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Comparative Performance Evaluation of Pixel-Level

and Decision-Level Data Fusion of Landsat 8 OLI,

Landsat 7 ETM+ and Sentinel-2 MSI for Crop

Ensemble Classification
Juliana Useya and Shengbo Chen

Abstract—Crops mapping unequivocally becomes a daunting
task in humid, tropical, or subtropical regions due to unattainabil-
ity of adequate cloud-free optical imagery. Objective of this study
is to evaluate the comparative performance between decision- and
pixel-levels data fusion ensemble classified maps using Landsat 8,
Landsat 7, and Sentinel-2 data. This research implements parallel
and concatenation approach to ensemble classify the images. The
multiclassifier system comprises of Maximum Likelihood, Support
Vector Machines, and Spectral Information Divergence as base
classifiers. Decision-level fusion is achieved by implementing plu-
rality voting method. Pixel-level fusion is achieved by implementing
fusion by mosaicking approach, thus appending cloud-free pixels
from either Sentinel-2 or Landsat 7. The comparison is based on
the assessment of classification accuracy. Overall accuracy results
show that decision-level fusion achieved an accuracy of 85.4%,
whereas pixel-level fusion classification attained 82.5%, but their
respective kappa coefficients of 0.84 and 0.80 but are not signifi-
cantly different according to Z-test at α = 0.05. F1-score values re-
veal that decision-level performed better on most individual classes
than pixel-level. Regression coefficient between planted areas from
both approaches is 0.99. However, Support Vector Machines per-
formed the best of the three classifiers. The conclusion is that both
decision-level and pixel-level fusion approaches produced compa-
rable classification results. Therefore, either of the procedures can
be adopted in areas with inescapable cloud problems for updating
crop inventories and acreage estimation at regional scales. Future
work can focus on performing more comparison tests on differ-
ent areas, run tests using different multiclassifier systems, and use
different imagery.

Index Terms—Data fusion, ensemble classifier, multiclassifier
system, parallel and concatenation approach, plurality voting.
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I. INTRODUCTION

F
OR a number of years, global food security has been on the

vanguard as one of the uttermost pressing developmental

targets. According to the FAO, in order to achieve food for all

by 2050, food production around the world has to grow by more

than 60% [1], [2]. Both public and private organizations bear

a huge responsibility to raise food production in a sustainable

way [3]. For many developing economies, agriculture is the

mainstay contributing significantly to Gross Domestic Product

(GDP), food security, direct employment, export earnings, and

raw materials for other sectors [4]. Food security is one of the

most basic actors of our physical and intellectual wellbeing,

hence is a fundamental prerequisite for a healthy, active, and

happy life [5].

Dealing with food security requires knowledge about the crop

types, the land area that is being planted [6] and acreage esti-

mations. Also the monitoring of crops is of vital importance for

food security [7]. Croplands maps have great potential for use

in preserving prime agricultural farmland [8].

Agriculture is the backbone of Zimbabwe’s economy and un-

derpins the economic, social, and political lives of the majority

of the people of Zimbabwe [9]. The Zimbabwean government

reintroduced “command agriculture,” in 2016/7 farming season,

which is a program meant to substitute the existing maize import

exercise [10]. At least 2000 farmers are expected to benefit from

this agricultural scheme aimed at ensuring food self-sufficiency,

hence targeting farmers near water bodies who can plant a min-

imum of 200 hectares of maize per farmer [10]. For inventory

purposes, there is great need to identify the types of crops grown

on the different farming lands. Crop identification and mapping

is the foundation for crop monitoring using remote sensing and

is critical to many applications [11], [12]. In Zimbabwe, it can

play a big role in controlling the amount of input support re-

quired at a given farmland within a district or province.

Consequently, spatially explicit crop system inventories are

lacking, since the only available spatial information about crops

is collected during national agricultural censuses and are re-

ported by administrative units [13]. Systematic attempts to map

crops from remote sensing data are very limited. According to

Hentze et al. [14], there is an ostensible lack of spatially ex-

plicit methods to produce objective data such as the extent of
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agricultural area in Zimbabwe. The major limitation to the uti-

lization of remote sensing technology to produce such crop

distribution and croplands maps is the excessive cloud cover

problem. There exist previous research done regarding this ef-

fect, but they all used high temporal resolution MODIS time

series. These include Sibanda and Murwira [15], Maguranyanga

and Murwira [16], last but not least Hentze et al. [14]. The main

limitation of MODIS is its low spatial resolution of 500 m, since

most farm sizes are very small and heterogeneous.

Upon using freely available satellite imagery with medium

spatial resolution, there is need to first mask out all clouds

and shadows. The commonly used technique is to restore the

clouded pixels with corresponding cloud-free pixels from a dif-

ferent acquisition date either from the same sensor or a different

sensor. The acquisition times of the images have to be as close

to each other as possible in order to avoid conceivable land use

changes. This is one of the different types of pixel-level image

fusion, where different sensor datasets are combined into a sin-

gle composite image which enables a better understanding of

the scene.

Image data fusion techniques can be classified into three

main categories depending on the stage at which the fusion

takes place. These three levels are namely pixel/observation

level, feature level, and decision-level of representation [17]–

[20]. Schmitt and Zhu [20] provided a holistic view of generic

data fusion concepts and their applicability to the remote sens-

ing domain. Wang et al. [21] presented a new approach for

the fusion of Landsat 8 OLI and Sentinel-2 MSI data in or-

der to coordinate their spatial resolutions for continuous global

monitoring.

Major challenges arise when working on areas in the humid,

tropical, or subtropical regions where cloud-free data acquisi-

tion for a single date is difficult or impossible [22], [23], use

of imagery from another sensor becomes apparent. Pixel-level

fusion requires knowledge of spectral configurations of the sen-

sors involved, but decision-level does not require knowledge

about the spectral bands prior to fusion process. Since cloud

masking introduces huge missing data gaps, decision-level fu-

sion is being tested whether it can be an alternative method

to the pixel-level fusion. The innovation of this research is to

merge classified images (at decision-level) from different image

sources with missing data into a seamless classified map. If clas-

sification results are accurate enough, then this procedure may

contribute to efficiently designing and updating crop inventories

[24], for areas in tropical, subtropical, and humid regions which

experience inescapable cloud problems.

The general objective of this research is to evaluate the com-

parative performance between decision-level and pixel-level,

seamless crop distribution ensemble classified maps synthesized

from integrating Landsat 8, Landsat 7, and Sentinel-2 data. Spe-

cific subobjectives of this research are to 1) design and optimize

classification schema to conduct ensemble classification using

Landsat 8, Landsat 7, and Sentinel-2 data, 2) assess performance

of classifiers in multiclassifier systems of the different remotely

sensed images, and 3) assess performance of decision-level and

pixel-level data fusions.

II. MULTICLASSIFIER SYSTEM

Image classification has made great progress over the past

decades, researchers have developed advanced classification ap-

proaches and techniques endeavoring to improve classification

accuracy, but still classification remain a challenge [25]. De-

pending on the distribution of patterns, when an individual clas-

sifier is trained on a labeled dataset [26], it is possible that not all

the patterns are learned well by individual classifiers. However,

a solution to such a problem is to train a group of classifiers

on the same problem since classifiers can be assumed to have

complementary capabilities [27], [28].

The method of combining classifiers can be referred to using

different names; including, ensemble classifiers, multiclassifier

systems, consensus theory, mixtures of experts, committees of

learners [29], [30] but they all refer to a group of individual

classifiers that are cooperatively trained on dataset in a super-

vised classification problem [26]. Ensemble classifier is sup-

posed to perform better than its base counterparts, only if the

classifiers are accurate and diverse [26], [31]–[33]. Diversity

of an ensemble system determines the success of the classi-

fication by correcting the errors of some of its members [33].

Though Kuncheva and Whitaker [29] argued that although there

are special cases where diversity and accuracy are connected,

their research results do not emphasize on the usefulness of

diversity in building classifiers ensembles. There are various

approaches of forming a multiclassifier system and it is crucial

to choose the best fusion method in order to achieve higher

accuracy.

These individual classifiers can be amassed either as 1) cas-

caded, 2) parallel, or 3) hierarchical configurations [31], [34],

[35]. Ranawana and Palade [31] described in detail the criteria

to consider when selecting the best topology depending on the

type of problem at hand.

There are three properties namely orthogonality, complemen-

tarity, and independence to be considered when constructing

multiclassifier systems [31], [37]. Orthogonality is not directly

measurable but is a rough measurement of how different the de-

cisions are among the different classifiers. The complementarity

measures the differences between the strengths and weaknesses

of the different classifiers. Independence among classifiers mea-

sures the influence that one classifier has over another, over the

decision making process, or how results between two classifiers

are interrelated [36].

A data/information fusion method (decision-level) combines

the decisions produced by the base classifiers. The fusion can

lead to improved classification decision compared to a deci-

sion based on any of the individual data sources [33]. There

exist a good number of fusion methods in literature including;

majority voting, Borda count, algebraic combiners [26], deci-

sion templates, the Dempster-Shafer based fusion [33], etc. Le

Hegarat-Mascle et al. [38] successfully applied the Dempster–

Shafer Evidence Theory to merge data from unsupervised clas-

sification of TMS and AirSAR L and C band images. Ranawana

and Palade [31] categorized the fusion methods by classify-

ing them as linear, nonlinear, statistical, and computationally

intelligent.
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Fig. 1. Study area showing distribution of land use classes and sampling
points. Inset shows location of study area (Manicaland province) in Zimbabwe.

Respectfully, majority of research done on multiclassifier sys-

tem in literature reveal evidence of an improvement made to

classification problems due to integration of classifiers. These

include Pal [32], Zhang et al. [39], Wang et al. [40], Kanel-

lopoulos et al. [41], Lu [28], last but not least Ho et al. [42].

III. MATERIALS

A. Study Area

The study area is Manicaland, located in the eastern province

in Zimbabwe that lies between latitude 17°15’00”S and

21°19’12”S, then longitude 31°13’01”E and 33°04’12”E. The

province is bounded by Mashonaland East Province to the north,

the Republic of Mozambique to the east, Midlands Province to

the west, then Masvingo Province to the south and southwest.

It covers an area of approximately 36 459 km2 and four main

agricultural land use classes namely communal land, resettle-

ment area, large scale commercial, and small-scale commercial

farming areas (see Fig. 1).

Zimbabwe generally has a tropical climate that is depen-

dent on the rains brought by Indian Ocean monsoons (sea-

sonal winds) [9] and has two distinct seasons; summer and

winter. Summer crop growing season typically commences in

October until March [43]. The summer crops commonly grown

include maize, beans, tobacco, sorghum, millet, cotton, ground-

nuts etc. In February, most summer crops would have reached

the peak of the growing season since they are planted either in

November/December or January depending on the time of rain

onset.

TABLE I
ACQUISITION DATES OF LANDSAT 8, SENTINEL-2, AND LANDSAT 7 SCENES

Dry season starts in April up until September, winter is expe-

rienced in June and July. Wheat is the main winter crop planted.

However, most of perennial and permanent crops found in

Zimbabwe are grown in Manicaland province. These include

sugarcane, banana, coffee, tea, etc.

B. Field Data

Training and validation data were collected during differ-

ent field data campaigns for different purposes from December

2016 until March 2017. A total of 34 500 sampling points were

randomly selected and collected (see Fig. 1) using handheld

GPS receivers (Trimble Juno 5d, Garmin etrex Vista, etrex 10,

and etrex 20). UTM/WGS84 projection coordinate system was

adopted during the acquisition. Out of the total points, 22 000

points were used during the class identification process, 12 500

points were used for accuracy assessment.

C. Data Acquisition

Since spectral signatures are associated with phenological

stages rather than imaging dates, 2017 February/March imagery

for Landsat 8, Landsat 7, and Sentinel-2 with cloud cover not

more than 50% were downloaded from a website with this link

https://earthexplorer.usgs.gov/.

Both Landsat and Sentinel use the same geographic coor-

dinate system which is Universal Transverse Mercator (UTM)

zone 36 South, WGS84 datum. The availability of the three

sensors provide the scientific community with a wide range of

spatial, spectral, and temporal properties [44]. Table I shows the

acquired scenes that were employed in this research and their

respective dates when they were acquired. Level-1 Landsat 8

and 7 scenes are downloaded, whereas Sentinel-2 scenes are

Level 1C.

IV. METHODOLOGY

A. Proposed Schema for Pixel-Level Fusion and

Decision-Level Fusion Systems

Fig. 2 presents simple generic flowcharts for pixel-level fu-

sion (left side) and decision-level fusion (right side) systems

designed and adopted in this paper. Pixel fusion is performed at

an earlier stage than decision-level fusion. Downloaded images

are preprocessed prior to the ensemble classification. The clas-

sification accuracy assessment results from the two integration

methods are compared. All processes are explained in detail in

the sections that follow.
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Fig. 2. Generic flowcharts for comparison between pixel-level (left side) and decision-level (right side) fusion processes.

B. Preprocessing

1) Landsat 8 OLI: The downloaded tiles of Landsat 8 OLI

are radiometrically corrected. Cloud and cloud shadow removal

is implemented using the Fmask algorithm developed and im-

proved by Zhu et al. [45], also available in ENVI [46]. Atmo-

spheric correction is applied using QUick Atmospheric Correc-

tion (QUAC) module. Cloud-free scenes are later mosaicked

and masking is done to exclude areas reserved for wildlife na-

tional parks, safari, forests, and urban areas using 2015 land-use

shapefile from Surveyor General’s office in Zimbabwe.

2) Sentinel-2 MSI: Sentinel-2 mission provides a combina-

tion of two satellites namely; Sentinel-2A and Sentinel-2B,

hence having a temporal resolution of 5 days at the equator

in cloud-free conditions. The Sentinel-2 Level-1C downloaded

scenes, only four were usable with cloud cover less than 50%.

Level-1C scenes are first converted to top of canopy using

Sen2cor atmospheric correction module in SNAP before ge-

ometric resampling. All the bands are geometrically resampled

to 20 m spatial resolution. 20 m spatial resolution is chosen to

preserve and maintain the red-edge bands.

Cloud and cloud-shadow removal is performed in ENVI us-

ing method of (ready-to-use) decision tree of depth three as

presented by Hollstein et al. [47]. Cloud-free images are mo-

saicked and reserved areas where agriculture is not expected to

take place are masked out using 2015 land-use shapefile.

For pixel-level fusion, B2, B3, B4, B8, B11, and B12 are

further resampled to 30 m in ArcGIS. For decision-level fusion,

base classification of Sentinel-2 are done on B2, B3, B4, B5,

B6, B7, B8, B8a, B11, and B12 (at 20 m resolution).

3) Landsat 7 ETM+: Radiometric correction is applied on

the downloaded tiles. Gap filling functionality is applied, then

cloud and shadow removal is done using Fmask algorithm [45],

[46]. Atmospheric correction is applied using QUick Atmo-

spheric Correction (QUAC) module. Cloud-free tiles are then

mosaicked. 2015 land-use shapefile from the Surveyor General’s

office in Zimbabwe was used to mask out areas reserved for na-

tional parks and cities. The images are eventually mosaicked,

hence ready for pixel-level merging and ensemble classification.

TABLE II
CORRESPONDING SPECTRAL BANDS OF LANDSAT 8, SENTINEL-2, AND

LANDSAT 7 USED FOR PIXEL-BASED FUSION

C. Fusion of Raw Data (Pixel-Level Integration)

According to Schmitt and Zhu [20], complementary integra-

tion is the fusion of homogeneous sensor data with different

information content to reduce information gaps. The combina-

tion of sensors with different but complementary measurement

ranges, e.g., images with different cloud coverage or comple-

mentary spectral ranges is crucial to create a single composite

image. Resampling process is implemented in order to achieve

data matching or co-registration, which may be necessary not

only for the spatial domain.

Mandanici and Bitelli [48] did a preliminary study on the

comparison of Sentinel-2 and Landsat 8 imagery for a potential

combined use and their results revealed that the corresponding

Sentinel-2 and Landsat 8 bands have a very high correlation of

their relative spectral response functions (RSRFs), therefore, the

pixel-level fusion between the two sensor is justified. Although

the RSRFs of the instruments are not identical, some differences

are expected in the recorded radiometric values.

For this study, total number of Landsat 8 scenes are more

than those of either Landsat 7 or Sentinel-2 tiles, automatically

Landsat 8 becomes the target image, while both Landsat 7 and

Sentinel-2 are employed as reference images. Jin et al. [49] de-

fined in detail the meanings of both target and reference images.

However, it is crucial to note that the spectral bands of Sentinel

are thinner than Landsat ones. Table II illustrates corresponding

spectral bands used in the pixel-level fusion process.
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Fig. 3. Flowchart for pixel-level fusion by mosaicking process.

Fig. 4. Cloud-free pixels fusion by mosaicking from Landsat and Sentinel-2.

Fig. 3 illustrates the methodology followed to execute the

pixel-level integration. Cloud and cloud shadow mask from

Landsat 8 imagery are used to mask out cloud-free pixels from

either reference images.

Landsat 7 and 8 have similar spatial resolution of 30 m,

whereas the mosaicked Sentinel-2 data (20 m spatial resolu-

tion) are further resampled to 30 m using nearest neighbor re-

sampling technique prior to fusion. Cloud-free Sentinel-2 and

Landsat 7 pixels are introduced to areas of no information on the

Landsat 8 dataset. The fusion is achieved through creating

mosaics [17]. Once the cloud/shadow (Landsat 8) and lay-

over/shadow masks (Landsat 7 and Sentinel-2) have been pro-

duced, then fusion is performed.

Quality of fused image is assessed by visual means, and Fig. 4

exhibits a sample of the mosaic between Landsat and Sentinel-2.

Yellow pixels are from Sentinel-2 which replaced the eliminated

clouded pixels from Landsat imagery.

However, there exists a general rule of thumb that says prior

to fusing the images, it is crucial to first produce the best single-

sensor geometry and radiometry (geocoding, filter, line, edge

detection, etc.) and then fuse the images. Any spatial enhance-

ment performed prior to image fusion will benefit the resulting

fused images [17]. Fig. 5 shows the mosaicked (processed) im-

ages without cloud cover for Landsat 8, Sentinel-2, Landsat 7,

and pixel-level fused raw image. The white gaps indicate lack

of data and reserved areas as indicated in Fig. 1.

D. Assessment of Training Data Quality

In order to achieve good supervised classification accuracy,

the training data need to be of good quality. Therefore, it is

crucial to carry out an inspection before performing the classi-

fication since the data used for this research was gathered from

various researchers.

Rule of thumb states that; it is fundamental to have more

training points than the number of spectral bands (i.e., dimen-

sionality). There are three common methods utilized to solve

this task namely: 1) visual analysis of the brightness histograms

of training areas, 2) visual analysis of training areas’ location in

the n-Dimension scatter plot, and 3) quantitative evaluation of

spectral separability [50].

This research implements Transformed Divergence (TD) and

Jeffries-Matusita Distance (JMD). The TD separability measure

yields real values between 0 and 2, where 0 indicates complete

overlap between the signatures of two classes and 2 indicates a

complete separation between the two classes. Divergence mea-

sures are related to classification accuracies. The larger the sep-

arability values are, the better the final classification results will

be. The following rules are suggested for each of the possible

ranges of separability values x:

0.0 < x < 1.0 (poor separability) ,

1.0 < x < 1.9 (moderate separability) ,

1.9 < x < 2.0 (good separability) .

In ENVI the Jeffries–Matusita distance is squared to range

between 0 and 2, consequently one should take the square root

of this output.

According to Apan et al. [55], accurate mapping at crop

species level is possible when the following ideal conditions are

met:

1) the study area is limited to a relatively small region where

bio-physical conditions (mainly soil, water regimes, and

topography) are homogenous.

2) The study area contains no crops planted at significantly

different planting dates.

Literally, these two conditions are rare in nature and perhaps

could only be found on experimental plots, or when the fo-

cus of the study is on within-field variability mapping. Spectral

separability distances are expected to be correlated with classi-

fication results, where higher degree of spectra overlapping on

the data can lead to poorer accuracy despite the number of bands

available.

E. Ensemble Classification

This research implements the parallel and concatenation ap-

proach (see Fig. 6) where the classification results generated by

individual classifiers are used as an input into the succeeding

classifier [36], [51]. Thus, the results obtained through each clas-

sifier are similarly passed onto the next classifier until a result is

obtained through the final classifier in the chain [51]. Ensemble

classifier comprises of MLC, Support Vector Machine (SVM),

and Spectral Information Divergence (SID). Classification is
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Fig. 5. Mosaicked raw images without clouds. (a) Landsat 8. (b) Sentinel-2. (c) Landsat 7. (d) Pixel-level fused image.

Fig. 6. Flowchart of ensemble classification. Source [51].

done on Landsat 8 OLI images, Sentinel-2 MSI, and Landsat 7

ETM+ independently.

There are several classes to be discerned in the research area,

which can be referred to as basic propositions. The probability

of the occurrence of one of these propositions, for one sensor, is

calculated by summing the probability masses for general propo-

sitions that support the occurrence of that basic proposition.

Unification of the base classifiers is done by manipulating

the class probabilities for each classifier. The class membership

probability images produced from the classification are then

reclassified using SVM to integrate the base classifiers. SVM

classifier is selected as the second classifier for the reason that it

possesses satisfactory capability to deal with the classification

problem. This methodology is adopted and modified from Du

et al. [51] (see Fig. 6). Second classification is performed on

a posteriori class membership probability images representing

the mass probability of a pixel belonging to a class. A posteri-

ori class membership probabilities can be denoted by Pr(k│g)

Fig. 7. Flowchart of decision-level fusion.

where g is in class k provided Pr (k|g) ≥ 1 − Pr(j|g) for all

j = 1 . . . K.

But for MLC, in ENVI the rule image produced upon classi-

fication, needs to be converted to class membership probability

using an IDL code presented by Canty [52], [53] under the

assumption that there is no “unclassified” class.

F. Plurality Voting (Decision-Level Fusion)

Where two or more maps overlay, plurality voting [39], [54]

is used to decide on the class to be incorporated into the seam-

less final map. Fig. 7 is a flowchart illustrating the process

of decision-level fusion. Classified images from Landsat 8,

Sntinel-2, and Landsat 7 are harmonized into a single final

classified map. The plurality voting method is the simplest

of all combinatorial functions. It selects the relevant class by

polling all the classifiers to see which class is the most popular.

Whichever class gets the highest vote is selected. This method

is particularly successful when the classifiers involved output

binary votes.

“Thus by considering three classifiers: {C1, C2, C3}. Letting x be

a new input example. If the three classifiers are absolutely identical,

then when C1(x) provides a wrong classification, C2(x) and C3(x)

will also provide erroneous results. If the errors made by the three

classifiers are uncorrelated, the case might be that when C1(x) is

wrong, C2(x) and C3(x) may be correct. In such a case, the majority

vote among the three classifiers will correctly classify x.” Where the

three classes C1(x), C2(x), and C3(x) are different, SVM is used to

reclassify them, else choose class with highest correctly classified

pixels.
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TABLE III
CLASSIFICATION ACCURACIES OF LANDSAT 8, SENTINEL-2, LANDSAT 7, AND FUSED IMAGES

Preliminary ensemble classified images of Landsat 8 and

Landsat 7 are integrated more easily since their spatial resolu-

tion is the same (30 m). Sentinel-2 is first resampled to a spatial

resolution of 30 m using nearest neighbor technique in ArcMap.

Decision-level fusion is eventually performed on Landsat 7, 8,

and Sentinel-2 images with same spatial resolution and accu-

rately aligned.

G. Comparison of Classification Results

Based on confusion matrices, overall accuracies are com-

pared. Statistical significance of kappa coefficients is deter-

mined using Z-test. Composite measure of producer’s and user’s

accuracies (F1-score) are calculated for each class for compari-

son of the two fusion methods.

Planted areas from pixel-level and decision-level classifica-

tion results are compared and a regression line is plotted to

determine the relationship between both results.

V. RESULTS

A. Overall Classification Accuracies

Overall statistical accuracies and kappa coefficients obtained

from the confusion matrices are used to analyze the quality of

classified data obtained from the three individual base classi-

fiers and combinations of integrated classifications results are

illustrated by Table III. Kappa coefficient considers the whole

error matrix instead of the diagonal elements which is the case

with overall accuracy.

SVM outperformed all the base classifiers on all the four

datasets classified. It performed the best on Sentinel-2 images

achieving an accuracy of 93.63%, followed by 78.58% on pixel-

level fused image. MLC achieved 88.52% on Sentinel-2 dataset

followed by 77.46% on pixel-level fused image. However, SVM

performed slightly better than MLC on all the datasets. It has

proved to be a powerful tool for discriminating the various

major crops grown in summer using remote sensing. Accord-

ing to Zhang et al. [56] and Szuster et al. [57], SVM usually

yields slightly better results than MLC for land cover analysis.

The same has been proved by this research. SID is the least

performer but performed fairly well having overall accuracy

values between 53–60%.

Endeavoring to improve accuracy of the overall classifica-

tion, the base classifiers are combined using the base classifiers’

a posteriori class membership probabilities which were fur-

ther classified using SVM. In all datasets configurations imple-

mented, the highest accuracy has been achieved by combining

the 3 classifiers (MLC + SVM + SID) in all scenarios.

Combining MLC + SVM improves the overall accuracy val-

ues but are slightly lower than MLC + SVM + SID. Despite

the fact that SID has the lowest accuracy, when combined with

either MLC or SVM, it makes a difference, there is a slight

increase effected on the ultimate overall accuracy although the

magnitude of improvement is small. Generally, the ensemble

classifier accomplished better results than its base counterparts.

This experiment conducted exploits the idea that diverse classi-

fiers perform differently, even though same training data is used.

However, they can provide complementary information about

patterns to be determined, thereby increasing the effectiveness

of the overall recognition process.

Classifying the fused single composite raw image achieved

an accuracy of 82.53% and kappa coefficient of 0.80, whereas

the integration of MLC + SVM + SID classified thematic maps

from Landsat 8, Landsat 7, and Sentinel-2 achieved an overall

accuracy of 85.44% with kappa coefficient of 0.84.

Decision-level fused map attained a better result than pixel-

level thematic map. The overall accuracy results prove that

decision-level data fusion enable better crops identification com-

pared to classifying a single composite pixel-level integrated

image. This indicates that data fusion at decision-level does not

lead to any significant data loss, instead there is an improvement

in the overall classification accuracy.

B. Statistical Significance of Kappa Coefficients

The Z-test is a statistical test of the difference in accuracy

values; it involves comparing the accuracy of a new classifier

against one derived from the application of a standard clas-

sifier [58]. Z-test is performed to assess significant differences
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TABLE IV
Z-TEST STATISTICAL SIGNIFICANCE BETWEEN PIXEL- AND DECISION-LEVEL

FUSION RESULTS AT α = 0.05

Fig. 8. F1-score values for the different classes discerned in the study.

between the accuracy measurements of classification results [58]

from pixel-level and decision-level fusions.

Initial kappa coefficients computed in ENVI, their respec-

tive confusion matrices are exported to MATLAB to obtain the

variance estimates (σ2
K̂ 1

and σ2
K̂ 2

) necessary to compare the dif-

ferent tests. Table IV exhibits the result for the computed z-value

of −0.4391, indicating that there is a no significant difference

between the kappa values at α = 0.05.

C. Classification Performance on Individual Classes

Individual class accuracies from decision-level and pixel-

level approaches are assessed in this section by F1-score values

calculated from producer’s and user’s accuracies. Since overall

accuracy does not reveal whether error was evenly distributed

between classes or if some classes were really bad and some re-

ally good, user’s and producer’s accuracies can be considered.

The higher the F1-score, the better the representation. The

best F1-measurement a class can achieve is 1, the worst is 0.

Fig. 8 illustrates the F1-scores represented by the bar graph.

F1-score represents the mean of precision and sensitivity, that

is a composite measure of user’s and producer’s accuracies are

calculated for each class by the following equation:

F1 score = 2 ×
PA × UA

PA + UA

where PA is producer’s accuracy whereas UA is user’s accuracy.

Decision-level method managed to correctly represent most

classes in the thematic map compared to pixel-level based fused

thematic map. Exceptions are avocado, macadamia nuts and

mixed classes.

D. Crops Distribution Maps

Fig. 9 depicts seamless crops distribution maps synthesized

from 1) pixel-level fusion and 2) decision-level fusion ap-

proaches. Visually comparing the two summer crops distribu-

tion maps, they reveal similar patterns, the differences between

these two is minimal and inevitable. This is an indication that

the classification processes of the two procedures synthesize al-

most similar products. Generally, maize is the dominating crop

grown in summer.

Fig. 10 displays a sugarcane estate as depicted by classified

images from pixel-level and decision-level fusion system. Most

of the areas planted the sugarcane look similar between the two

images whereas some areas with different classes discerned are

visible.

Zimbabwe’s Ministry of Agriculture, Mechanization, and Ir-

rigation Development [59] released a report titled “First round

crop and livestock assessment (2016–2017),” on the 6th of

March with total hectares of areas planted of the different

crops in all provinces. Therefore, the areas of crop species

in Manicaland province from the report and from this study

are compared qualitatively. Generally, for all the crops com-

pared, both fusion approaches produced higher values of total

planted areas than those recorded in the first-round assessment

report. The relationship between planted areas from the report

and decision-level produced R2 = 0.99 whereas planted areas

recorded in report and pixel-level has R2 = 0.99. Relationship

between planted areas from decision-level and pixel-level ap-

proaches has a R2 = 0.99.

VI. DISCUSSION

The resultant fused composite image synthesized from syner-

gistic combination of multisource images of a scene can provide

more accurate and reliable information about that scene than any

individual source images [60], [61]. Due to inescapable cloud

cover, image fusion systems provide great practical valuable

data and information crop mapping. Furthermore, less costly

information may be obtained from a system using multisensor

fusion [61].

This research is aimed at evaluating the performance of

decision-level and pixel-level fusion methods in an ensemble

classifier to determine crops. From the results, decision-level

approach achieved 85.4% as compared to 82.5% obtained by

pixel-level approach. Respective kappa coefficients are 0.84 and

0.80 but are not significantly different according to Z-statistical

test at 95% confidence interval. This means that results from

decision-level approach and those from pixel-level at district

level are comparable.

Integration systems provide redundant information from the

three sensors, hence, fusion of redundant information can reduce

overall uncertainty and thus serve to increase accuracy [61].

Moreover, the fusions allow the integration of complementary
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Fig. 9. Classified images. (a) Pixel-level. (b) Decision-level.

Fig. 10. Sugarcane estate from (a) pixel-level, and (b) decision-level classified
maps. Inset shows location of sugarcane estate on classified map marked by red
rectangle.

information provided by each sensor concerning a subset of the

features in the environment.

Nevertheless, it is indispensable to combine multiple classi-

fiers to yield a better result than any individual classifiers. The

advantage of decision-level integration is that all information

from each sensor imagery can be applied separately. Classifying

Landsat 8 produced comparable results to those of Sentinel-2.

The best performance from Sentinel-2 is due to added value

to land use mapping that comes along with Sentinel-2 red-

edge bands [44]. Sentinel-2 has red edge bands which play a

crucial role in vegetation analysis. These red-edge bands are not

available in the Landsat spectral configurations. The main dis-

advantage of Landsat 7, is the scan line corrector failure, hence

algorithms employed in filling the gaps will never produce a

true representation of the area covered. Gap filling is about 70%

effective in regenerating to lost data, of which the lost data is

about 22%. In areas where there is less or no cloud cover, multi-

ple acquisitions can be merged to resolve the SLC-off data gaps.

Other Landsat 7 users do not apply the gap filling algorithms,

since they regard them to be inaccurate. Fused image produced

by pixel-level fusion approach is limited to only six bands which

do not include the red-edge bands from Sentinel-2.

The other advantage of decision-level fusion is that no prior

knowledge about the spectral configuration of the various sen-

sors involved is required. To this fact, it becomes the main

limitation of pixel-level fusion. In the event that there is/are

no corresponding bands, the restoration of cloud pixels is not

possible. Further research is necessary to determine whether

decision-level always perform better than pixel-level fusion on

different environmental conditions.

The disadvantage of decision-level fusion, nevertheless, is

still the limited possibility of decision boundaries, because

the operations are restricted to voting/thresholding, AND,

and OR [62].

Considering time consumption aspect, pixel-level approach

consumes relatively less time than the decision-level approach.

Computational costs are the same since freely available satel-

lite images are utilised. Storage space for decision-level fusion

procedure is greater than for pixel-level fusion.
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It is possible to create reliable seamless crop distribution maps

from merging classified images at decision-level using freely

available multispectral images with poor data quality coverage.

Both fusion systems can be used for crop mapping, and the

maps are useful for inventory purposes, and acreage estima-

tion at regional scale using remote sensing. Crop distribution

and acreage are crucial for information for good agricultural

management and policy making.

Ensemble classifiers reduce the probability of overfitting and

bias or variance error, hence exploit the idea that different

classifiers can provide complementary information about pat-

terns to be classified, thereby improving the effectiveness of

the overall recognition process [30]. SVM classification pro-

duced the best classification results basing on the statistical

accuracy assessments performed on the Landsat 8, Sentinel-2,

and Landsat 7 imagery. Multiclassifier systems are supposed

to improve the overall accuracy of classification results. In this

paper, MLC + SVM + SID improved classification accura-

cies of classification on all the three-sensor data. It is higher

than SVM classification accuracies on the three datasets. How-

ever, it is necessary to determine the optimal size of an en-

semble that performs and produces the best results. Further

research can be done by creating different ensemble classi-

fiers comprising of different base classifiers and run tests on

different imagery, different areas, and compare the two fusion

approaches.

VII. CONCLUSION

This paper evaluated the comparative performance of deci-

sion and pixel levels data fusion on ensemble classification using

Landsat 8, Landsat 7, and Sentinel-2 data. Overall classification

results reveal that decision-level approach attained better ac-

curacy of 85.4% compared to 82.5% achieved by classifying

pixel-level fused image. However, their corresponding kappa

coefficients of 0.84 and 0.80 are compared statistically using

Z-test and reveal that both methods are not significantly differ-

ent at α = 0.05. To accomplish objectives of this research, the

first subobjective is to develop a classification schema and has

been designed as presented by Fig. 2.

Second subobjective is to assess the performance of base clas-

sifiers in the multiclassifier system. Parallel and concatenation

approach has been implemented to execute the multiclassifier

system. SVM performs the best of the three base classifiers,

followed by MLC and lastly SID on all the datasets. Integrating

the three (SVM + MLC + SID) achieved the highest accuracy,

followed by fusing SVM + MLC on all cases.

The final subobjective is to assess performance of decision-

level and pixel-level data fusions. F1-test has been implemented

to determine the performance on individual classes, results ex-

hibit that decision-level data fusion performed better in dis-

criminating most classes compared to performance on individ-

ual classes from a single composite pixel-level integrated image.

The exceptional classes are avocado, macadamia nut, and mixed

crops. Regression coefficient (r) between planted areas from

pixel-level and decision-level fusion systems is 0.99. Therefore,

the performances of the two fusion methods can be concluded

to be similar significantly.
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