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Comparative Performance Evaluation of Pixel-Level
and Decision-Level Data Fusion of Landsat 8 OLI,
Landsat 7 ETM+- and Sentinel-2 MSI for Crop

Ensemble Classification

Juliana Useya

Abstract—Crops mapping unequivocally becomes a daunting
task in humid, tropical, or subtropical regions due to unattainabil-
ity of adequate cloud-free optical imagery. Objective of this study
is to evaluate the comparative performance between decision- and
pixel-levels data fusion ensemble classified maps using Landsat 8,
Landsat 7, and Sentinel-2 data. This research implements parallel
and concatenation approach to ensemble classify the images. The
multiclassifier system comprises of Maximum Likelihood, Support
Vector Machines, and Spectral Information Divergence as base
classifiers. Decision-level fusion is achieved by implementing plu-
rality voting method. Pixel-level fusion is achieved by implementing
fusion by mosaicking approach, thus appending cloud-free pixels
from either Sentinel-2 or Landsat 7. The comparison is based on
the assessment of classification accuracy. Overall accuracy results
show that decision-level fusion achieved an accuracy of 85.4%,
whereas pixel-level fusion classification attained 82.5%, but their
respective kappa coefficients of 0.84 and 0.80 but are not signifi-
cantly different according to Z-test at « = 0.05. F1-score values re-
veal that decision-level performed better on most individual classes
than pixel-level. Regression coefficient between planted areas from
both approaches is 0.99. However, Support Vector Machines per-
formed the best of the three classifiers. The conclusion is that both
decision-level and pixel-level fusion approaches produced compa-
rable classification results. Therefore, either of the procedures can
be adopted in areas with inescapable cloud problems for updating
crop inventories and acreage estimation at regional scales. Future
work can focus on performing more comparison tests on differ-
ent areas, run tests using different multiclassifier systems, and use
different imagery.

Index Terms—Data fusion, ensemble classifier, multiclassifier
system, parallel and concatenation approach, plurality voting.
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1. INTRODUCTION

OR anumber of years, global food security has been on the
F vanguard as one of the uttermost pressing developmental
targets. According to the FAO, in order to achieve food for all
by 2050, food production around the world has to grow by more
than 60% [1], [2]. Both public and private organizations bear
a huge responsibility to raise food production in a sustainable
way [3]. For many developing economies, agriculture is the
mainstay contributing significantly to Gross Domestic Product
(GDP), food security, direct employment, export earnings, and
raw materials for other sectors [4]. Food security is one of the
most basic actors of our physical and intellectual wellbeing,
hence is a fundamental prerequisite for a healthy, active, and
happy life [5].

Dealing with food security requires knowledge about the crop
types, the land area that is being planted [6] and acreage esti-
mations. Also the monitoring of crops is of vital importance for
food security [7]. Croplands maps have great potential for use
in preserving prime agricultural farmland [8].

Agriculture is the backbone of Zimbabwe’s economy and un-
derpins the economic, social, and political lives of the majority
of the people of Zimbabwe [9]. The Zimbabwean government
reintroduced “command agriculture,” in 2016/7 farming season,
which is a program meant to substitute the existing maize import
exercise [10]. Atleast 2000 farmers are expected to benefit from
this agricultural scheme aimed at ensuring food self-sufficiency,
hence targeting farmers near water bodies who can plant a min-
imum of 200 hectares of maize per farmer [10]. For inventory
purposes, there is great need to identify the types of crops grown
on the different farming lands. Crop identification and mapping
is the foundation for crop monitoring using remote sensing and
is critical to many applications [11], [12]. In Zimbabwe, it can
play a big role in controlling the amount of input support re-
quired at a given farmland within a district or province.

Consequently, spatially explicit crop system inventories are
lacking, since the only available spatial information about crops
is collected during national agricultural censuses and are re-
ported by administrative units [13]. Systematic attempts to map
crops from remote sensing data are very limited. According to
Hentze et al. [14], there is an ostensible lack of spatially ex-
plicit methods to produce objective data such as the extent of
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agricultural area in Zimbabwe. The major limitation to the uti-
lization of remote sensing technology to produce such crop
distribution and croplands maps is the excessive cloud cover
problem. There exist previous research done regarding this ef-
fect, but they all used high temporal resolution MODIS time
series. These include Sibanda and Murwira [15], Maguranyanga
and Murwira [16], last but not least Hentze et al. [14]. The main
limitation of MODIS is its low spatial resolution of 500 m, since
most farm sizes are very small and heterogeneous.

Upon using freely available satellite imagery with medium
spatial resolution, there is need to first mask out all clouds
and shadows. The commonly used technique is to restore the
clouded pixels with corresponding cloud-free pixels from a dif-
ferent acquisition date either from the same sensor or a different
sensor. The acquisition times of the images have to be as close
to each other as possible in order to avoid conceivable land use
changes. This is one of the different types of pixel-level image
fusion, where different sensor datasets are combined into a sin-
gle composite image which enables a better understanding of
the scene.

Image data fusion techniques can be classified into three
main categories depending on the stage at which the fusion
takes place. These three levels are namely pixel/observation
level, feature level, and decision-level of representation [17]—
[20]. Schmitt and Zhu [20] provided a holistic view of generic
data fusion concepts and their applicability to the remote sens-
ing domain. Wang et al. [21] presented a new approach for
the fusion of Landsat 8 OLI and Sentinel-2 MSI data in or-
der to coordinate their spatial resolutions for continuous global
monitoring.

Major challenges arise when working on areas in the humid,
tropical, or subtropical regions where cloud-free data acquisi-
tion for a single date is difficult or impossible [22], [23], use
of imagery from another sensor becomes apparent. Pixel-level
fusion requires knowledge of spectral configurations of the sen-
sors involved, but decision-level does not require knowledge
about the spectral bands prior to fusion process. Since cloud
masking introduces huge missing data gaps, decision-level fu-
sion is being tested whether it can be an alternative method
to the pixel-level fusion. The innovation of this research is to
merge classified images (at decision-level) from different image
sources with missing data into a seamless classified map. If clas-
sification results are accurate enough, then this procedure may
contribute to efficiently designing and updating crop inventories
[24], for areas in tropical, subtropical, and humid regions which
experience inescapable cloud problems.

The general objective of this research is to evaluate the com-
parative performance between decision-level and pixel-level,
seamless crop distribution ensemble classified maps synthesized
from integrating Landsat 8, Landsat 7, and Sentinel-2 data. Spe-
cific subobjectives of this research are to 1) design and optimize
classification schema to conduct ensemble classification using
Landsat 8, Landsat 7, and Sentinel-2 data, 2) assess performance
of classifiers in multiclassifier systems of the different remotely
sensed images, and 3) assess performance of decision-level and
pixel-level data fusions.
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II. MULTICLASSIFIER SYSTEM

Image classification has made great progress over the past
decades, researchers have developed advanced classification ap-
proaches and techniques endeavoring to improve classification
accuracy, but still classification remain a challenge [25]. De-
pending on the distribution of patterns, when an individual clas-
sifier is trained on a labeled dataset [26], it is possible that not all
the patterns are learned well by individual classifiers. However,
a solution to such a problem is to train a group of classifiers
on the same problem since classifiers can be assumed to have
complementary capabilities [27], [28].

The method of combining classifiers can be referred to using
different names; including, ensemble classifiers, multiclassifier
systems, consensus theory, mixtures of experts, committees of
learners [29], [30] but they all refer to a group of individual
classifiers that are cooperatively trained on dataset in a super-
vised classification problem [26]. Ensemble classifier is sup-
posed to perform better than its base counterparts, only if the
classifiers are accurate and diverse [26], [31]-[33]. Diversity
of an ensemble system determines the success of the classi-
fication by correcting the errors of some of its members [33].
Though Kuncheva and Whitaker [29] argued that although there
are special cases where diversity and accuracy are connected,
their research results do not emphasize on the usefulness of
diversity in building classifiers ensembles. There are various
approaches of forming a multiclassifier system and it is crucial
to choose the best fusion method in order to achieve higher
accuracy.

These individual classifiers can be amassed either as 1) cas-
caded, 2) parallel, or 3) hierarchical configurations [31], [34],
[35]. Ranawana and Palade [31] described in detail the criteria
to consider when selecting the best topology depending on the
type of problem at hand.

There are three properties namely orthogonality, complemen-
tarity, and independence to be considered when constructing
multiclassifier systems [31], [37]. Orthogonality is not directly
measurable but is a rough measurement of how different the de-
cisions are among the different classifiers. The complementarity
measures the differences between the strengths and weaknesses
of the different classifiers. Independence among classifiers mea-
sures the influence that one classifier has over another, over the
decision making process, or how results between two classifiers
are interrelated [36].

A data/information fusion method (decision-level) combines
the decisions produced by the base classifiers. The fusion can
lead to improved classification decision compared to a deci-
sion based on any of the individual data sources [33]. There
exist a good number of fusion methods in literature including;
majority voting, Borda count, algebraic combiners [26], deci-
sion templates, the Dempster-Shafer based fusion [33], etc. Le
Hegarat-Mascle et al. [38] successfully applied the Dempster—
Shafer Evidence Theory to merge data from unsupervised clas-
sification of TMS and AirSAR L and C band images. Ranawana
and Palade [31] categorized the fusion methods by classify-
ing them as linear, nonlinear, statistical, and computationally
intelligent.
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Fig. 1. Study area showing distribution of land use classes and sampling
points. Inset shows location of study area (Manicaland province) in Zimbabwe.

Respectfully, majority of research done on multiclassifier sys-
tem in literature reveal evidence of an improvement made to
classification problems due to integration of classifiers. These
include Pal [32], Zhang et al. [39], Wang et al. [40], Kanel-
lopoulos et al. [41], Lu [28], last but not least Ho et al. [42].

III. MATERIALS
A. Study Area

The study area is Manicaland, located in the eastern province
in Zimbabwe that lies between latitude 17°15°00”S and
21°19°12”S, then longitude 31°13’01”E and 33°04’12”E. The
province is bounded by Mashonaland East Province to the north,
the Republic of Mozambique to the east, Midlands Province to
the west, then Masvingo Province to the south and southwest.
It covers an area of approximately 36 459 km? and four main
agricultural land use classes namely communal land, resettle-
ment area, large scale commercial, and small-scale commercial
farming areas (see Fig. 1).

Zimbabwe generally has a tropical climate that is depen-
dent on the rains brought by Indian Ocean monsoons (sea-
sonal winds) [9] and has two distinct seasons; summer and
winter. Summer crop growing season typically commences in
October until March [43]. The summer crops commonly grown
include maize, beans, tobacco, sorghum, millet, cotton, ground-
nuts etc. In February, most summer crops would have reached
the peak of the growing season since they are planted either in
November/December or January depending on the time of rain
onset.
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TABLE I
ACQUISITION DATES OF LANDSAT 8, SENTINEL-2, AND LANDSAT 7 SCENES

Landsat 8 Landsat 7 Sentinel-2

Path Row Acquisition Path Row Acquisition Product Acquisition
Date Date Date

168 72 15 March 168 73 19 February T36KUE 13 March
168 73 15 March 168 74 19 February T36KUF 13 March
168 74 15 March 168 75 19 February T36KVE 8 February
168 75 15 March T36KVF 30 March
169 72 6 March
169 73 2 February 169 73 30 March
169 74 18 February 169 74 26 February

Dry season starts in April up until September, winter is expe-
rienced in June and July. Wheat is the main winter crop planted.
However, most of perennial and permanent crops found in
Zimbabwe are grown in Manicaland province. These include
sugarcane, banana, coffee, tea, etc.

B. Field Data

Training and validation data were collected during differ-
ent field data campaigns for different purposes from December
2016 until March 2017. A total of 34 500 sampling points were
randomly selected and collected (see Fig. 1) using handheld
GPS receivers (Trimble Juno 5d, Garmin etrex Vista, etrex 10,
and etrex 20). UTM/WGS84 projection coordinate system was
adopted during the acquisition. Out of the total points, 22 000
points were used during the class identification process, 12 500
points were used for accuracy assessment.

C. Data Acquisition

Since spectral signatures are associated with phenological
stages rather than imaging dates, 2017 February/March imagery
for Landsat 8, Landsat 7, and Sentinel-2 with cloud cover not
more than 50% were downloaded from a website with this link
https://earthexplorer.usgs.gov/.

Both Landsat and Sentinel use the same geographic coor-
dinate system which is Universal Transverse Mercator (UTM)
zone 36 South, WGS84 datum. The availability of the three
sensors provide the scientific community with a wide range of
spatial, spectral, and temporal properties [44]. Table I shows the
acquired scenes that were employed in this research and their
respective dates when they were acquired. Level-1 Landsat 8
and 7 scenes are downloaded, whereas Sentinel-2 scenes are
Level IC.

IV. METHODOLOGY

A. Proposed Schema for Pixel-Level Fusion and
Decision-Level Fusion Systems

Fig. 2 presents simple generic flowcharts for pixel-level fu-
sion (left side) and decision-level fusion (right side) systems
designed and adopted in this paper. Pixel fusion is performed at
an earlier stage than decision-level fusion. Downloaded images
are preprocessed prior to the ensemble classification. The clas-
sification accuracy assessment results from the two integration
methods are compared. All processes are explained in detail in
the sections that follow.
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B. Preprocessing

1) Landsat 8 OLI: The downloaded tiles of Landsat 8 OLI
are radiometrically corrected. Cloud and cloud shadow removal
is implemented using the Fmask algorithm developed and im-
proved by Zhu et al. [45], also available in ENVI [46]. Atmo-
spheric correction is applied using QUick Atmospheric Correc-
tion (QUAC) module. Cloud-free scenes are later mosaicked
and masking is done to exclude areas reserved for wildlife na-
tional parks, safari, forests, and urban areas using 2015 land-use
shapefile from Surveyor General’s office in Zimbabwe.

2) Sentinel-2 MSI: Sentinel-2 mission provides a combina-
tion of two satellites namely; Sentinel-2A and Sentinel-2B,
hence having a temporal resolution of 5 days at the equator
in cloud-free conditions. The Sentinel-2 Level-1C downloaded
scenes, only four were usable with cloud cover less than 50%.
Level-1C scenes are first converted to top of canopy using
Sen2cor atmospheric correction module in SNAP before ge-
ometric resampling. All the bands are geometrically resampled
to 20 m spatial resolution. 20 m spatial resolution is chosen to
preserve and maintain the red-edge bands.

Cloud and cloud-shadow removal is performed in ENVI us-
ing method of (ready-to-use) decision tree of depth three as
presented by Hollstein et al. [47]. Cloud-free images are mo-
saicked and reserved areas where agriculture is not expected to
take place are masked out using 2015 land-use shapefile.

For pixel-level fusion, B2, B3, B4, B8, B11, and B12 are
further resampled to 30 m in ArcGIS. For decision-level fusion,
base classification of Sentinel-2 are done on B2, B3, B4, BS5,
B6, B7, B8, B8a, B11, and B12 (at 20 m resolution).

3) Landsat 7 ETM+-: Radiometric correction is applied on
the downloaded tiles. Gap filling functionality is applied, then
cloud and shadow removal is done using Fmask algorithm [45],
[46]. Atmospheric correction is applied using QUick Atmo-
spheric Correction (QUAC) module. Cloud-free tiles are then
mosaicked. 2015 land-use shapefile from the Surveyor General’s
office in Zimbabwe was used to mask out areas reserved for na-
tional parks and cities. The images are eventually mosaicked,
hence ready for pixel-level merging and ensemble classification.
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Generic flowcharts for comparison between pixel-level (left side) and decision-level (right side) fusion processes.

TABLE II
CORRESPONDING SPECTRAL BANDS OF LANDSAT 8, SENTINEL-2, AND
LANDSAT 7 USED FOR PIXEL-BASED FUSION

Landsat 8 Sentinel-2 Landsat 7
Band | Wavelength Spatial Band | Wavelength |  Spatial Band | Wavelength |  Spatial
number {um) resolution | number {um] resolution | number {um) resolution

[m] (m] (m}
2 0.45-0.52 0 1 0.46-0.52 10 1 0.45-0.52 30
3 0.53-0.60 0 3 0.54-0.58 10 1 052-0.60 0
4 0,63 -0.68 30 4 0,65 - 0.68 10 3 0.63-0.69 30
5 0.85-0.8% 0 8 0.79-0.80 10 4 0.77-0.80 30
6 1.56-1.66 30 11 157-166 0 3 155-1.75 30
7 210-2.30 0 12 210-228 20 7 2.09-0.35 0

C. Fusion of Raw Data (Pixel-Level Integration)

According to Schmitt and Zhu [20], complementary integra-
tion is the fusion of homogeneous sensor data with different
information content to reduce information gaps. The combina-
tion of sensors with different but complementary measurement
ranges, e.g., images with different cloud coverage or comple-
mentary spectral ranges is crucial to create a single composite
image. Resampling process is implemented in order to achieve
data matching or co-registration, which may be necessary not
only for the spatial domain.

Mandanici and Bitelli [48] did a preliminary study on the
comparison of Sentinel-2 and Landsat 8 imagery for a potential
combined use and their results revealed that the corresponding
Sentinel-2 and Landsat 8 bands have a very high correlation of
their relative spectral response functions (RSRFs), therefore, the
pixel-level fusion between the two sensor is justified. Although
the RSRFs of the instruments are not identical, some differences
are expected in the recorded radiometric values.

For this study, total number of Landsat 8 scenes are more
than those of either Landsat 7 or Sentinel-2 tiles, automatically
Landsat 8 becomes the target image, while both Landsat 7 and
Sentinel-2 are employed as reference images. Jin et al. [49] de-
fined in detail the meanings of both target and reference images.
However, it is crucial to note that the spectral bands of Sentinel
are thinner than Landsat ones. Table II illustrates corresponding
spectral bands used in the pixel-level fusion process.
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Fig. 4. Cloud-free pixels fusion by mosaicking from Landsat and Sentinel-2.

Fig. 3 illustrates the methodology followed to execute the
pixel-level integration. Cloud and cloud shadow mask from
Landsat 8 imagery are used to mask out cloud-free pixels from
either reference images.

Landsat 7 and 8 have similar spatial resolution of 30 m,
whereas the mosaicked Sentinel-2 data (20 m spatial resolu-
tion) are further resampled to 30 m using nearest neighbor re-
sampling technique prior to fusion. Cloud-free Sentinel-2 and
Landsat 7 pixels are introduced to areas of no information on the
Landsat 8 dataset. The fusion is achieved through creating
mosaics [17]. Once the cloud/shadow (Landsat 8) and lay-
over/shadow masks (Landsat 7 and Sentinel-2) have been pro-
duced, then fusion is performed.

Quality of fused image is assessed by visual means, and Fig. 4
exhibits a sample of the mosaic between Landsat and Sentinel-2.
Yellow pixels are from Sentinel-2 which replaced the eliminated
clouded pixels from Landsat imagery.

However, there exists a general rule of thumb that says prior
to fusing the images, it is crucial to first produce the best single-
sensor geometry and radiometry (geocoding, filter, line, edge
detection, etc.) and then fuse the images. Any spatial enhance-
ment performed prior to image fusion will benefit the resulting
fused images [17]. Fig. 5 shows the mosaicked (processed) im-
ages without cloud cover for Landsat 8, Sentinel-2, Landsat 7,
and pixel-level fused raw image. The white gaps indicate lack
of data and reserved areas as indicated in Fig. 1.
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D. Assessment of Training Data Quality

In order to achieve good supervised classification accuracy,
the training data need to be of good quality. Therefore, it is
crucial to carry out an inspection before performing the classi-
fication since the data used for this research was gathered from
various researchers.

Rule of thumb states that; it is fundamental to have more
training points than the number of spectral bands (i.e., dimen-
sionality). There are three common methods utilized to solve
this task namely: 1) visual analysis of the brightness histograms
of training areas, 2) visual analysis of training areas’ location in
the n-Dimension scatter plot, and 3) quantitative evaluation of
spectral separability [50].

This research implements Transformed Divergence (TD) and
Jeffries-Matusita Distance (JMD). The TD separability measure
yields real values between 0 and 2, where O indicates complete
overlap between the signatures of two classes and 2 indicates a
complete separation between the two classes. Divergence mea-
sures are related to classification accuracies. The larger the sep-
arability values are, the better the final classification results will
be. The following rules are suggested for each of the possible
ranges of separability values x:

0.0 <x < 1.0 (poor separability) ,
1.0 < x < 1.9 (moderate separability),

1.9 <x < 2.0 (good separability) .

In ENVI the Jeffries—Matusita distance is squared to range
between 0 and 2, consequently one should take the square root
of this output.

According to Apan et al. [55], accurate mapping at crop
species level is possible when the following ideal conditions are
met:

1) the study area is limited to a relatively small region where
bio-physical conditions (mainly soil, water regimes, and
topography) are homogenous.

2) The study area contains no crops planted at significantly
different planting dates.

Literally, these two conditions are rare in nature and perhaps
could only be found on experimental plots, or when the fo-
cus of the study is on within-field variability mapping. Spectral
separability distances are expected to be correlated with classi-
fication results, where higher degree of spectra overlapping on
the data can lead to poorer accuracy despite the number of bands
available.

E. Ensemble Classification

This research implements the parallel and concatenation ap-
proach (see Fig. 6) where the classification results generated by
individual classifiers are used as an input into the succeeding
classifier [36], [51]. Thus, the results obtained through each clas-
sifier are similarly passed onto the next classifier until a result is
obtained through the final classifier in the chain [51]. Ensemble
classifier comprises of MLC, Support Vector Machine (SVM),
and Spectral Information Divergence (SID). Classification is
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done on Landsat 8 OLI images, Sentinel-2 MSI, and Landsat 7
ETM-+ independently.

There are several classes to be discerned in the research area,
which can be referred to as basic propositions. The probability
of the occurrence of one of these propositions, for one sensor, is
calculated by summing the probability masses for general propo-
sitions that support the occurrence of that basic proposition.

Unification of the base classifiers is done by manipulating
the class probabilities for each classifier. The class membership
probability images produced from the classification are then
reclassified using SVM to integrate the base classifiers. SVM
classifier is selected as the second classifier for the reason that it
possesses satisfactory capability to deal with the classification
problem. This methodology is adopted and modified from Du
et al. [51] (see Fig. 6). Second classification is performed on
a posteriori class membership probability images representing
the mass probability of a pixel belonging to a class. A posteri-
ori class membership probabilities can be denoted by Pr(k | 2)

Mosaicked raw images without clouds. (a) Landsat 8. (b) Sentinel-2. (c) Landsat 7. (d) Pixel-level fused image.

‘ Landsat 8 classified | H ‘ SEm.mEI 2 classified LJ Iandsat { classified ‘
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|

| Final cfassified image |

Fig. 7. Flowchart of decision-level fusion.
where g is in class k provided Pr(k|g) > 1 — Pr(j|g) for all
j=1...K.

But for MLC, in ENVI the rule image produced upon classi-
fication, needs to be converted to class membership probability
using an IDL code presented by Canty [52], [53] under the
assumption that there is no “unclassified” class.

FE. Plurality Voting (Decision-Level Fusion)

Where two or more maps overlay, plurality voting [39], [54]
is used to decide on the class to be incorporated into the seam-
less final map. Fig. 7 is a flowchart illustrating the process
of decision-level fusion. Classified images from Landsat 8,
Sntinel-2, and Landsat 7 are harmonized into a single final
classified map. The plurality voting method is the simplest
of all combinatorial functions. It selects the relevant class by
polling all the classifiers to see which class is the most popular.
Whichever class gets the highest vote is selected. This method
is particularly successful when the classifiers involved output
binary votes.

“Thus by considering three classifiers: {C1, C2, C3}. Letting x be
anew input example. If the three classifiers are absolutely identical,
then when C1(x) provides a wrong classification, C2(x) and C3(x)
will also provide erroneous results. If the errors made by the three
classifiers are uncorrelated, the case might be that when C1(x) is
wrong, C2(x) and C3(x) may be correct. In such a case, the majority
vote among the three classifiers will correctly classify x.” Where the
three classes C1(x), C2(x), and C3(x) are different, SVM is used to
reclassify them, else choose class with highest correctly classified
pixels.
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TABLE III
CLASSIFICATION ACCURACIES OF LANDSAT 8, SENTINEL-2, LANDSAT 7, AND FUSED IMAGES

Classifier | Landsat Kappa Sentinel-2 Kappa Landsat Kappa Pixel-level Kappa Decision-level Kappa
8 coefficient coefficient 7 coefficient image coefficient image coefficient

MLC 73.29% 0.71 88.52% 0.88 63.76% 0.59 77.46% 0.75

SVM 75.37% 0.73 93.63% 0.93 67.56% 0.65 78.58% 0.76

SID 59.02% 0.54 54.98% 0.53 54.84% 0.49 55.45% 0.53

MLC + 78.16% 0.75 94.99% 0.94 69.69% 0.67 81.15% 0.79

SVM

SVM + 75.47% 0.72 94.50% 0.93 67.78% 0.65 79.85% 0.77

SID

MLC + 73.96% 0.71 89.31% 0.89 63.92% 0.59 77.99% 0.75

SID

MLV + 78.62% 0.76 96.15% 0.95 69.87% 0.67 82.52% 0.80 85.44% 0.84

SVM +

SID

Preliminary ensemble classified images of Landsat 8 and
Landsat 7 are integrated more easily since their spatial resolu-
tion is the same (30 m). Sentinel-2 is first resampled to a spatial
resolution of 30 m using nearest neighbor technique in ArcMap.
Decision-level fusion is eventually performed on Landsat 7, 8,
and Sentinel-2 images with same spatial resolution and accu-
rately aligned.

G. Comparison of Classification Results

Based on confusion matrices, overall accuracies are com-
pared. Statistical significance of kappa coefficients is deter-
mined using Z-test. Composite measure of producer’s and user’s
accuracies (F1-score) are calculated for each class for compari-
son of the two fusion methods.

Planted areas from pixel-level and decision-level classifica-
tion results are compared and a regression line is plotted to
determine the relationship between both results.

V. RESULTS

A. Overall Classification Accuracies

Overall statistical accuracies and kappa coefficients obtained
from the confusion matrices are used to analyze the quality of
classified data obtained from the three individual base classi-
fiers and combinations of integrated classifications results are
illustrated by Table III. Kappa coefficient considers the whole
error matrix instead of the diagonal elements which is the case
with overall accuracy.

SVM outperformed all the base classifiers on all the four
datasets classified. It performed the best on Sentinel-2 images
achieving an accuracy of 93.63%, followed by 78.58% on pixel-
level fused image. MLC achieved 88.52% on Sentinel-2 dataset
followed by 77.46% on pixel-level fused image. However, SVM
performed slightly better than MLC on all the datasets. It has
proved to be a powerful tool for discriminating the various
major crops grown in summer using remote sensing. Accord-
ing to Zhang et al. [56] and Szuster et al. [57], SVM usually
yields slightly better results than MLC for land cover analysis.
The same has been proved by this research. SID is the least

performer but performed fairly well having overall accuracy
values between 53-60%.

Endeavoring to improve accuracy of the overall classifica-
tion, the base classifiers are combined using the base classifiers’
a posteriori class membership probabilities which were fur-
ther classified using SVM. In all datasets configurations imple-
mented, the highest accuracy has been achieved by combining
the 3 classifiers (MLC + SVM + SID) in all scenarios.

Combining MLC + SVM improves the overall accuracy val-
ues but are slightly lower than MLC + SVM + SID. Despite
the fact that SID has the lowest accuracy, when combined with
either MLC or SVM, it makes a difference, there is a slight
increase effected on the ultimate overall accuracy although the
magnitude of improvement is small. Generally, the ensemble
classifier accomplished better results than its base counterparts.
This experiment conducted exploits the idea that diverse classi-
fiers perform differently, even though same training data is used.
However, they can provide complementary information about
patterns to be determined, thereby increasing the effectiveness
of the overall recognition process.

Classifying the fused single composite raw image achieved
an accuracy of 82.53% and kappa coefficient of 0.80, whereas
the integration of MLC + SVM +- SID classified thematic maps
from Landsat 8, Landsat 7, and Sentinel-2 achieved an overall
accuracy of 85.44% with kappa coefficient of 0.84.

Decision-level fused map attained a better result than pixel-
level thematic map. The overall accuracy results prove that
decision-level data fusion enable better crops identification com-
pared to classifying a single composite pixel-level integrated
image. This indicates that data fusion at decision-level does not
lead to any significant data loss, instead there is an improvement
in the overall classification accuracy.

B. Statistical Significance of Kappa Coefficients

The Z-test is a statistical test of the difference in accuracy
values; it involves comparing the accuracy of a new classifier
against one derived from the application of a standard clas-
sifier [58]. Z-test is performed to assess significant differences
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TABLE IV
Z-TEST STATISTICAL SIGNIFICANCE BETWEEN PIXEL- AND DECISION-LEVEL
FUSION RESULTS AT o = 0.05

Fusion Pixel-level Decision-level
Overall accuracy (%) 82.52 85.44
Kappa K 0.80 0.84
Var (K) 0.0056 0.0027
K, - K, -0.4391
Z=—
’ 2 2
O Ry + 0 Ry
Significance Not significant
Fl-score
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Fig. 8. Fl-score values for the different classes discerned in the study.

between the accuracy measurements of classification results [58]
from pixel-level and decision-level fusions.

Initial kappa coefficients computed in ENVI, their respec-
tive confusion matrices are exported to MATLAB to obtain the
variance estimates (ai(1 and U?A{o ) necessary to compare the dif-
ferent tests. Table IV exhibits the result for the computed z-value
of —0.4391, indicating that there is a no significant difference
between the kappa values at o = 0.05.

C. Classification Performance on Individual Classes

Individual class accuracies from decision-level and pixel-
level approaches are assessed in this section by F1-score values
calculated from producer’s and user’s accuracies. Since overall
accuracy does not reveal whether error was evenly distributed
between classes or if some classes were really bad and some re-
ally good, user’s and producer’s accuracies can be considered.

The higher the Fl-score, the better the representation. The
best F1-measurement a class can achieve is 1, the worst is 0.
Fig. 8 illustrates the Fl-scores represented by the bar graph.
F1-score represents the mean of precision and sensitivity, that
is a composite measure of user’s and producer’s accuracies are
calculated for each class by the following equation:

PAxUA
PA4+UA

where PA is producer’s accuracy whereas UA is user’s accuracy.

F'1 score = 2 x
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Decision-level method managed to correctly represent most
classes in the thematic map compared to pixel-level based fused
thematic map. Exceptions are avocado, macadamia nuts and
mixed classes.

D. Crops Distribution Maps

Fig. 9 depicts seamless crops distribution maps synthesized
from 1) pixel-level fusion and 2) decision-level fusion ap-
proaches. Visually comparing the two summer crops distribu-
tion maps, they reveal similar patterns, the differences between
these two is minimal and inevitable. This is an indication that
the classification processes of the two procedures synthesize al-
most similar products. Generally, maize is the dominating crop
grown in summer.

Fig. 10 displays a sugarcane estate as depicted by classified
images from pixel-level and decision-level fusion system. Most
of the areas planted the sugarcane look similar between the two
images whereas some areas with different classes discerned are
visible.

Zimbabwe’s Ministry of Agriculture, Mechanization, and Ir-
rigation Development [59] released a report titled “First round
crop and livestock assessment (2016-2017),” on the 6th of
March with total hectares of areas planted of the different
crops in all provinces. Therefore, the areas of crop species
in Manicaland province from the report and from this study
are compared qualitatively. Generally, for all the crops com-
pared, both fusion approaches produced higher values of total
planted areas than those recorded in the first-round assessment
report. The relationship between planted areas from the report
and decision-level produced R? = 0.99 whereas planted areas
recorded in report and pixel-level has R? = 0.99. Relationship
between planted areas from decision-level and pixel-level ap-
proaches has a R? = 0.99.

VI. DISCUSSION

The resultant fused composite image synthesized from syner-
gistic combination of multisource images of a scene can provide
more accurate and reliable information about that scene than any
individual source images [60], [61]. Due to inescapable cloud
cover, image fusion systems provide great practical valuable
data and information crop mapping. Furthermore, less costly
information may be obtained from a system using multisensor
fusion [61].

This research is aimed at evaluating the performance of
decision-level and pixel-level fusion methods in an ensemble
classifier to determine crops. From the results, decision-level
approach achieved 85.4% as compared to 82.5% obtained by
pixel-level approach. Respective kappa coefficients are 0.84 and
0.80 but are not significantly different according to Z-statistical
test at 95% confidence interval. This means that results from
decision-level approach and those from pixel-level at district
level are comparable.

Integration systems provide redundant information from the
three sensors, hence, fusion of redundant information can reduce
overall uncertainty and thus serve to increase accuracy [61].
Moreover, the fusions allow the integration of complementary
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Fig. 9. Classified images. (a) Pixel-level. (b) Decision-level.

Fig. 10.  Sugarcane estate from (a) pixel-level, and (b) decision-level classified
maps. Inset shows location of sugarcane estate on classified map marked by red
rectangle.

information provided by each sensor concerning a subset of the
features in the environment.

Nevertheless, it is indispensable to combine multiple classi-
fiers to yield a better result than any individual classifiers. The
advantage of decision-level integration is that all information
from each sensor imagery can be applied separately. Classifying
Landsat 8 produced comparable results to those of Sentinel-2.
The best performance from Sentinel-2 is due to added value
to land use mapping that comes along with Sentinel-2 red-
edge bands [44]. Sentinel-2 has red edge bands which play a
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crucial role in vegetation analysis. These red-edge bands are not
available in the Landsat spectral configurations. The main dis-
advantage of Landsat 7, is the scan line corrector failure, hence
algorithms employed in filling the gaps will never produce a
true representation of the area covered. Gap filling is about 70%
effective in regenerating to lost data, of which the lost data is
about 22%. In areas where there is less or no cloud cover, multi-
ple acquisitions can be merged to resolve the SLC-off data gaps.
Other Landsat 7 users do not apply the gap filling algorithms,
since they regard them to be inaccurate. Fused image produced
by pixel-level fusion approach is limited to only six bands which
do not include the red-edge bands from Sentinel-2.

The other advantage of decision-level fusion is that no prior
knowledge about the spectral configuration of the various sen-
sors involved is required. To this fact, it becomes the main
limitation of pixel-level fusion. In the event that there is/are
no corresponding bands, the restoration of cloud pixels is not
possible. Further research is necessary to determine whether
decision-level always perform better than pixel-level fusion on
different environmental conditions.

The disadvantage of decision-level fusion, nevertheless, is
still the limited possibility of decision boundaries, because
the operations are restricted to voting/thresholding, AND,
and OR [62].

Considering time consumption aspect, pixel-level approach
consumes relatively less time than the decision-level approach.
Computational costs are the same since freely available satel-
lite images are utilised. Storage space for decision-level fusion
procedure is greater than for pixel-level fusion.
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Itis possible to create reliable seamless crop distribution maps
from merging classified images at decision-level using freely
available multispectral images with poor data quality coverage.
Both fusion systems can be used for crop mapping, and the
maps are useful for inventory purposes, and acreage estima-
tion at regional scale using remote sensing. Crop distribution
and acreage are crucial for information for good agricultural
management and policy making.

Ensemble classifiers reduce the probability of overfitting and
bias or variance error, hence exploit the idea that different
classifiers can provide complementary information about pat-
terns to be classified, thereby improving the effectiveness of
the overall recognition process [30]. SVM classification pro-
duced the best classification results basing on the statistical
accuracy assessments performed on the Landsat 8, Sentinel-2,
and Landsat 7 imagery. Multiclassifier systems are supposed
to improve the overall accuracy of classification results. In this
paper, MLC + SVM + SID improved classification accura-
cies of classification on all the three-sensor data. It is higher
than SVM classification accuracies on the three datasets. How-
ever, it is necessary to determine the optimal size of an en-
semble that performs and produces the best results. Further
research can be done by creating different ensemble classi-
fiers comprising of different base classifiers and run tests on
different imagery, different areas, and compare the two fusion
approaches.

VII. CONCLUSION

This paper evaluated the comparative performance of deci-
sion and pixel levels data fusion on ensemble classification using
Landsat 8, Landsat 7, and Sentinel-2 data. Overall classification
results reveal that decision-level approach attained better ac-
curacy of 85.4% compared to 82.5% achieved by classifying
pixel-level fused image. However, their corresponding kappa
coefficients of 0.84 and 0.80 are compared statistically using
Z-test and reveal that both methods are not significantly differ-
ent at « = 0.05. To accomplish objectives of this research, the
first subobjective is to develop a classification schema and has
been designed as presented by Fig. 2.

Second subobjective is to assess the performance of base clas-
sifiers in the multiclassifier system. Parallel and concatenation
approach has been implemented to execute the multiclassifier
system. SVM performs the best of the three base classifiers,
followed by MLC and lastly SID on all the datasets. Integrating
the three (SVM + MLC + SID) achieved the highest accuracy,
followed by fusing SVM + MLC on all cases.

The final subobjective is to assess performance of decision-
level and pixel-level data fusions. F1-test has been implemented
to determine the performance on individual classes, results ex-
hibit that decision-level data fusion performed better in dis-
criminating most classes compared to performance on individ-
ual classes from a single composite pixel-level integrated image.
The exceptional classes are avocado, macadamia nut, and mixed
crops. Regression coefficient (r) between planted areas from
pixel-level and decision-level fusion systems is 0.99. Therefore,
the performances of the two fusion methods can be concluded
to be similar significantly.
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