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ABSTRACT

Communication between the nodes in a vehicle is performed using many protocols. The most common of

these is known as the Controller Area Network (CAN). The functionality of the CAN protocol is based on

sending messages from one node to all others throughout a bus. Messages are sent without either source or

destination addresses. Consequently, it is simple for an attacker to inject malicious messages. This may lead

to some nodes malfunctioning or to total system failure, which can affect the safety of the driver as well as

the vehicle. Detecting intrusions is a challenging problem when using a CAN bus protocol for in-vehicle

communication. Most existing work focuses on the physical aspects without taking into consideration the

data itself. Machine Learning (ML) tools, especially classification techniques, have been widely used to

address similar problems. In this paper, we use and compare several ML techniques to deal with the problem

of detecting intrusions in in-vehicle communication. An experimental study is performed using a real dataset

extracted from a KIA Soul car. Compared to previous work, which focuses on detecting intrusions based on

the physical aspect, in this paper, data analysis and statistical learning techniques are applied. Furthermore,

the paper provides a comparative study of the most common ML techniques. The results show that the

techniques proposed in this paper outperform other techniques that have been used previously.

INDEX TERMS

CAN Bus; Data Classification; Intrusion Detection System; In-Vehicle Communication; Machine Learning.

I. INTRODUCTION

Recently, a considerable amount of research has focused

on vehicle communication technology for smart vehicles,

Vehicular Ad hoc Networks (VANET) [1], [2], and Intelli-

gent Transportation Systems (ITS). Vehicles are necessary

in many daily activities, and they are becoming more elec-

tronically equipped and are on longer simple mechanical

machines. Electronic Control Units (ECUs) are used in ve-

hicles to monitor and control various components. ECUs

are connected through buses managed by several protocols

[3] [4]. A vehicle bus is an intravehicular communication

network that does not have a host computer. A bus is used

to link a set of ECUs to simplify the task of exchanging

messages as well as diagnostics. Intravehicular networks

have many advantages [5], including (1) reducing the cable

budget, which is the third most costly system after the engine

and the chassis; (2) minimizing the packaging space by using

fewer connections for more electrical and electronic features,

thereby reducing vehicle size; (3) meeting higher bandwidth

demands that can manage the large number of ECUs, with

some vehicles containing up to 70 ECUs with 2500 internal

signals [5]; and (4) making communication more reliable

because bus-based communication is more robust than the

traditional point-to-point communication in older vehicles.
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Currently, the most widely used protocols for in-vehicle

communication are [3]:

• Local Interconnection Networks (LIN),

• Controller Area Networks (CAN),

• FlexRay,

• Ethernet,

• Media-Oriented Systems Transport.

All these protocols are based on bus communication, with

each one having its own advantages and weakness. Among

these protocols, we have chosen the CAN bus protocol,

developed by Bosch in 1985 [6]. This protocol is used in the

majority of vehicles today. Approximately 500 million CAN

chips are used in vehicles [5]. In addition, a recent study

predicted that the CAN bus will maintain its popularity for

the next decade [5]. The CAN bus is the leading technology

because it is less costly than other protocols, the maximum

bit rate for high-speed CAN is 1Mbit/s by specification, and

its acceptable fault tolerance behavior is better than the other

intra-vehicle communication protocols mentioned earlier.

Despite its advantages, CAN bus suffers from many vul-

nerabilities. The main problem is that a CAN lacks any kind

of security mechanism because this was not considered in its

design [7]. Attacks on a CAN bus can come from outside,

particularly from the On-Board Diagnostics (OBD) [8], or

from other wireless interfaces, such as cellular links, Wi-Fi,

and Bluetooth [5], [9]. Figure. 1 illustrates a combination of

attack types, attack surfaces, and vulnerable assets.

The first type of attack includes frame falsifying, sniffing,

and relay attacks, which can be addressed by encryption

and improving authentication. The second type includes

impersonation, Denial of Service (DoS), and fuzzy attacks,

which must be handled by developing an Intrusion Detection

System (IDS) to distinguish between normal behavior and an

attack.

Most of the previous research dealing with security prob-

lems in the CAN protocol have concentrated on physical

aspects by, for example, limiting physical access or using

cryptography to protect CAN transmission [10]. However,

there is still a need to achieve better IDS. Indeed, limited

physical access will affect the effectiveness of transmission

in CAN bus. Cryptography is not always suitable with such

a lightweight system. This will be discussed in detail in the

section on related work.

Over the last decade, Artificial Intelligence (AI) tools

have produced interesting and effective results when solving

complex problems that resemble ours, such as automatic

system diagnostics and identification [11], fault detection

in wireless sensor networks [12], [13], [14], [15], [16],

and certain security problems in other fields. Thus, ML

techniques, as the most interesting approach in the field of

AI, can be very effective for the detection of intrusions.

Three ML models can be used for prediction purposes: (1)

the regression model, (2) the classification model, and (3)

the clustering model. For real-time or predictive intrusion

detection, the classification-based or clustering-based models

are applied, the former for a supervised problem and the latter

for a non-supervised problem.

In this paper, a comparative study is conducted of intru-

sion detection systems based on different ML models. For

that, Support Vector Machine (SVM), Decision Tree (DT),

Random Forest (RF), and MultiLayer Perceptron (MLP) have

been used to improve other models applied recently to the

same dataset. Unlike previous studies, we undertake the

detection of three types of attack on the KIA Soul dataset

as one of the comparison criteria; the attacks are: DoS,

impersonation, and fuzzy attacks.

A. MOTIVATION

Security was not considered when bus-based CANs were

designed in the 1980s [9]. However, most modern vehicles

use bus-based CANs, which is a non-secure network that can

be hacked by injecting faulty messages. Consequently, at-

tacks can cause accidents that could result in injury or death.

This makes the protection of a CAN bus-based network a

high priority in order to ensure the safety of drivers and

passengers. While previous research works have used ML

models to deal with this challenging problem, they appear

to be inadequate and can be improved by using other ML

models. This motivates us to explore the capabilities of other

advanced ML techniques, such as SVM, DT, RF, and MLP

to overcome the current security issue concerning in-vehicle

CAN buses.

B. PAPER GOALS

The main objectives of the paper are as follows:

• To develop an intrusion detection-based ML for an in-

vehicle controller area network bus by applying various

ML techniques in the context of in-vehicle CAN bus

networks as an IDS.

• To conduct a comparative performance evaluation of

applied ML for intrusion detection in an in-vehicle

CAN bus using a set of classifiers on a real dataset

that includes messages transmitted using a CAN bus

extracted from a KIA Soul car [6].

• To detect both the intrusion and the attack type: DoS,

impersonation or fuzzy attack.

To the best of our knowledge, this is the first time that

RF, DT, SVM, and MLP have been applied to the KIA Soul

dataset. The results of our experimental study show that RF

outperforms not only SVM and DT, but also the other clas-

sifiers , including Hierarchical Temporal Memory (HTM),

Recurrent Neural Networks (RNN), and Hidden Markov

Models (HMM), previously used in the same context.

The rest of this paper is organized as follows: Section II

examines the related work. In Section III, a review of the
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FIGURE 1: Modern cars are exposed to various types of attacks on the CAN bus from external devices connected to the car,

particularly from OBD.

classifiers used for intrusion detection is given. The experi-

mental study and a discussion of the results are presented in

Section IV. Section V concludes the paper.

II. RELATED WORK

Protecting communication inside vehicles is very important

since it affects the safety of vehicles as well as that of their

drivers and passengers. Achieving this task by means of

the CAN protocol is challenging due to the shortcomings

of CANs, which are vulnerable to many types of attack,

including DoS, impersonation, and fuzzy attacks. This makes

the development of an IDS for this type of network an

attractive problem for the research community. Indeed, much

research has been undertaken to deal with this problem.

In the following, we discuss the most relevant research

investigating IDS for intra-vehicle communication.

In [6], the authors proposed using an analysis of the

offset ratio and the time interval between the request and the

response; i.e., working on a remote frame and data frame

to create an IDS. Analysis of the response performance of

ECUs helps to determine whether a behavior is an attack (i.e.,

intrusion detection) or a normal behavior. The authors con-

sidered three types of attacks: DoS, fuzzy, and impersonation

attacks in CAN-based networks. Some results showed that

this approach is very encouraging. However, a metric-like

accuracy of attack detection is not given to determine whether

or not the proposed approach achieved the best detection

performance.

Groza and Murvay [8] proposed a bloom filtering-based

IDS. A bloom filter is a probabilistic structure for testing

whether an item belongs in a set. There are no false negatives

with this filter, providing a 100% recall rate. The authors used

this filtering method based on frame identifiers and part of

the data fields to test frame periodicity, as it facilitates the

detection of frame modification attacks or possible replays.

Although the authors tested this approach on a CAN bus, it

can also be used with other types of in-vehicle communica-

tion. The disadvantage of this approach is that the authors

did not compare it with other methods. Furthermore, they

included an important overload on ECU, which could affect

their time response.

Tariq et al. [17] used RNNs and heuristics to detect attacks,

employing the same dataset as [6] used in their study. The

detection dealt with three types of attacks: DoS, replay,

and fuzzy attacks. The authors used both neural networks

and network traffic signatures. The accuracy of intrusion

detection was high; however, these authors did not did not

propose a technique for dealing with unseen attacks.

Neural networks are also used for intrusion detection in

CANs in [18]. This study reported good results despite sev-

eral weaknesses. For example, the detection of replay attacks

was not adequate due to the high degree of similarity between

genuine frames and injected frames, which makes the time

stamp very useful in this case. Globally, the use of neural net-

works as IDS in CANs is promising and provides satisfactory

results while still providing CAN bus communication safety.

A Deep Neural Network (DNN) was used in a novel

technique for intrusion detection in CANs [19]. The authors

used deep learning techniques to distinguish between normal

behavior and attacks. The comparison between DNN-based

IDS and standard neural networks shows that a DNN is better

in terms of improving detection accuracy with a real-time

response.

Wu et al. [20] proposed a novel intrusion detection method

based on the information entropy method. This approach

uses sliding windows with a fixed number of messages.

The authors show that the optimization of the decision con-

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3095962, IEEE Access

ditions and the enhancement of the sliding windows help

to improve intrusion detection accuracy while decreasing

the false positive rate. Furthermore, the effectiveness of the

proposed method was demonstrated in an experimental study

providing real-time responses to intrusion with important

detection precision. Despite promising results, the authors

did not consider the impact that the vehicle’s operation state

had on information entropy.

Wang et al. [21] used the benefits of hierarchical temporal

memory (HTM) to define a distributed anomaly IDS in

a CAN-based, in-vehicle network. The proposed technique

predicts data flow depending on previous state learning in real

time. Through an experimental study, the authors showed that

HTM outperforms other detection models based on neural

networks and HMMs in terms of detection accuracy.

A practical security architecture for a CAN-FD (which is

designed to deal with the CAN bandwidth limitations)-based

network is defined in [22]. The effectiveness of the proposed

architecture was tested on three kinds of microcontrollers.

This technique could be considered for use in vehicles man-

ufactured in the future.

Despite the fact that a considerable amount of research has

focused on developing an IDS in CAN-based networks, there

is still a need to produce better systems. Most of the previous

work has examined the behavior of exchanged frames or

uses the data in the frames only superficially. In addition,

traditional classification techniques have not been used. The

aim of this paper is to mine the data within the exchanged

frames deeply and take advantage of the benefits of different

classifier methods to create a smart IDS for CANs that is

able to detect attacks in real time in order to protect vehicles,

drivers and passengers.

III. CLASSIFICATION MODELS FOR INTRUSION

DETECTION SYSTEMS

We have applied three ML techniques for intrusion detection.

Because intrusion detection is a supervised classification

problem, we can use a known dataset containing labeled data.

The four approaches tested to solve this problem are SVM,

DT, RF, and MLP.

In this section, the problem statement is outlined. Next, the

four classification techniques used and the evaluation criteria

are defined. Finally, the experimental results are given.

A. PROBLEM STATEMENT

Many research studies have dealt with the problem of intru-

sion detection using experimental approaches and published

datasets [6]. In this study, a set of classification techniques is

used for intrusion detection in the same dataset. The dataset

contains three types of attacks: DoS, fuzzy, and imperson-

ation attacks. This dataset was created by injecting messages

through the OBD-II port in real CAN traffic belonging to a

KIA Soul car.

The data is prepared as shown in Table 1, describing the

list of features.

The results of applying RF, SVM, and DT will be com-

pared with those of the latest research studies [21] investigat-

ing the same dataset. Three types of attacks are treated:

• DoS attack

This attack occurs when messages with high priority are

injected into the CAN bus. The aim of this attack is to

occupy the bus with packets carrying identifiers with

high priority.

This attack is done by the injection of packet 0x000

CAN ID in a short cycle inside the traffic.

• Impersonation attack

This attack occurs when an attacker creates an imper-

sonating node for answering remote frames. Thus, data

frames will be broadcast periodically by the imper-

sonating node to respond as a target node for remote

frames. This attack is performed by inserting packets

coming from impersonating node, with an arbitration

ID = "0x164".

• Fuzzy attack

This attack occurs when packets of randomly-spoofed

identifiers with arbitrary data are injected by an ad-

versary. Consequently, many functional packets will be

received by all nodes, which may result in unintended

vehicle responses. Hence, fuzzy attacks can completely

prevent any bus communication or the transmission of

certain frames by launching an attack on the CAN bus,

as happens in a DoS attack. To conduct a fuzzy attack,

packets are injected with spoofed random CAN ID and

DATA values. Most known DoS attacks on CANs do

not merely delay legitimate frame transmission, but

completely prevent any bus communication or the trans-

mission of certain frames.

B. SUPPORT VECTOR MACHINES (SVM) CLASSIFIER

SVM [23], [24], [25] is a statistical learning technique. It

consists of a determination of decision boundaries. It is a

supervised classification technique that uses a set of labeled

examples and is based on the calculation of a learning model

that can be generalized. As shown in Figure. 2, SVMs can

efficiently perform non-linear as well as linear classification.

For the non-linear model, this technique uses kernel func-

tions.

C. DECISION TREES (DT) CLASSIFIER

A DT is a decision support tool based on the representation of

the choices in the graphical form of a tree with the different

classification decisions placed in sheets [26]. This technique

uses a hierarchical representation of the data structure in the

form of decision sequences (tests) for the result-prediction

class. Each observation, which must be assigned to a class,

is described by a set of variables that are tested in the tree

nodes. Tests are performed in internal nodes, and decisions

are made in leaf nodes.
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FIGURE 2: The SVM classification model is a supervised

technique aiming to find a decision boundary based on a set

of labeled samples by calculating a learning model that can

be generalized.

To explain the principle of this tool, we consider the

classification problem. Each element x of the database is

represented by a multidimensional vector (x1, x2, ... xn)

corresponding to the set of descriptive variables of the point.

Each internal node of the tree corresponds to a test performed

on one of the variables xi. Once the tree has been built, the

classification of a new candidate is done by going down the

tree, from the root to one of the leaves (which encodes the

decision or class). At each level of the descent, we pass an

intermediate node where a variable xi is tested to decide

which path (or subtree) to choose to continue the descent.

To build the tree, all the learning base points are placed in

the root node. One of the variables describing the points is the

class of the point (the “ground truth”); this variable is called

the “target variable”. The target variable can be categorical

(classification problem) or a real value (regression problem).

Each node is cut (split operation), giving rise to several

descending nodes. An element of the learning base located

in a node will be found in only one of its descendants.

Decision

Node

(Root Node)
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Decision

Node

Leaf

Node

Leaf

Node

Decision

Node
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Node
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Node

Leaf
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FIGURE 3: DT is a decision tool based on the representation

of the choices in the graphical form of a tree with the different

classification decisions, where all the learning base points are

placed in the root node.

• The tree is built by the recursive partitioning (see Fig-

ure. 5) of each node according to the attribute value

tested in each iteration (top-down induction). The opti-

mized criterion is the homogeneity of the descendants

compared to the target variable. The variable that is

tested in a node will be the one that maximizes this

homogeneity.

• The process stops when the elements of a node have the

same value as the target variable (homogeneity).

D. RANDOM FOREST (RF) CLASSIFIER

Figure. 4 shows how RF is used for intrusion detection. RF

involves the creation of multiple decision trees and determin-

ing the class of each DT [27]. The final class is defined using

majority voting.

Tree 1 Tree n

Instance

Final class

Intrusion
Normal

Behavior
Majority
Voting

FIGURE 4: RF decision is a classification method based on

the construction of multiple DTs in the training phase, after

which the final decision is based on a majority voting system

among the trees.

RF uses bootstrap aggregation applied to a learning tree. It

operates on a training set, for example, X = x1, x2, ..., xn,

having Y = y1, y2, ..., yn as responses. RF is executed by

looping B times. In each iteration, it chooses a sample with

changes n training examples Xb, Yb from X , Y . Next, RF

trains a classification tree fb on Xb, Yb. Finally, after finishing

the loop, a majority vote is applied to determine the right

class.

If Cb is the class prediction of the bth RD tree, the final

class will be:

B
rf = majorityV oting{Ĉb}

B
1

(1)

E. MULTILAYER PERCEPTRON

The MultiLayer Perceptron (MLP) is a neural network learn-

ing approach. It is a feedforward learning algorithm with sev-

eral layers of nodes, including an input layer, an output layer,

and some hidden layers. This supervised learning technique

uses a nonlinear activation function in each neuron. By apply-

ing back propagation training, MLP is able to solve several

multidimensional classification problems. It can distinguish
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non-linearly separable data. Given its large number of layers,

it can be considered as a type of deep learning technique.

FIGURE 5: A simple illustration of MLP as a neural network

learning approach

IV. PROPOSED MODEL AND EXPERIMENTAL STUDY

This section describes the evaluation criteria, which are fol-

lowed by the results obtained by using ML as an IDS.

A. APPLIED MODEL

The overall architecture of the applied model is depicted in

Figure. 6, including the details of the model workflow. The

KIA Soul dataset CAN bus has been extracted from a shared

repository. Then, the process of labelling is performed by

executing prepossessing according to the dataset description

given in [6]. Then, a set of ML tools is applied using Python.

Finally, the results are presented according to attack types.

Furthermore, an overall comparison is made with other ML

models executed in other works with the same dataset.

B. EVALUATION CRITERIA

In this paragraph, we present the list of criteria that have been

used to evaluate the RF results:

Precision, which is defined by the following equation (2):

Precision =
TP

TP + FP
(2)

Recall, which is defined by the following equation (3):

Recall =
TP

TP + FN
(3)

The f1−score combines the precision and the recall given

by the equation (4):

f1−score =
2× Precision×Recall

Precision+Recall
(4)

Finally, accuracy is the most significant parameter repre-

senting the success of a classification method, as follows (5):

Accuracy =
TP + TN

TP + FN + TN + FP
(5)

Where:

• TP : True positive: True intrusion that is detected cor-

rectly,

• TN : True negative: True intrusion that is not detected,

• FP : False positive: Normal behavior that is considered

an attack,

• FN : False negative: Normal behavior that is not con-

sidered an attack.

C. DATASET

We have used a dataset which includes DoS, fuzzy and im-

personation attacks. This dataset was constructed by logging

CAN traffic via the OBD-II port from a real vehicle while

message injection attacks were launched. The in-vehicle data

was extracted from KIA SOUL.

• DoS Attack: Injecting messages of ’0x000’ CAN ID in

a short cycle.

• Fuzzy Attack: Injecting messages of spoofed random

CAN ID and DATA values.

• Impersonation Attack: Injecting messages of Imper-

sonating node, arbitration ID = ’0x164’.

This dataset with 47519 examples contains 2201 DoS

attacks, 313 fuzzy attacks, 824 impersonation attacks. all the

16 features are presented in the table1.

D. RESULTS AND DISCUSSION

Table I gives the feature list describing the prepared dataset

[6], which includes three types of attacks: DoS, imperson-

ation, and fuzzy attacks. A Python program was executed

on a machine with 8GB RAM and an i7 processor. In the

following, two comparisons are made. The first comparison is

based on attack type, and the second is an overall comparison

with well-known methods.

TABLE 1: Feature a list of the vectors in the KIA Soul

dataset, which contains essential information about the

frames transmitted in the CAN bus .

Feature Significance and description

time Time stamp
timeremote Last remote frame time stamp
id Frame id
id1 Previous frame id
id2 Id of previous of previous frame
id3 Id of previous of previous of previous frame
rtr If the frame is a remote frame or not (1 or 0)
dlc Size of data filed in the frame (0:8)
d0 First byte of data
d1 Second byte of data
d2 Third byte of data
d3 Fourth byte of data
d4 Fifth byte of data
d5 Sixth byte of data
d6 Seventh byte of data
d7 Eighth byte of data

6 VOLUME 4, 2016
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FIGURE 6: Overall architecture of the proposed model. The KIA Soul dataset is extracted from a shared repository, and then

a prepossessing labelling is performed. Then, advanced ML algorithms, SVM, DT, and RF, are applied for intrusion detection,

and the various ML models are compared.

1) Comparison based on attack type

As mentioned previously, we consider three type of attacks:

DoS, impersonation, and fuzzy attacks. In Table II, a com-

parison based on attack type is given.

Figures. 7, 9 and 8 show classifier results in terms of

precision, recall, and f1-score for impersonation, DoS and

fuzzy attacks, respectively. We found that the best result

for the four classifiers is linked to detecting impersonation

attacks. Meanwhile, the detection of fuzzy attacks is very

low. SVM shows the worst performance with fuzzy attacks.

FIGURE 7: Impersonation attack detection results: DT, RF,

MLP, and SVM show good performances. The good results

can be explained by the high support for impersonation

attacks in the dataset.

FIGURE 8: Fuzzy attack detection results: DT and RF show

weak results, while SVM and MLP are not detecting this type

of attack.

As we can see, the results are poor for fuzzy and DoS

attacks. This can be explained by the insufficient number of

examples of these attacks in the dataset.

As evident, RF outperforms DT, MLP and SVM with im-

personation or fuzzy attacks. However, DT performs slightly

better than RF and far from SVM and MLP. The worst

performance is given by SVM and MLP with fuzzy attacks.

The best performance is given with impersonation attacks

due to the support included in the dataset 11046. Meanwhile,

the worst performance of the three classifiers is with fuzzy

attacks, which is explained by the low support.

DT performs better than the other methods when DoS

attacks occur. SVM has the worst performance with fuzzy
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FIGURE 9: DoS attack detection results. SVM has the high-

est precision. In terms of combined precision, recall, and F1-

score, DT and RF outperform SVM. MLP is not detecting

DoS attacks.

attacks and worst performance compared to DT and RF. For

fuzzy attack detection, SVM shows the worst results as it

detects nothing. In addition, the detection of this attack by

DT and RF is relatively weak. This fact can be explained by

the low support of this attack in the dataset.

TABLE 2: Comparison based on attack type: RF outperforms

DT in terms of fuzzy and impersonation attack.

Attack Precision Recall F1-score Support

Normal 1.000 1.000 1.000 550

DT

Fuzzy 0.233 0.230 0.232 78
DoS 0.768 0.757 0.762 206
Impers. 0.990 0.990 0.990 11046
Accuracy : 0.981 11880

RF

Fuzzy 0.266 0.051 0.086 78
DoS 0.796 0.742 0.768 206
Impers. 0.988 0.995 0.992 11046
Accuracy: 0.985 11880

SVM

Fuzzy 0.000 0.000 0.000 78
DoS 0.859 0.296 0.440 206
Impers. 0.972 0.998 0.985 11046
Accuracy: 0.972 11880

MLP

Fuzzy 0.000 0.000 0.000 78
DoS 0.000 0.000 0.000 206
Impers. 0.979 1.000 0.987 11046
Accuracy: 0.961 11880

2) Overall comparison

In this subsection, RF, DT, MLP, and SVM results will

be compared to with those of obtained using three other

techniques: HTM, RNN, and HMM. The results of these

three methods are directly taken from [21], where they were

obtained from the same dataset.

Table III shows the accuracy results for the RF, SVM,

MLP and DT techniques. The table contains the values for

accuracy, precision, recall, training time, and testing time for

the four classifiers (SVM, RF, MLP, and DT) used to detect

intrusion. Figure IV-D2 shows a comparison of the precision

achieved by the best-known ML techniques (SVM, RF, DT,

MLP, RNN, HTM, and HMM). It is clear that the precision

of RF, SVM, MLP and DT is better than that of RNN and

HMM, but slightly worse than HTM.

Additionally, for each attack, we used a specific database

that contains only some examples of the aforementioned

attacks in normal cases. The results confirm the explanations

of the previous results. It is clear that the attacks that have

fewer examples in the base are the least recognized by the

learning techniques. Indeed, the learning rates have been

improved since the total number of examples in each base

(per attack) has decreased. So, with only two classes, the

recognition improves.

TABLE 3: Overall comparison of RF, DT, SVM, and MLP

performance results using Python and executed on an i7 PC

with 8GB of RAM.

Classifier RF SVM DT MLP

Precision (%) 98.5269 97.2895 98.1902 95.2800

Recall (%) 98.1214 96.5583 98.1782 97.6100

Accuracy (%) 98.5269 97.2895 98.1902 97.6100

Training Time (s) 460.627 460.383 460.719 460.710

Testing Time (s) 14.933 14.919 14.935 14.925

FIGURE 10: A comparison of the precision achieved by

the techniques used (RF, DT, MLP, and SVM) and methods

previously used with the same dataset (HTM, RNN, and

HMM).

Figure. IV-D2 shows the recall factors for the seven meth-

ods. The RF, SVM, MLP, and DT classifiers outperform the

other techniques (RNN, HMM, and HTM).

The most important comparison is that of accuracy. Fig-

ure IV-D2 shows that the four classifiers used in this study,

RF, SVM, MLP, and DT, outperform other techniques. RF

exceeds HTM by 1 : 3%, RNN by 12 : 2%, and almost

doubles the performance of HMM. DT also outperforms

other techniques by the same rate, while SVM exceeds HTM

by 1.2%, RNN 12.1%, and also almost doubles HMM.

In the next part, we present the confusion matrix of all

techniques in Figure. 13, 14, 15 and 16 . The different results

of each attack show that the number of attacks can influence

the learning results. It can even be a determinant above a
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FIGURE 11: Recall comparison of the techniques used (RF,

DT, MLP, and SVM) and the methods previously used on

same dataset (HTM, RNN, and HMM).

FIGURE 12: Accuracy comparison between the techniques

used (RF, DT, MLP and SVM) and methods previously used

on the same dataset (HTM, RNN, and HMM).

certain number. This is logical, as any learning model can

be generalized only on the basis of a certain number of

examples. This reminds us of the overfitting and underfitting

problems.

Another type of comparison between the performance of

different techniques can be made according to the percentage

difference, as represented generally by equation 6:

PD = 100 × |∆V |
∑

V

2

(6)

In our case general equation 7 can be used as follows:

PD (x,y)= 100 × |x−y|
x+y

2

(7)

FIGURE 13: MLP confusion matrix

FIGURE 14: SVM confusion matrix

FIGURE 15: DT confusion matrix
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FIGURE 16: RF confusion matrix

TABLE 4: Percentage distance-based comparison between

RF and HTM, RNN, HMM, SVM, DT and, MLP.

Percentage

distance (%)

Precision Recall Accuracy

RF to HTM 0.891 35.250 1.561

RF to RNN 3.217 70.204 10 .869

RF to HMM 41.401 89.673 50.359

RF to SVM 1.934 1.121 1.114

RF to DT 0.058 0.070 0.070

RF to MLP 2.937 0.522 0.522

Table 4 describes the percentage distance between RF and

HTM, RNN, HMM, SVM, MLP, and DT. When the other

methods outperform RF, the values are underlined. Bold

values represent outperformance of RF by more than 35%

compared to the other classifiers, while italic values indicate

outperformance of RF by more than 10%. Ordinary values

indicate outperformance of RF by less than 10%. In terms

of accuracy, the RF classifier outperforms HTM slightly, and

it also outperforms RNN by 10.68%. Notably, RF performs

better than HMM by more than 50%. This table clearly shows

that the RF classifier is more suitable for intrusion detection

for CAN-based, in-vehicle networks.

SVM, DT, MLP, and RF achieve better results than RNN

because statistical learning techniques are often more effi-

cient when applied to multidimensional problems. In our

intrusion detection problem, the input data dimension is 16.

The most difficult phase for the statistical learning technique

is parameterization, and optimal parameters are crucial to

the success of this approach. We thoroughly explored the

research space before closing the training phase. This yielded

results comparable to the neural network techniques.

We noticed a few disadvantages of the SVM technique

including the long training and testing time required. It takes

almost 100 times longer than the others techniques (MLP, DT

and RF) to train and to test.

Parameterization is also difficult for statistical learning

techniques, especially for nonlinear learning. For example, it

is difficult to find optimal parameters for the kernel function.

We also applied cross-validation. Figure 16 shows the

accuracy rates of all the various executions (cv = 5) for each

learning approach.

FIGURE 17: Cross validation results

V. CONCLUSION AND FUTURE WORK

This paper addresses an important problem: malicious in-

trusion in communications in vehicles using the CAN bus

protocol. By examining the previous research in this area, we

found that most of the previous studies have examined the

behavior of exchanged frames or only superficially used the

data contained in the frame without thoroughly considering

the data itself. In addition, these studies do not use traditional

classification techniques. For these reasons, in this study,

we have proposed the use of the RF, SVM, MLP, and DT

classifiers to distinguish between normal and malicious com-

munications. The results of the experimental study performed

with our dataset indicate that these four machine learning

tools outperform the other techniques (HTM, RNN, HMM)

in terms of accuracy.

In future work, we intend to apply non-supervised classi-

fication techniques to demonstrate the detection performance

using several unknown or new intrusions. This will neces-

sitate the application of deep learning techniques to large

intrusion datasets.
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