both architectures. We can

then choose latency vahtes for these operations and use them

to ewdtrate the latency of memory operations. In the follow-

ing subsections, we describe reference latencies for the two

architectures in terms of these primitive operations. Table 1,

located at the end of this section, summarizes these primitive

operations and lists the default latency numbers, assuming a

processor clock rate of 100 MHz.

4.2.1 CC-NUMA Latencies

For CC-NUMA, a load request that hits in the cache incurs a

latency of a cache access, TC.chC. For misses, the processor is

stalled for the full service latency of the load request.

In Figure 2(b) we depict the memory latency for a load

84

Table 1: Default latencies for primitive operations in processor

clock cycles (1 pclock x 10 ns).

T
net.cl

Figure 3: Latency model for global read requests in COMA.

request that hits in the local memory. The load tirst checks the

cache (T.a.JJ, it then arbitrates for the local bus and places

the request onto the bus (!f’&,,c~~), it then accesses memov

(T~J, the data is placed on the local bus (Tbw ,iJ, and

finally the cache loads data from the bus and restarts the pro-

cessor (TP,~J? Similarly, in Figure 2(c) we show the latency

for a load request to a shared block whose home is not the local

node. T,,.t .md is the network latency to send the load request

to the home node, artd Tn,t,data is the network latency for the

return data packet. If the block is dirty in a node other than

the home node, an addhional latency that consists of another

network traversal and node memory access is needed.

Stores are handled according to the weakly ordered con-

sistency model [6] by a write buffer which sits between the

processor and the cache. Hence, the processor is not stalled

on a store request. However, on a synchronization request, the

processor is stalled until all pending invalidation acknowledge-

ments have been received.

The default network latency numbers assume a 4 x 4

wormhole-routed synchronous mesh clocked at 100 MHz with

16-bit wide links.

4.2.2 COMA Latencies

For COMA, the processor cache hit latency is the same as

CC-NUMA. The latency for a hit in the attraction memory

is the same as a request serviced by local memory in CC-

NUMA. For requests that need to go to a remote processing

node, we illustrate the latency using a simple example. Figure

3 shows a request made by processor O and serviced by pro-

cessor 15. The latency consists of a check in processor cache

(TCAJ; request issue on local bus (Tf,,,,,.~d); check in 10C~

attraction memory (T~.J; traversal UP though the hiera.fchy

(T..,,.md + Td,, at each level); traversal down the fier~chy

(Tnet,c~d + Tdtr at each level); lookup in the memory of pro-

)“ traversal back up theCessor 15 (Tt,a,..~d + T~~~ + Tb~..dd~ ,

hierarchy (Tnet data+ T&, at each level); traversrd down to the

requesting node (T..t,dafa + Td,, at each level); ad fin~ly back

to the processor (T&ti,.d.t~ + TP,~.). Latency for other requests

can be similarly derived. The protocol follows that used by

DDM [10], assuming infinite write buffers artd a weakly or-

dered consistency model. The effects of request combining in

the hierarchy are also modeled in our simulator. However, we

do not model contention at any of the buses or directories.

A hierarchical network with point-to-point links with a width

of 32-bits and synchronous data transfers is assumed. Since

a hierarchical layout makes it difficult to achieve high clock

3Note: The latency for T,U. d.,. is only one bus cycle (2 pcIocks)

in Figure 2(b) because the return of data overlaps witfr the latency for

processor restart TP, . . .

Primitive Operation Parameter Latency

(pClocks)

Cache Access Time Tcachc 1

Cache FM and Restart T
P?oc 6

Local Bus Request Time Tbwund 4

Local Bus Reply Time ‘Tbu8,d&z 2

Corn. Net. Latency (CC-NUMAJ Tnet ,.rnd 12

Data Net. Latency (CC-NUMA) Tnet.da 20

Corn. Net. Latency (COMA) Tnet ,crnd 4

Data Net. Latency (COM.W Tnetdat. 12

Memory and AM T?nem 20

Directory Update (rd-rnod-wr) Td,, 20

Table 2: Default Iatencies for various read operations.

I Read Operation Latency

(pclocks)

I Cache Hit 1

Fill from Local Node 33

2-hop Remote Fill (CC-NUMAJ 71

3-hop Remote Fill (CC-NUMA) 109

1-level Remote Fill (COMA) 131

2-level Remote Fill FXIMA) 243

rates (unlike a mesh), we assume that the links are clocked

at 50 MHz yielding the latency numbers Tnet,C~d = 4 and

Tkt d.trz = 12 pclocks, respectively.

In Table 2, we show the default latencies for read requests

satisfied at various leveIs in the memory hierarchy, based on

the default latencies for the primitive operations from Table 1.

Note that these are just default latencies. We will present re-

sults for other architectural assumptions as well in Section 5.6.

4.3 Benchmark Programs

To understand the relative performance benefits of CC-NUMA

and COMA we use a variety of scientific and engineering ap-

plications, including all six SPLASH benchmarks [14]. A sum-

mary of the eight applications that we use is given in Table 3.

The data sets used for our eight applications are as follows.

MP3D was run with I OK particles for 10 time steps. PTHOR

was run with the RISC circuit for 5000 time steps with in-

cremental deadlock detection turned on. LocusRoute used the

circuit Pritnaryl grin which has 1266 wires and a 48 lx 18 cost

array. Water was run with 288 molecules for 4 time steps.

Cholesky was run using the matrix bcsstk14 from the Boeing-

Harwell benchmark matrices, and it has 1806 equations and

61648 non-zeroes. LU was run on a 200 x 200 random matrix.

Barnes-Hut [13] was run using 2048 bodies in a plummer dis-

tribution simulated for 10 time steps with a tolerance of 1.0.

Finally, Ocean was run with a 98 x 98 grid with a convergence

tolerance of 10-7 and w set to 1.15. Statistics acquisition is

85

Benchmark

MP3D

PTHOR

LocusRoute

Water

Cholesky

LU

Barnes-Hut

Ocean

Table3: Benchrmwkprograrm

Description

Particle-based wind tmmelsimulation

Distributed-time logic simulation

VLSI standard cell router

Molecular dynamics code: Water

Cholesky factorization of sparse matrix

LU decomposition of dense matrix

N-body problem solver O(NlogN)

Ocean basin simulation

started when the uarallel section of the application is entered

(see SPLASH re~ort [14]), because the ‘&itialization part is

expected to be negligible for full-scale runs.

5 Quantitative Evaluation

In this section, we provide experimental results that show the

advantages and disadvantages of CC-NUMA and COMA. We

begin by investigating how the relative frequency of capacity

and coherence misses impacts the relative performance of CC-

NUMA and COMA. Then in Sections 5.2, 5.3, and 5.4, we

explore how page migration and initial page placement can

help CC-NUMA reduce the penalty of capacity misses, thus

improving its performance. Fmrdly, in Sections 5.5 and 5.6, we

study how our results are affected by variations in archhecturd

parameters.

5.1 Performance of CC-NUMA and COMA

Since performance of CC-NUMA and COMA machines is

closely tied to the cache hh-rate achieved and the types of

cache misses incurred, in Figure 4 we present relevant statis-

tics. For each application, the bottom dark-gray section gives

the cache hit-rate, the middle light-gray section gives the ca-

pacity miss-rate, and the top black section gives the coherence

miss-rate. We do not show cold miss-rates separately because

they are very small (().990 for Cholesky, 0.26’% for Locus-

Route, and less than 0.1 % for the remaining applications), and

in Figure 4 they are lumped with capacity misses.

As can be seen from Figure 4, there is a large variation in

the relative magnitude of capacity and coherence misses across

the applications; for example, while coherence misses domi-

nate in MP3D, capacity misses dominate in Ocean. To see

how this impacts the relative performance of CC-NUMA and

COMA, we also measured the node hit-rare for the applica-

tions, that is, the fraction of references that get serviced by the

cache or the locaI memory. Although we do not present these

data here directly, for COMA machines, the node hit-rate is

essentially the cache hit-rate plus the capacity miss-rate, since

all capacity misses are serviced by the local attraction mem-

ory. In contrast, for CC-NUMA, the node hit-rate is highly

dependent on the way in which the data are distributed among

the processing nodes. If we assume that the data pages are

distributed randomly or in a round-robin manner (as default in

this paper, we use the round-robin strategy), then node hit-rate

EIR 167 148 122 107 0.92 0.84 0.79 0.66-e AL

MP3D Locus Chol B-H
PTHOR Water LU Ocesn

Figure 4: Cache hit-rate, capacity miss-rate, and coherence

miss-rate assuming 4 Kbyte caches. ETR is the execution time

for COMA divided by the execution time for CC-NUMA.

for CC-NUMA is expected to be the cache hit-rate plus the ca-

pacity miss-rate divided by the number of processors. Given

that the number of processors is quite large, 16 in our case,

the node hit-rate for CC-NUMA is approximately the same as

the cache hit-rate. Thus the difference in the node hit-rate be-

tween COMA and CC-NUMA is roughly the middle light-gray

section in Figure 4.

The question now becomes how the differences in node hit-

rate and node miss penalty for CC-NUMA and COMA im-

pact their relative performance. We use execution time ratio

(ETR) of COMA to CC-NUMA as a measure of the relative

performance. Thus ETR > 1 implies that CC-NUMA is per-

forming better than COMA. In Figure 4, we show the ETR

beneath the hit/miss rate bar for each application. As expected,

for applications where the coherence miss-rate is a significant

part of the overall miss-rate (MP3D, FTHOR, LocusRoute, and

Water), COMA exhibits worse performance than CC-NUMA

due to the higher node miss penalty incurred by COMA. For

the other four applications (Cholesky, LU, Barnes-Hut, and

Ocean), the capacity miss-rate dominates the overall miss-rate,

and as expected, COMA shows better performance. We also

observe that the overall swing in the relative performance is

quite large; while CC-NUMA does 67% better than COMA for

MP3D, COMA does 52’%. better than CC-NUMA for Ocean.

To study whether combining is playing an important role in

the higher performance of COMA, we measured the percentage

of node misses that get combined in the hierarchical directory

structure. Combining turned out to be significant in one case

only — in LU, 47% of all remote requests get combined. This

is because the pivot column is read by all processors as soon

as all modifications to it have been completed. Except for

the LU application, combining was of little help in reducing

the node miss penalty as incurred by the hierarchical directory

structure in COMA — in Barnes-Hut, 6!Z0 of remote requests

get combined, and for rdl remaining applications, less than 1%

of remote requests get combined.

To summarize, we have shown that the relative frequency

of capacity and coherence misses has a first order effect on the

relative performance of CC-NUMA and COMA. We observed

that four of the eight applications perform worse on COMA

because of the coherence miss penalty associated with the hi-

erarchical network. We also observed that request combining

86

ETR 156 141 104 1.06 1.21 0.79 0.77 0.83--J----- -— —

MP3D Locus Chol B-1+
PTHOR Water LU Ocean

Figure 5: Node hit-rate for CC-NUMA with no migration

(NUMA-NM), CC-NUMA with migration (NUMA-M), and

COMA assuming 4 Kbytes pages. ETR is the execution time

for COMA divided by the execution for NUMA-M.

has only a small impact in hiding the higher network latency

incurred by the hierarchy in COMA.

5.2 CC-NUMA: Page Migration

As stated in Section 3, if large chunks of data (greater than

page size) are primarily accessed by one process in the pro-

gram for significant periods of time, intelligent page migra-

tion and replication algorithms can help CC-NUMA reduce the

penalty for capacity misses. In this subsection, we focus on

the performrmce gains for CC-NUMA if the operating systems

performed page migration. We consider a fairly aggressive

competitive page migration algorithm proposed by Black et

al. [2], Note, our purpose here is to explore the performance

potential of page migration rather than advocating the use of

this particular page migration algorithm.

Our migration algorithm associates N counters with each

page, given N processing nodes. A remote access to a page

increments the corresponding counter and decrements some

other randomly chosen counter. When a counter exceeds twice

the migration cost (measured in units of remote access cost),

the page is migrated to the corresponding node. We have

estimated the software overhead of migration by examining

the operating system code associated with page transfers. It

includes invocation of the page management software (800

pclocks); invalidation of all TLB entries for the page (300+40n

pclocks, assuming n processors have TLB entries); and finally,

migration of the page (Tm.mP/ B, where P is the page size

and B = 16 is the block size). We also assume that the page

is blocked from being accessed while it is being moved.

To see how well page migration manages to improve the

node hit-rate for CC-NUMA, in Figure 5 we show the node hit-

rate for CC-NUMA with no page migration (NUMA-NM), CC-

NUMA with page migration (NUMA-M), and COMA assum-

ing 4 Kbyte pages. The number on top of each bar represents

the coherence miss-rate. We see that the node hit-rate improves

significantly for Cholesky and Ocean for NUMA-M, since data

usage in both applications is coarse grained. The Cholesky

application works with groups of contiguous columns, called

supernodes, that are often larger than a page. The Ocean ap-

Table 4: Node hit-rate and execution time for IWJMA-M

(with different page sizes) relative to NUMA-NM (with 4Kbyte

pages).

plication works with arrays of data objects that are coarsely

partitioned and assigned to each processor in chunks which

are typically larger than 4 Kbytes.

Finally, to show the overall benefits of page migration, we

present the execution time ratio (ETR) of COMA to NUMA-M

beneath each bar in Figure 5. The four applications where pre-

viously NUMA-NM did better than COMA (MP3D, PTHOR,

LocusRoute, and Water), NUMA-M continues to do better

than COMA. The performance advantage is, however, slightly

smaller now — in these applications the software overhead

of migration is slightly larger than the benefits. However,

for Cholesky, where previously NUMA-NM did worse than

COMA (see Figure 4), NLIMA-M does significantly better than

COMA (ETR = 1.21). For Ocean, NUMA-M substantially de-

creases the performance advantage of COMA than before. For

LU and Barnes-Hut the performance is essentirdly unchanged

between NUMA-NM arrd NUMA-M. We speculate that one

reason why the gains are small is that we have been using

small data sets for our applications. To study the effects of

larger data sets, we consider page size variations next.

5.3 Page Migration: Impact of Page Size

As stated in Section 4, the data set size we use for the ap-

plications is smaller than what we may use on real machines.

Consequently, for applications that use coarse data partition-

ing, we expect data chunks to be larger for full-sized problems.

For example, as matrix size is increased for LU, the columns

will get larger. In this section, we indirectly study the per-

formance gains from migration for larger data sets by instead

considering smaller page sizes (512b, lK, and 2K pages). Due

to space limitations, we only present results for LU and Ocean.

These two are among the three applications that are currently

doing worse under COMA; the results for Barnes-Hut, the third

application> Me not expected to ch~ge with page size.

Table 4 shows the node hit-rate and the execution time rel-

ative to NUMA-NM (4 Kbyte pages) for various page sizes

for LU and Ocean. We see that the node hit-rate increases as

the page size is decreased. The explanation is that as the page

size is decreased, the data partitions in these applications start

becoming larger than the pages. As a result, pages are primar-

ily referenced by onIy a single processor, and quickly migrate

to that processor. In contrast, with larger pages there is false

sharing with multiple processors referencing a page, and the

migration algorithm can not satisfy all referencing processors.

Responding to increasing node hit-rates, execution times go

down as the page size is reduced. For 512 byte pages, the

87

difference between the performance of NUMA-M and COMA

is less than 10% for LU and none for Ocean.

For Ocean, it is interesting to note that the minimum execu-

tion time occurs for 1 Kbyte pages and not for512 byte pages.

The reason is simply the overhead due to page migrations. To

understrmd this, we rdso show the number of migrations that

occur for a given page size in Table 4. For Ocean, the number

of migrations follows a U-shaped curve. For page sizes much

larger than data objects, we have marry migrations because of

false sharing. For page sizes much smaller than data objects,

we have many migrations because bringing each object closer

takes multiple page migrations. For LU, it is interesting to note

that the node hit-rates for NUMA-M never reach close to that

achieved by COMA. The reason is that columns in the matrix

do not occupy an integer number of pages. Since successive

columns are assigned to different processors, the migration al-

gorithm never succeeds in totally satisfying rdl processors. In

contrast, COMA with its 32-byte memory blocks does very

well in bringing data close to the processors.

To summarize, we see that for the scaled down problems

used in this paper, migration with smaller page sizes is quite

effective. In turn, the results also indicate that for full-sized

problems, we are likely to be able to get good performance

while using migration with regular sized pages. Of course,

page migration is not expected to work for all applications.

For applications such as Barnes-Hut, where data chunks are

much smaller than the page size, the migration overheads are

likely to exceed the benefits.

5.4 CC-NUMA: Benefits from Initial Placement

A disadvantage of using page migration algorithms is that they

can require substantial hardware and software support. An

alternative is to let the compiler/programmer spend some effort

in partitioning the data set and in placing the pages so as to

improve the local memory hit-rate. To study the benefits of

initial placement, without doing the placement ourselves, we

adopted the following scheme. We evaluated the performance

of the applications using the same page migration algorithm as

in the last subsection, but with only a single migration allowed

for each page. In Table 5, we show the node hit-rate, the

execution time ratio, and the number of migrations for LU and

Ocean under this scheme (NUMA-1) with various page sizes.

(The reasons for considering only LU and Ocean are the same

as in the previous subsection.)

First, we note that the node hit-rate increases as the page size

is reduced. This is what we expect since false sharing of pages

is reduced. Second, execution time also drops as the page size

goes down. Third, looking at the number of migrations, the

general trend is that the migration count goes up as page size

is decreased. The reason is that twice as many pages must be

migrated when the page size is reduced by a factor of two.

Comparing the relative perfonnrmce of NUMA-I and

NUMA-M, we see that LU does significantly better with sin-

gle migrations than with multiple migrations (see Table 4),

in fact, even better than COMA with 512 byte pages. The

reason is that we have significantly reduced the number of

page migrations (e.g., down from 2.7K to 135 migrations for

4 Kbyte pages), thus reducing the soflware overhead of mi-

gration. When multiple migrations are allowed, a page in LU

may thrash back-and-forth between the various processors that

have columns allocated on that page, without really improving

the overall hit-rate in local memory.

For Ocean, the performance for single versus multiple page

migrations is essentially the same. Although the node hit-rate

is lower when only a single migration per page is allowed, this

is compensated by the fact that there are fewer page migrations

and hence lower software overhead.

Table 5: Node hit-rate and execution time for CC-NUMA with

single page migration (IWJMA-1) relative to NUMA-NM for

various page sizes.

LU Ocean

Model Node Rel. Mig. Node Rel. Mig.

HR Exec count HR Exec count

NUMA-NM 78 1.00 - 50 1.00 –

NUMA-I 4K 83 0.96 135 87 0.74 581

NUMA-I 2K 87 0.88 270 89 0.66 1091

NUMA-I IK 90 0.87 511 95 0.62 2218

NUMA-I .5K 91 0.79 948 94 0.64 4250

COMA 98 0.84 - 98 0.66 –

In summary, we show that initial placement manages to

eliminate most perfomnance differences between CC-NUMA

and COMA for LU and Ocean. (All other applications, with

the exception of Barnes-Hut, already do quite well with CC-

NUMA.) Of course, proper intial placement requires extra ef-

fort from the compiler/programmer, and this must be traded

off against the higher implementation complexity of COMA.

COMA, however, is expected to be more responsive to dyrrarn-

ically changing workloads (e.g., multiprogrammed workloads).

5.5 Impact of Cache Size Variations

All experiments so far have been based on 4 Kbyte caches. In

this subsection we study how the relative frequency of capacity

and coherence misses changes as the cache size is increased,

while keeping the problem size fixed.

An important effect of increasing the cache size is that while

the capacity misses go down, the coherence misses remain the

same. As a result, with larger caches, we expect coherence

misses to start dominating, thus making the relative perfor-

mance of CC-NUMA better than COMA. In Table 6 we show

this data for the four applications (Cholesky, LU, Barnes-Hut,

and Ocean) that did worse on CC-NUMA than COMA in Sec-

tion 5.1.

As the cache size is increased, we clearly see that the ca-

Table 6: Capacity miss-rate (on left) and execution time ratio of

COMA versus NUMA-NM (on right) for various cache sizes.

The bottom line of the Table shows the coherence miss-rate

for the applications.

Cache Size Cholesky LU B-H Ocean

4K 23/0.92 21/0.84 41/0.79 52/0.66

16 K 6/1,52 8/1.08 20/0.89 28/0.79

64 K 3/1.58 3/1.35 5/1.01 15/0.91

Coher. MR 4 2 1 2
4

88

a. 2.50 I- e NUMA-NM

~ 2.25 – X NUMA-M (4K)

A COMA

g 2.00

“g 1.75

8 1.50 -,, ..,..

d
~ 1.25 –

g 1.00 -

z 0.75 . . . ,., ., ,,, ,,. . .

~ 0.50~
2/84112 20/28

Network Latency (Tnet.cmd~net.data)

Figure 6: Network latency variation for MP3D.

~ 2.50- 0 NUMA-NM

: 2.25 – x NUMA-M (4K)

A COMA

c 2.00g
=j 1.75

.
Jj
~ 1.25 .

g 1.00 –...

g 0.75 r- . .

0 o.50z~
E

z 20128

Network Latency (Tnet.cmd~net.data)

Figure 7: Network Iatency variation for PTHOR.

pacity miss-rate is reduced and the coherence miss-rate starts

to dominate. As expected, with larger caches the execution

time ratio increases indicating that CC-NUMA is starting to

perform better. As the data show, with 64 Kbyte caches, the

performance of CC-NUMA (with no migration) is better for

all applications except Ocean.

5.6 Impact of Network Latency Variations

We have seen that COMA’s performance is limited primar-

ily by the larger latency incurred by its hierarchical directory

structure. In this subsection we explore how variations in the

network latency and directory access times influence the rel-

ative performance. Due to space limitations, we only present

results for MP3D, PTHOR, LocusRoute, and Water. By pick-

ing this set of applications that perform better on CC-NUMA,

we wish to see if it is possible for COMA to perform better

if a more aggressive network implementation is assumed. We

will first study variations in network latency and then consider

more aggressive directory implementations.

As default vahres for network latency, we have so far as-

sumed a synchronous point-to-point hierarchy for COMA with

latency numbers T.ct,c~d = 4 and Tnccdot. = 12 plocks. For

CC-NUMA, we have assumed a synchronous mesh with de-

fauk latency numbers T.et,c~d = 12 and Tn.t,data = 20 pclocks.

In Figures &9 we show the relative performance of COMA,

NUMA-M (with 4 Kbyte pages), and NUMA-NM under dif-

ferent network latency assumptions. All execution times are

shown relative to NUMA-NM with default parameters. An

important observation is that even if we consider a very ag-

gressive point-to-point hierarchy for COMA (Tn.t,.~~ = 2 and

T.,, ..,. = 8), default NUMA-NM oumer’fo~s COMA for

MP3D, PTHOR, LocusRoute, and Water. We study variations

O NUMA-NM

fj 1.50 – x NUMA-M (4K) f

F A COMA

:100 &

~ 1.25

a

g 0.75 . ,.

E
$ 0.50 I I I I I [I I

4

z 218 4/1 2 12120 20128
Network Latency (Tnet.cmdffnet. data)

Figure 8: Network latency variation for LocusRoute.

t

o NUMA-NM

g 1.50 X NUMA-M (4K)
.-
r- A COMA

,5 1.25 ,., ,. ,, .,,..,

s
v

.,,
w
u
g 0.75 ,, .,...,,, .

i!!
~ 0.50 I I I I I I I I I
z 2/8 4/12 12120 20/28

Network Latency (Tnet.cmd~net.data)

Figure 9: Network latency variation for Water,

in directory access time for COMA next.

The directory access time is another important contributor to

the node miss penalty associated with COMA. A directory ac-

cess consists of a read-modify-write cycle in order to modify

the state information. More specifically, the following basic

actions and latencies are associated with a directory access,

assuming 80ns DRAM-based directories and a 100 MHz pro-

cessor clock rate: (i) arbitration among the multiple inputs

into a directory (2 pclocks); (ii) directory DRAM access plus

data buffering (10 pclocks); (iii) tag comparison and decision

about next action (4 pclocks); (iv) directoty DRAM update

(6 pclocks); and (v) precharge before next directory access (8

pclocks). The busy time thus adds up to 30 pclocks. If the net-

work load is low, the directory update and precharge operations

cart be overlapped by network transfers. We have partly taken

this into account in our default directory access time by assum-

ing Td,, = 20 pclocks. However, for applications with high

coherence miss-rates, less overlap is expected. In Table 7 we

show the execution time of COMA relative to CC-NUMA with

default parameters, assuming less directory overlap (T&. = 28

pclocks). We see that for applications with a significant coher-

ence miss-rate, such as MP3D and PTHOR, less overlap can

substantially degrade the performance of COMA.

One could reduce the node miss penalty for COMA by using

faster (and more expensive) SRAM-based directories. In order

to study the effect of faster directories, in Table 7 we show

the performance of COMA (relative to CC-NUMA with de-

fault parameters), assuming directories built from 30ns SRAMS

and where the update and precharge operations are completely

overlapped by the network transfer (Td,r = 12 pclocks). We

see that even for such an aggressive directory implementation,

COMA performs worse than CC-NUMA for all four applica-

tions.

In summary, we note that even for more aggressive im-

89

Table 7: Execution time ratio of COMA to NUMA-NM as

directory access time is varied.

Td,. \ MP3D I PTHOR I LOCUS1 Water]

1!28 1.92 I 1.68 I 1.42 I 1.12 II

20 1.67 1.48 1.22 1.07

12 1,41 1.26 1.19 1.03

plementations of the hierarchical directory structure, COMA

suffers from the higher network latency for applications with

a significant coherence miss-rate.

6 COMA-F: A Flat COMA

We have seen that COMA’s primary advantage is small

capacity-miss penalties due to the large attraction memories,

and its primary disadvantage is large coherence-miss penalties

due to the hierarchical directory structure. The hierarchy is

fimdarnentrd to COMA’s coherence protocol because it helps

locate copies of a memory block in the system. It also helps

to support combining of requests. In contrast, CC-NUMA has

an explicit home node for each memory block, and the direc-

tory at the home node keeps track of all copies of that memory

block. Consequently, a copy of a memoxy block can be located

without traversing any hierarchy, resulting in lower remote-

miss Iatencies. In this section, we propose a new architecture

called COMA-F (for COMA-FLAT) that provides the benefits

of both COMA and CC-NUMA (low capacity-miss penalties

and low coherence-miss penalties). To avoid confusion, we de-

note previously proposed COMA machines as COMA-H, for

hierarchicrd COMA.

COMA-F has no hierarchy. However, like COMA-H,

COMA-F supports migration and replication of cache blocks

at the main-memory level by organizing its main memory as

an attraction memory (i.e., there are tags associated with each

memory block). In addition, like CC-NUMA, each memory

block has a clear notion of a home node, and the directory

memory there keeps track of all copies of that block. How--

ever, unlike CC-NUMA, the home node does not reserve its

main memory for blocks for which it keeps directory entries

(thus, blocks whose home is some other processing node can

come and reside there). Below, we present an overview of

the memory coherence protocol for COMA-F — the detailed

protocol is described in [8].

We begin with the structure of the directory entries. Each

entry contains a pointer to one of the copies denoted MASTER,

and a list of other nodes having a copy of the block, called

the sharing list. The state of a directory entry can either be

SHARED or EXCLUSIVE. The State of ~ attraction-memOry

block can be one of INVALID, SHARED, MASTER-SHARED, or

EXCLUSIVE. If a block is in MASTER-SHARED or EXCLU-

SIVE state, it implies that the dkectory entry considers the

local node to be the MASTER. As for directory-memory over-

head for COMA-F, we note that it should be possible to use

limited-pointer directory schemes as proposed for CC-NUMA,

but sparse directories are not expected to work well [9].

If a read request misses in the attraction memory, it is sent

to the HOME node. The HOME forwards the read request to

the MASTER node which responds with a copy of the data

to the requesting node. The HOME rdso updates the sharing

list. If the MASTER copy was in state EXCLUSIVE, the state

of the directory entry is changed to s~ A RED and the block

state in the MASTER node is changed to MASTER-SHARED.

Note, in contrast to CC-NUMA, accessing a clean block in

COMA-F may take tkee instead of two network traversals.

Also in contrast to COMA-H, there is no hardware combining

in COMA-F.

A read-exclusive request is also tirst sent to the ROME node.

As before, the HOME node forwards the request to the MASTER

node which responds with a copy of the block to the requesting

node. In addition, the requesting node now becomes the new

MASTER node and all other copies are invalidated. Acknowl-

edgements are sent directly to the new MASTER node.

Since there is no physicrd memory backing up the attraction-

memory cache blocks, replacements need special care in order

to avoid replacing the last remaining copy. A node that initi-

ates replacement of a SHARED block can simply discard it and

then inform the HOME node to remove itself from the sharing

list. However, if the state of the block is either EXCLUSIVE

or MASTER-SHARED, then the initiating node is currently the

MASTER node and it must send the replaced block to the HOME

node. The HOME node must now nominate a new MASTER

node. If there are other nodes with copies, an arbitrary node

among them is nominated as the MASTER. If there are no other

copies, then we need to get fresh space for the replaced block.

While there are many different strategies possible, one reason-

able strategy is to make a place for the replaced block in the

HOME node itself. While this may cause another replacement,

the chain of replacements is expected to be short.

We have investigated the performance of COMA-F using the

protocol mentioned above, assuming inlinite attraction mem-

ories. In Table 8, we present execution times for COMA-

H and NUMA-NM relative to COMA-F, assuming 4 Kbyte

pages and default latency numbers. As expected, COMA-

F outperforms both COMA and NUMA-NM. Compared to

COMA-H, COMA-F manages to reduce the coherence-miss

penalty (as seen from performance of MP3D and PTHOR)

and as compared to CC-NUMA, COMA-F manages to reduce

the capacity-miss penalty (as seen from performance of LU,

Barnes-Hut, and Ocean).

7 Conclusion

We have studied the relative performance of two different ap-

proaches to designing large-scale shared-memory multiproces-

sors, CC-NUMA and COMA. We have found that for ap-

plications with low miss rates, the two styles of machines

achieve nearly identical performance. The performance differ-

ences arise as a result of the efficiency with which they handle

cache misses. The COMA style handles capacity misses more

efficiently than CC-NUMA. The replication and migration of

smatl blocks of data at the main-memory level altows COMA

to service a majority of such misses locally. The CC-NUMA

style hrrndIes coherence misses more efficiently than COMA.

The hierarchical directory structure that is needed by COMA

results in a much larger latency than the flat structure in CC-

NUMA. We have obsemed through simulation that the relative

performance of these two machine models is easily predicted

by the relative frequency of these two types of misses.

In contrast to COMA machines, CC-NUMA can replicate

90

Table 8: Execution time ratio of COMA-H and NUMA-NM relative to COMA-F.

MP3D PTHOR Locus Water Chol LU B-H Ocean

COMA-H 1.90 1.73 1.30 1.16 1.35 1.27 1.04 1.11

NUMA-NM 1.14 1.18 1.09 1.09 1.46 1,51 1.32 1.68

and migrate data at the main-memory level only in large page-

sized chunks. However, we show that proper initial placement

and smart migration of pages can still be quite effective for

scientific applications that use coarse-grained data partitions.

Overall, with page migration turned on, we show that CC-

NUMA performs better than COMA or is competitive with

COMA for seven of the eight benchmark applications that we

evaluate.

Finally, by combining the notion of a home location for

directory information with the feature of replication of cache-

block sized chunks at the main-memory level, we have outlined

a COMA-F architecture that does not rely on a hierarchical di-

rectory structure. Our preliminary results show that such art

architecture can offer significant performance improvements.

However, we believe it is still an open question whether the

additional complexity and hardware overhead of COMA ma-

chines is justified by the expected performance gains; this ques-

tion is especially critical for hierarchical COMA machines.

Acknowledgments

We would like to thank Ed Rothberg, Kourosh Gharachorloo,

Rohit Chandra, John Hennessy, and Ktmle Ohtkotun for dis-

cussions and helpfid comments on earlier drafts of this paper.

This work has been supported by DARPA contract NOO039-91-

C-0138. Per Stenstrom is supported by STU contract 9001797.

Arroop Gupta is also supported by an NSF Presidential Young

Investigator Award.

References

[1]

[2]

[3]

[4]

[5]

Anant Agarwal, Beng-Hong Llm, David Kranz, and John Kubi-

atowicz. APRfL A processor architecture for mrdtiprocessing.

hs Proceedings of the 17th Annual International Symposium on

Computer Architecture, pages 10+1 14, May 1990.

David L. Black, Anoop Gupta, and Wolf-Dietrich Weber. Com-

petitive management of distributed shared memory. In Proceed-

ings of Compcon 1989, March 1989.

WMiam J. Bolosky, Michael L, Scott, Robert P. Fhzgerald,

Robert J. Fowler, and Alan L. Cox. NUMA policies and their

relation to memory architecture. In Proceedings of the 4th

International Conerferrsce on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 212–22 1,

1991.

Henry Burkhardt III, Steven Frank, Bmce Knobe, and James

Rothuie. Overview of the KSRI Computer System. Technical

Report KSR-TI-9202001, Kendall Square Research, Boston,

February 1992.

Helen Davis, Stephen R. Goldschmidt, and John L. Hennessy.

Multiprocessor simulation and tracing using Tango. In Pro-

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ceedings of International Conference on Parallel Processing,

pages 99-107, 1991. Vol. IL

Michel Dubois, Christoph Scheurich, and Faye Briggs. Mem-

ory access buffering in multiprocessors. In Proceedings of the

13th Annual International Symposium on Computer Architec-

ture, pages 434442, 1986.

Alan Gottlieb, Ralph Grishman, C. Kmskal, Kevin McArrliffe,

Larry Rudolph, and Mark Snir. The NYU UItracnmputer -

Designing a MIMD, shared memory parallel machke. IEEE

Transactions on Computers, 32(2): 175–189, February 1983.

Anoop Gupta, Truman Joe, and Per Stenstrom. Comparative

performance evaluation of cache-coherent NUMA rmd COMA

architectures. Techrdca] report, Stanford University, March

1992.

Anoop Gupta, Wolf-Diet-rich Weber, and Todd Mowry. Re-

ducing memory and traffic requirements for scalable dircctory-

based cache coherence schemes. In Proceedings of Interna-

tional Conference on Parallel Processing, August 1990.

Erik Hagersten, Seif Haridi, rmd David H.D. Warren. The

cache-coherence protocol of the data diffusion machine. In

Michel Dubois and Strreekant Thakkar, editors, Cache and In-

terconnect Architectures in Multiprocessors. Kluwer ,4cademic

Publishers, 1990.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf.

The cache performance and optimization of blocked algo-

rithms. In Proceedings of the 4th International Cone~ernce on

Architectural Support for Programming Languages and Oper-

ating Systems, pages 63-74, 1991.

Daniel E. Lenoskl, James P. Laudon, KoWosh Gh~achorloo,

Anoop Gupta, and John L. Hennessy. The directory-based

cache coherence protocol for the DASH multiprocessor, In

Proceedings of the 17th Annual International Symposium on

Computer Architecture, pages 148–159, 1990.

Jaswinder P. Singh, Chrk Holt, Takashi Totsuka, Armop Gupta,

and John L. Hennessy. Load balancing and data lecality in

parallel hierarchal N-body simulation. Technical Report CSL-

TR-92-505, Stanford University, February 1992.

Jaswinder P. Singh, Wolf-Dietrich Weber, and Auoop Gupta.

SPLASH: Stanford parallel applications for shared-memory,

Technical Report CSL-TR-91 -469, Stanford University, April

1991.

Joseph Torrellas, Monica S. Lam, and John L. Hennessy.

Shared data placement optimization to reduce multiprocessor

cache miss rates. In Proceedings of the International Confer-

ence on Parallel Processing, pages 266270, 1990. Vol. IL

Deborah A. Wallach. A scalable hierarchal cache coherence

protmol. Bachelor of Science Thesis, Massachusetts Institute

of Technology, May 1990.

91

