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Comparative Performance of Complex-Valued

B-Spline and Polynomial Models Applied to

Iterative Frequency-Domain Decision Feedback

Equalization of Hammerstein Channels
Sheng Chen, Xia Hong, Emad Khalaf, Fuad E. Alsaadi and Chris J. Harris

Abstract—Complex-valued (CV) B-spline neural network ap-
proach offers a highly effective means for identifying and invert-
ing practical Hammerstein systems. Compared to its conventional
CV polynomial based counterpart, CV B-spline neural network
has superior performance in identifying and inverting CV Ham-
merstein systems, while imposing a similar complexity. This paper
reviews the optimality of CV B-spline neural network approach.
Advantages of B-spline neural network approach as compared to
polynomial based modeling approach are extensively discussed,
and the effectiveness of CV neural network based approach
is demonstrated in a real-world application. More specifically,
we evaluate the comparative performance of the CV B-spline
and polynomial based approaches for the nonlinear iterative
frequency-domain decision feedback equalization (NIFDDFE) of
single-carrier Hammerstein channels. Our results confirm the
superior performance of the CV B-spline based NIFDDFE over
its CV polynomial based counterpart.

Index Terms—Complex-valued (CV) B-spline neural network,
CV polynomial model, identification and inversion of Hammer-
stein channels, nonlinear iterative frequency-domain decision
feedback equalization

I. INTRODUCTION

In many real-world applications, the underlying system that

generates complex-valued (CV) signals can be modeled by

the CV Hammerstein model. The system is grey-box, as its

structure is known to be consisting of an unknown static

nonlinearity followed by an unknown linear dynamic model.

A well-known example of CV Hammerstein systems is the

single-carrier (SC) block transmission communication channel

with nonlinear high power amplifier (HPA) at transmitter,

whereby the CV static nonlinearity of the Hammerstein system

is constituted by the nonlinear transmit HPA, and its linear

dynamic subsystem is the dispersive channel which can usually

be modeled as a finite-duration impulse response (FIR) filter.

Effective identification and inversion of CV Hammerstein

systems is therefore crucial in these practical applications.

CV B-spline neural network has widely been used as

an effective means for identification and inversion of CV
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Hammerstein systems [1]–[3]. Compared to its conventional

polynomial based counterpart, B-spline models are proven

to have the optimal stability or numerical robustness [4]–

[6], and achieve superior performance in challenging practical

applications [1]–[3], while maintaining a similar computa-

tional complexity. In this paper, we review the CV B-spline

neural network model as an effective means for identifying

and inverting practical Hammerstein systems. In particular,

we analyze its optimal robustness property, and provide the

computational complexity required to calculate the output of a

B-spline model, which turns out to be slightly higher than that

of the conventional polynomial model, and the both models

have the same order of complexity.

Our main contribution is however the derivation of a new

CV B-spline neural network based design for the nonlin-

ear iterative frequency-domain decision feedback equalization

(NIFDDFE) of SC Hammerstein communication systems. Ef-

fective identification and inverting algorithms are provided

for the SC Hammerstein channel based on the CV B-spline

neural network approach. We use this challenging real-world

application to evaluate the comparative performance of the

CV B-spline neural network based NIFDDFE and its CV

polynomial based NIFDDFE counterpart. The results obtained

clearly demonstrate that our B-spline based NIFDDFE has a

superior performance over the polynomial based NIFDDFE.

Our novel application therefore reinforces the CV B-spline

neural network as a versatile and effective means for solving

real-world applications where the underlying systems can be

represented by CV Hammerstein models.

Throughout this contribution, a CV number x ∈ C is

represented either by x = xR + jxI or by x = |x| exp(j∠x).
The transpose and conjugate transpose operators are denoted

by ( )T and ( )H, respectively, while ( )−1 stands for the

inverse operation and ( )∗ denotes the conjugate operation.

Furthermore, the expectation operator is denoted by E{ }.

II. NIFDDFE FOR HAMMERSTEIN CHANNELS

To illustrate the necessity for identifying and inverting CV

Hammerstein systems, we begin by introducing our challeng-

ing application senario, the SC block transmission commu-

nication system [7]–[10], where each transmit block consists

of N data symbols with M -quadrature amplitude modulation

(QAM) expressed as

x =
[
x0 x1 · · ·xN−1

]T
, (1)
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Fig. 1. System schematic of the NIFDDFE for SC Hammerstein communication systems with the nonlinear HPA Ψ at transmitter.

where xk, 0 ≤ k ≤ N − 1, take the values from the M -QAM

symbol set

X={d(2l−
√

M − 1)+ j ·d(2q−
√

M − 1), 1 ≤ l, q ≤
√

M},
(2)

with 2d denoting the minimum distance between symbol

points. Adding the cyclic prefix (CP) of length Ncp to x yields

x̄ =
[
x−Ncp

x−Ncp+1 · · ·x−1 | xT
]T

, (3)

with x−k = xN−k for 1 ≤ k ≤ Ncp. The signal block x̄ is

amplified by the HPA to yield the transmitted signal block

w̄ =
[
w−Ncp

w−Ncp+1 · · ·w−1 | wT
]T

(4)

where w =
[
w0 w1 · · ·wN−1

]T
and

wk =Ψ(xk) , −Ncp ≤ k ≤ N − 1, (5)

in which Ψ( ) represents the CV static nonlinearity of HPA,

and w−k = wN−k for 1 ≤ k ≤ Ncp. Typical HPA

in transmitter is the solid state power amplifier [11]–[13],

whose nonlinearity Ψ( ) is constituted by the HPA’s amplitude

response A(r) and phase response Υ(r) given by

A(r) =
gar

(
1 +

(
gar
Asat

)2βa
) 1

2βa

, (6)

Υ(r) =
αφrq1

1 +
(

r
βφ

)q2
, (7)

where r denotes the amplitude of the input to HPA, ga is the

small gain signal, βa is the smoothness factor and Asat is

the saturation level, while the phase response parameters, αφ.

βφ, q1 and q2, are adjusted to match the specific amplifier’s

characteristics. We adopt the following parameter set defined

in the standardization [12], [13]

ga = 19, βa = 0.81, Asat = 1.4;
αφ = −48000, βφ = 0.123, q1 = 3.8, q2 = 3.7.

(8)

Given the input xk = |xk|ej∠xk
, the output of the HPA is

wk = A(|xk|)ej
(
∠

xk+Υ(|xk|)
)
. (9)

The operating status of the HPA is specified by the output

back-off (OBO), which is defined as the ratio of the maximum

output power Pmax of the HPA to the average output power

Paop of the HPA output signal, given by

OBO = 10 · log10

Pmax

Paop
. (10)

The smaller OBO is, the more the HPA is operating into the

nonlinear saturation region.

The amplified signal block w̄ is transmitted through the

channel whose channel impulse response (CIR) coefficient

vector is

h =
[
h0 h1 · · ·hLcir

]T
, (11)

where Lcir denotes the CIR length. Note that the CP must

be chosen to be Ncp ≥ Lcir. We can always assume that

h0 = 1 because if this is not the case, h0 can be absorbed

into the CV nonlinearity Ψ( ), and the CIR coefficients are re-

scaled as hi/h0 for 0 ≤ i ≤ Lcir. The combined transmission

channel and transmitter, as seen in Fig. 1, is a Hammerstein

system containing the nonlinearity Ψ( ) defined by (6) and (7)

followed by the FIR filter with the CIR (11).

At receiver, after CP removal, the channel-impaired received

signals yk are given by

yk =

Lcir∑

i=0

hiwk−i + ek, 0 ≤ k ≤ N − 1, (12)

in which wk−i = wN+k−i for k < i, where ek is the additive

white Gaussian noise (AWGN) with E
{
|ek|2

}
= 2σ2

e . Our

NIFDDFE receiver is depicted in Fig. 1. First, passing y =[
y0 y1 · · · yN−1

]T
through the N -point fast Fourier transform

(FFT) processor yields the frequency-domain (FD) received

signal block Y =
[
Y0 Y1 · · ·YN−1

]T
with elements

Yn =
N−1∑

k=0

yke−j 2πkn
N , 0 ≤ n ≤ N − 1. (13)

Due to the well-known circular property of CP [7]–[10],

Yn =HnWn + Ξn, 0 ≤ n ≤ N − 1, (14)

in which Ξn is the FD representation of the AWGN with

E
{∣∣Ξn

∣∣2} = 2σ2
e , and W =

[
W0 W1 · · ·WN−1

]T
is the

N -point FFT of w, i.e.,

Wn =

N−1∑

k=0

wke−j 2πkn
N , 0 ≤ n ≤ N − 1, (15)

with E
{∣∣Wn

∣∣2} = NE
{∣∣wk

∣∣2} = Nσ2
w, while the FD

channel transfer function coefficients (FDCTFCs) Hn, 0 ≤
n ≤ N − 1, are the N -point FFT of h given by

Hn =

Lcir∑

i=0

hie
−j 2πin

N , 0 ≤ n ≤ N − 1. (16)

Our new NIFDDFE involves an iterative detection procedure

with the iteration index l ≥ 1. Typically 3 to 4 iterations

are sufficient. Specifically, let the FD feedforward and feed-

back equalizers coefficients at the lth iteration by
{
C

(l)
n

}N−1

n=0
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and
{
B

(l)
n

}N−1

n=0
, respectively. Further denote the estimate of

{Wn}N−1
n=0 at the previous iteration be

{
Ŵ

(l−1)
n

}N−1

n=0
. Then

the ‘soft’ estimate of Wn is given by

W̃ (l)
n =C(l)

n Yn + B(l)
n Ŵ (l−1)

n , 0 ≤ n ≤ N − 1. (17)

Passing W̃
(l)
n for 0 ≤ n ≤ N − 1 through the N -point inverse

FFT (IFFT) processor yields the soft estimate of the time-

domain (TD) transmitted signals {wk}N−1
k=0 as

w̃
(l)
k =

1

N

N−1∑

n=0

W̃ (l)
n ej 2πnk

N , 0 ≤ k ≤ N − 1. (18)

For the convenience of discussion, assume that the nonlinearity

Ψ( ) of the transmitter HPA and its inversion Ψ−1( ) are both

known at the receiver. The soft estimate
{
x̃

(l)
k

}N−1

k=0
of the

transmitted data symbols can be calculated according to

x̃
(l)
k =Ψ−1

(
w̃

(l)
k

)
, 0 ≤ k ≤ N − 1. (19)

By quantizing x̃
(l)
k , we obtain the hard-decision estimate{

x̂
(l)
k

}N−1

k=0
of the transmitted data block. Further distorting{

x̂
(l)
k

}N−1

k=0
by Ψ( ) yields the TD estimate

{
ŵ

(l)
k

}N−1

k=0
which

is transformed by the N -point FFT to produce the FD estimate{
Ŵ

(l)
n

}N−1

k=0
to be used in the next iteration.

If the HPA is linear and hence wk = xk, we have the

existing linear iterative FD decision feedback equalisation

(LIFDDFE), for which
{
C

(l)
n

}N−1

n=0
and

{
B

(l)
n

}N−1

n=0
can be

obtained by minimizing the mean square error but the compu-

tation is quite involved [8]. Extending this LIFDDFE design

to our new NIFDDFE also yields poor performance. However,

we find that the extension of the low-complexity simpli-

fied LIFDDFE design of [10] to our NIFDDFE works well

with some modifications. We now present how to calculate{
C

(l)
n

}N−1

n=0
and

{
B

(l)
n

}N−1

n=0
for our new NIFDDFE.

At the first iteration l = 1, Ŵ
(0)
n = 0 and B

(1)
n = 0 for

0 ≤ n ≤ N − 1, and we have

C(1)
n =

H∗
n

|Hn|2 +
2σ2

e

σ2
w

, 0 ≤ n ≤ N − 1, (20)

which is identical to the nonlinear FD equalization (NFDE)

solution of [3]. For the iterations l ≥ 2, we have

C(l)
n =Cn =

(1 − γ)H∗
n

SNR−1
pre+βPe,pre|Hn|2

, 0 ≤ n ≤ N − 1, (21)

B(l)
n =Bn = −

(
CnHn − 1

)
, 0 ≤ n ≤ N − 1, (22)

with

ϖ =
1

N

N−1∑

n=0

|Hn|2
SNR−1

pre + βPe,pre|Hn|2
, (23)

γ =
ϖ

1 + ϖ
. (24)

For the LIFDDFE, the work [10] finds that the perfor-

mance is insensitive to the predefined SNR value SNRpre and

the predefined symbol error probability Pe,pre. In particular,

SNR−1
pre = 0.1 and Pe,pre = 0.1 yields excellent results.

In our NIFDDFE, we also find that SNR−1
pre = 0.1 and

Pe,pre = 0.1 are appropriate. In the LIFDDFE case, i.e.,

wk = xk, β is a parameter depending on the modulation

scheme for xk. Specifically, β = 2, 2/5 and 2/21 for 4-

QAM, 16-QAM and 64-QAM, respectively. In our NIFDDFE,

wk is a nonlinearly distorted xk and the severity of this

nonlinear distortion depends on the OBO of the transmitter

HPA. Intuitively, β should be smaller than the linear case and

how small β is also depends on the value of OBO. For 64-

QAM with OBO = 3 dB, we find β = 0.01 is appropriate,

i.e., ten times smaller than the linear case. With OBO = 5 dB,

an appropriate value is β = 0.05, i.e., only two times smaller

than the linear case. This makes sense, as with OBO = 5 dB,

the HPA is operating closer to the linear region than the

case of OBO = 3 dB. Another modification made is in the

feedback coefficients Bn of (22). In the LIFDDFE design [10],

Bn = −
(
CnHn − γ

)
. But we find that with Bn of (22), the

performance is better for the NIFDDFE.

III. CV B-SPLINE AND POLYNOMIAL IMPLEMENTATIONS

OF NIFDDFE

It can be seen that implementing the NIFDDFE requires

to identifying and inverting the Hammerstein channel that

consists of the unknown static nonlinearity Ψ( ) followed by

the FIR filter with the unknown CIR vector h.

A. CV B-spline and polynomial models for Ψ( )

1) CV B-spline neural network: The CV B-spline neural

network approach [1]–[3] offers an effective means for identi-

fying and inverting this Hammerstein channel. We first point

out that Ψ( ) meets the following conditions.

i) Ψ( ) is a one-to-one mapping, i.e., a continuous and

invertible function.

ii) xR and xI are upper and lower bounded by some known

finite real values, where x = xR + jxI denotes the CV input

to Ψ( ), and the distributions of xR and xI are identical.

According to the property ii), we have Umin < xs < Umax,

where Umin and Umax are known finite real values, while xs

denotes either xR or xI , i.e., the subscript s is either R or I .

To use a B-spline neural network for modeling Ψ( ), a set of

Ns univariate B-spline basis functions on xs is parametrized

by the piecewise polynomial degree Po and a knot sequence

of (Ns + Po + 1) knot values, {U0, U1, · · · , UNs+Po
}, with

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo
< · · · <

UNs
< UNs+1 = Umax < UNs+2 < · · · < UNs+Po

. (25)

At each end, there are Po − 1 ‘external’ knots that are outside

the input region and one boundary knot. As a result, the

number of ‘internal’ knots is Ns + 1 − Po. Given the set

of predetermined knots (25), the set of Ns B-spline basis

functions can be formed by using the De Boor recursion [14],

yielding for 1 ≤ l ≤ Ns + Po,

B
(s,0)
l (xs) =

{
1, if Ul−1 ≤ xs < Ul,
0, otherwise,

(26)

as well as for l = 1, · · · , Ns + Po − p and p = 1, · · · , Po,

B
(s,p)
l (xs) =

xs − Ul−1

Up+l−1 − Ul−1
B

(s,p−1)
l (xs)

+
Up+l − xs

Up+l − Ul

B
(s,p−1)
l+1 (xs). (27)
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De Boor recursion is illustrated in Fig. 2.
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Fig. 2. De Boor recursion: Po = 4, Ns = 5, Umin = U3 and Umax = U6.

Using the tensor product between the two sets of univariate

B-spline basis functions [15], B
(R,Po)
l (xR) for 1 ≤ l ≤ NR

and B
(I,Po)
m (xI) for 1 ≤ m ≤ NI , a set of new B-spline

basis functions B
(Po)
l,m (x) can be formed and used in the CV

B-spline neural network, giving rise to

ŵ =Ψ̂B(x) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (x)θB

l,m

=

NR∑

l=1

NI∑

m=1

B
(R,Po)
l (xR)B(I,Po)

m (xI)θ
B
l,m, (28)

where θB
l,m = θB

l,mR
+ j θB

l,mI
∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤

NI , are the CV weights. Denote

θB =
[
θB
1,1 θB

1,2 · · · θB
l,m · · · θB

NR,NI

]T ∈ C
NB , (29)

where NB = NRNI . The task of identifying the nonlinearity

Ψ( ) is turned into one of estimating θB .

2) CV polynomial model: Similarly for the conventional

polynomial modeling with polynomial degree Po, let us define

the set of Po + 1 polynomial basis functions as

P
(s)
l (xs) =xl

s, 0 ≤ l ≤ Po. (30)

Then using the tensor product between the two sets of uni-

variate polynomial basis functions, P
(R)
l (xR) for 0 ≤ l ≤ Po

and P
(I)
m (xI) for 0 ≤ m ≤ Po, a set of new polynomial basis

functions Pl,m(x) = P
(R)
l (xR)P

(I)
m (xI) for 0 ≤ l, m ≤ Po

can be formed, giving rise to the CV polynomial model

ŵ =Ψ̂P (x) =

Po∑

l=0

Po∑

m=0

Pl,m(x)θP
l,m

=

Po∑

l=0

Po∑

m=0

P
(R)
l (xR)P (I)

m (xI)θ
P
l,m, (31)

where θP
l,m = θP

l,mR
+ j θP

l,mI
∈ C, 0 ≤ l, m ≤ Po, are the CV

weights. Define

θP =
[
θP
0,0 θP

0,1 · · · θP
l,m · · · θP

Po,Po

]T ∈ C
NP , (32)

where NP = (1+Po)
2. The task of identifying the nonlinearity

Ψ( ) becomes one of estimating θP .

B. Model structure parameters

1) Polynomial model: For the conventional polynomial

model, there is only one model structure parameter, and

choosing the polynomial degree Po = 4 is sufficient for most

practical applications.

2) B-spline model: For the B-spline neural network, choos-

ing Po = 4 is also sufficient for most applications. In our ap-

plication, the knot sequence is symmetric and Umin = −Umax.

Given the required average transmitted signal power, the peak

amplitude in the symbol set (2) is known and hence Umax

is known. NR = NI = Ns = 6 to 10 is sufficient for

accurately modeling on the finite interval
[
Umin, Umax

]
. The

Ns + 1 − Po internal knots may be uniformly spaced in

the interval
[
Umin, Umax

]
. Note that there exist no data for

xs < Umin and xs > Umax in identification but it is desired

that the B-spline model has certain extrapolating capability

outside the interval
[
Umin, Umax

]
. The external knots can be

set empirically to meet the required extrapolation capability.

However, the precise choice of these external knots does not

really matter, in terms of modeling accuracy.

C. Complexity analysis

1) Complexity of polynomial model (31): Complexity anal-

ysis of the CV polynomial model is straightforward, and the

computational complexity of computing the polynomial model

(31) is obviously on the order of (1 + Po)
2, denoted as

O
(
(Po+1)2

)
. As an example, the computational requirements

for Po = 4 are listed in Table I.

TABLE I
COMPLEXITY OF POLYNOMIAL MODEL (31) FOR Po = 4.

Computation Multiplications Additions

Two sets of 1-D basis functions 2 × 4 0
Output of (31) 3 × 25 2 × 24

Total 83 48

2) Complexity of B-spline model (28): Comparing the B-

spline modeling of (26) to (28) with the polynomial modeling

of (30) and (31) and noting that NB can be significantly larger

than NP , it would appear that the complexity of the CV B-

spline model would be significantly higher than that of the

CV polynomial model. This is in fact not the case, and the

complexity of the CV B-spline modeling also depends only

on Po, not the number of basis functions Ns.

Given xs ∈
[
Umin, Umax

]
, there are only Po + 1 basis

functions with nonzero values at most. Fig. 3 illustrates the

complexity of generating the B-spline basis function set for

Po = 4, which shows that the total requirements are 26

TABLE II
COMPLEXITY OF B-SPLINE MODEL (28) FOR Po = 4.

Computation Multiplications Additions

Upper bound:

Two sets of 1-D basis functions 2 × 38 2 × 26
Output of (28) 3 × 25 2 × 24

Total 151 100

Lower bound:

Two sets of 1-D basis functions 2 × 36 2 × 25
Output of (28) 3 × 16 2 × 15

Total 120 80
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Um−1 Umx s

B
(s,4)
m−4

B(s,0)
m =1

B B BB
(s,4) (s,4) (s,4) (s,4)

mm−3 m−2 m−1

{1,1} {1,1}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}{3,4} {3,4} {3,4}

{3,4}

{3,4}

{3,4}

(a) Po + 1 ≤ m ≤ Ns

Um−1 Umx s

B(s,0)
m =1

B B BB
(s,4) (s,4) (s,4) (s,4)

mm−3 m−2 m−1

{1,1} {1,1}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}{3,4} {3,4} {3,4}

{3,4}

{3,4}

{3,4}

(b) m = Po

Fig. 3. Complexity of B-spline model with Po = 4 using De Boor recursion,
where {a, b} beside a node indicates that it requires a additions and b

multiplications to compute the basis function value at this node. The case
of m = Ns + 1 is identical to (b).

additions and 38 multiplications at most. Thus, in the tensor-

product B-spline model (28), there are only (Po + 1)2 non-

zero basis functions at most for any given input, which is

comparable to the tensor-product polynomial model (31) with

(Po + 1)2 non-zero basis functions. The upper-bound and

lower-bound computational requirements for the CV B-spline

modeling with Po = 4 are listed in Table II, where it can

be seen that the complexity of the B-spline modeling is no

more than twice of the polynomial modeling. Therefore, the

computational complexity of computing the B-spline model

(28) is still on the order of O
(
(Po + 1)2

)
.

D. Optimal robustness property of B-spline model

A critical aspect to consider in a model representation

is its stability with respect to perturbation of the model

parameters, because in identification, the data are inevitably

noisy, which will perturb the model parameters away from

their true values. A significant advantage of the B-spline model

over the polynomial model is its superior numerical stability.

B-spline functions are optimally stable bases [4]–[6], and this

optimality is due to the convexity of its model bases, i.e., they

are all positive and sum up to one. By contrast, the polynomial

model is far inferior in terms of numerical stability.

Let us first analyze this aspect theoretically. Assume that the

real-valued true system can be represented by the polynomial

model of degree Po exactly as

ys =

Po∑

i=0

aix
i
s,

as well as by the following B-spline model exactly

ys =

Ns∑

i=1

biB
(s,Po)
i (xs),

where ys, xs ∈ R. Because of the noisy identification data,

the estimated model coefficients are perturbed from their true

values to âi = ai + εi for the polynomial model, and to b̂i =
bi + εi for the B-spline model. Assume that all the estimation

noises εi are bounded by |εi| < εmax. The upper bound of

|ys − ŷs| for the B-spline model can be worked out to be

|ys − ŷs| =
∣∣∣

Ns∑

i=1

biB
(s,Po)
i (xs) −

Ns∑

i=1

b̂iB
(s,Po)
i (xs)

∣∣∣

<εmax

∣∣∣
Ns∑

i=1

B
(s,Po)
i (xs)

∣∣∣ = εmax.

Observe that the upper bound of the B-spline model output

perturbation only depends on the upper bound of the pertur-

bation noise, and it does not depend on the input value xs,

the number of basis functions Ns or the polynomial degree

Po. Hence, the B-spline model enjoys the maximum numerical

robustness, and this optimal robustness property is well known.

By contrast, the upper bound of |ys − ŷs| for the polynomial

model can be worked out to be

|ys − ŷs| =
∣∣∣

Po∑

i=0

aix
i
s −

Po∑

i=0

âix
i
s

∣∣∣ < εmax

∣∣∣
Po∑

i=0

xi
s

∣∣∣.

Observe that the upper bound of the polynomial model output

perturbation depends not only on the upper bound of the

perturbation noise but also on the input value xs and the

polynomial degree Po. The higher the polynomial degree Po,

the more serious the polynomial model may be perturbed, a

well-known drawback of using polynomial modeling.

(a) (b)

(c) (d)
Fig. 4. (a) Polynomial model with UDRN perturbation noises drawn from
[−0.0001, 0.0001], (b) B-spline model with UDRN perturbation noises
drawn from [−0.0001, 0.0001], (c) B-spline model with UDRN perturbation
noises drawn from [−0.001, 0.001], and (d) B-spline model with UDRN
perturbation noises drawn from [−0.01, 0.01]. Cited from [16].
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We use the simple example of [16] to demonstrate the

excellent numerical stability of the B-spline model over the

polynomial model in Fig. 4. Fig. 4 (a) plots a quadratic

polynomial function ys = 0.001x2
s − 0.02xs + 0.1 defined

over xs ∈ [0, 20] in solid curve. With the knot sequence

{−5,−4, 0, 20, 24, 25}, this function is modeled as a quadratic

B-spline model of ys = 0.14B
(s,2)
1 (xs) − 0.10B

(s,2)
2 (xs) +

0.14B
(s,2)
3 (xs), which is depicted in Fig. 4 (b) in solid curve.

We draw three noises from a uniformly distributed random

number (UDRN) in [−0.0001, 0.0001], and add them to the

three parameters in the two models, respectively. Fig. 4 (a)

and (b) depict the ten sets of the perturbed functions in dashed

curve generated by perturbing the two models’ parameters. It

can be clearly seen from Fig. 4 (a) that the polynomial model

is seriously perturbed, but there is no noticeable change at

all in Fig. 4 (b) for the B-spline model. Next we draw three

perturbation noises from a UDRN in [−0.001, 0.001], and add

them to the three parameters of the B-spline model. Again, the

B-spline model is hardly affected, as can be seen from Fig. 4

(c). We then draw three perturbation noises from a UDRN in

[−0.01, 0.01] to add to the three B-spline parameters, and the

results obtained are shown in Fig. 4 (d). Observe from Fig. 4

(a) and (d) that, despite of the fact that the strength of the

perturbation noise added to the B-spline model coefficients

is 100 times larger than that added to the polynomial model

coefficients, the B-spline model is still much less seriously

perturbed than the polynomial model.

E. Identifying Hammerstein channel

We will present the identification of the Hammerstein chan-

nel using the CV B-spline neural network approach, since the

identification algorithm is identical using the CV polynomial

modeling approach. Therefore, we drop the subscript B and

superscript B from the B-spline model.

Given a block of N training data,
{
xk, yk

}N−1

k=0
, the identifi-

cation task is to obtain the estimates of h and θ by minimizing

the cost function

J(h,θ) =
1

N

N−1∑

k=0

∣∣êk

∣∣2 =
1

N

N−1∑

k=0

∣∣yk − ŷk

∣∣2, (33)

subject to the constraint of h0 = 1, in which the prediction of

yk is given by

ŷk =

Lcir∑

i=0

hiŵk−i =

Lcir∑

i=0

hi

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (xk−i)θl,m, (34)

where xk−i = xN+k−i if k < i. The cost function (33) is

convex with respect to h when fixing θ, and convex with

respect to θ given h. According to [17], [18], the estimates

of θ and h are unbiased, irrespective to the algorithm used

to minimize the cost function (33). In [16], an alternating

least squares (ALS) procedure was proposed which guarantees

to find the unique optimal solution of θ and h in only a

few iterations. We adopt this ALS procedure in our current

application. This ALS procedure is summarized below.

Initialisation. Define the amalgamated parameter vector

ω =
[
θT h1θ

T h2θ
T · · ·hLcir

θT
]T ∈ C

(Lcir+1)NB . (35)

Further define the regression matrix P ∈ R
N×(Lcir+1)NB

P =




φT(0) φT(−1) · · · φT(−Lcir)
...

...
...

...

φT(k) φT(k − 1) · · · φT(k − Lcir)
...

...
...

...

φT(N−1) φT(N−2) · · · φT(N−1−Lcir)



, (36)

with φ(k) =
[
ϕ1,1(k) ϕ1,2(k) · · ·ϕl,m(k) · · ·ϕNR,NI

(k)
]T

, in

which ϕl,m(k) = B
(Po)
l,m (xk) for 1 ≤ l ≤ NR and 1 ≤ m ≤

NI . The regularized least squares (LS) estimate of ω is ω̂ =(
P TP + ρI

)−1
P Ty, where I denotes the identity matrix

of appropriate dimension and ρ is a small positive constant,

e.g., ρ = 10−5. The first NB elements of ω̂ provide an initial

estimate for θ, which is denoted as θ̂(0). Note that θ̂(0) is an

unbiased estimate for θ for sufficiently small ρ.

ALS estimation procedure. For 1 ≤ τ ≤ τmax, e.g., τmax =
4, perform:

a) Given θ̂(τ−1), calculate the LS estimate ĥ(τ). Specifically,

define the regression matrix Q ∈ C
N×(Lcir+1)

Q =




ŵ0 ŵ−1 · · · ŵ−Lcir

...
...

...
...

ŵk ŵk−1 · · · ŵk−Lcir

...
...

...
...

ŵN−1 ŵN−2 · · · ŵN−1−Lcir




, (37)

in which

ŵk =Ψ̂(xk) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (xk)θ̂

(τ−1)
l,m . (38)

The LS estimate ĥ(τ) is readily given by

ĥ
(τ)

=
(
QHQ

)−1
QHy, (39)

ĥ
(τ)
i =ĥ

(τ)

i

/
ĥ

(τ)

0 , 0 ≤ i ≤ Lcir. (40)

b) Given ĥ(τ), calculate the LS estimate θ̂(τ). Specifically,

introduce

φl,m(k) =

Lcir∑

i=0

ĥ
(τ)
i B

(Po)
l,m (xk−i) ∈ C. (41)

Further define the regression matrix

S = [ϕ(0) ϕ(1) · · ·ϕ(N − 1)]
T ∈ C

N×NB , (42)

with ϕ(k) = [φ1,1(k) φ1,2(k) · · ·φl,m(k) · · ·φNR,NI
(k)]

T
.

The LS estimate θ̂(τ) is given by θ̂(τ) =
(
SHS

)−1
SHy.

Clearly, this ALS procedure guarantees to converge to the

joint unbiased estimate of h and θ that is the unique minimum

solution of the cost function (33). This is simply because given

the unbiased estimate θ̂(τ−1) of θ, the LS estimate ĥ(τ) is the

unbiased estimate of h, and given the unbiased estimate ĥ(τ),

the LS estimate θ̂(τ) is the unbiased estimate of θ.
Remark 1: Because the B-spline modeling has the optimal

robustness property as discussed in Subsection III-D, we

expect that the CV B-spline based estimate Ψ̂B(x) is a more

accurate estimate of the true HPA’s nonlinearity Ψ(x) than the

CV polynomial based estimate Ψ̂P (x). This will be verified

in our comparative performance evaluation.
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F. Inverting HPA’s nonlinearity

1) CV B-spline inverting model: We utilize another B-

spline neural network to model the inverse mapping of the

HPA’s CV nonlinearity defined by

xk =Ψ−1(wk) = Φ(wk). (43)

Define two knots sequences similar to (25) for wR and wI ,

respectively. We can construct the inverting B-spline model

x̂ =Φ̂B(w; αB)

=

NR∑

l=1

NI∑

m=1

B
(R,Po)
l (wR)B(I,Po)

m (wI)α
B
l,m, (44)

where B
(R,Po)
l (wR) and B

(I,Po)
m (wI) are similarly calculated

based on De Boor recursion (26) and (27), while

αB =
[
αB

1,1 αB
1,2 · · ·αB

l,m · · ·αB
NR,NI

]T ∈ C
NB . (45)

Inverting the HPA’s nonlinearity becomes the problem of

estimating αB .

2) CV polynomial inverting model: By defining the two sets

of polynomial basis functions similar to (30) for wR and wI ,

respectively, we can construct the inverting polynomial model

x̂ =Φ̂P (w; αP )

=

Po∑

l=0

Po∑

m=0

P
(R)
l (wR)P (I)

m (wI)α
P
l,m, (46)

where

αP =
[
αP

0,0 αP
0,1 · · ·αP

l,m · · ·αP
Po,Po

]T ∈ C
NP . (47)

Inverting the HPA’s nonlinearity is turned into the problem of

estimating αP .

3) Estimation Algorithm: To estimate αB or αP needs the

input-output training data {wk, xk} but wk is unavailable. We

adopt the same pseudo training data approach of [2], [3], by

replacing wk with its estimate ŵk = Ψ̂B(xk) or ŵk = Ψ̂P (xk)
based on the identified HPA’s nonlinearity Ψ̂B( ) or Ψ̂P ( ).

Again we present the estimation algorithm for the CV B-

spline inverting model (44), and drop the subscript B and

superscript B , since the estimation algorithm for the CV

polynomial inverting model is exactly the same. Over the

pseudo training data set
{
ŵk, xk

}N−1

k=0
, the regression matrix

B ∈ R
N×NB can be formed as

B=




B
(Po)
1,1 (ŵ0) B

(Po)
1,2 (ŵ0) · · · B

(Po)
NR,NI

(ŵ0)

B
(Po)
1,1 (ŵ1) B

(Po)
1,2 (ŵ1) · · · B

(Po)
NR,NI

(ŵ1)
...

...
...

...

B
(Po)
1,1 (ŵN−1) B

(Po)
1,2 (ŵN−1) · · · B

(Po)
NR,NI

(ŵN−1)



,

(48)

and the LS solution is given by α̂ =
(
BTB

)−1
BTx.

Remark 2: Because the pseudo training input data{
ŵk

}N−1

k=0
are highly noisy, which will seriously affect the

polynomial model but not the B-spline model as analyzed in

Subsection III-D, the CV polynomial inverting model (46) will

be a far less accurate estimate of the true HPA’s inversion

Ψ−1( ), compared to the CV B-spline inverting model (44).

This will be confirmed by our comparative performance eval-

uation presented in the next section.

TABLE IV
KNOT SEQUENCES FOR B-SPLINE MODEL AND INVERSE MODEL.

Knot sequence for xR and xI

-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0

Knot sequence for wR and wI

-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0

TABLE III
IDENTIFICATION RESULTS AVERAGED OVER 100 RUNS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL USING THE CV

B-SPLINE NEURAL NETWORK APPROACH.

Tap True Ex/No = 5 dB Ex/No = 10 dB
No. parameter average estimate standard deviation average estimate standard deviation

OBO = 3 dB

h0 1 1 1

h1 −0.3732 − j 0.6123 −0.3732 − j 0.6122 9.152e-4, 1.021e-3 −0.3732 − j 0.6123 5.147e-4, 5.744e-4

h2 0.3584 + j 0.3676 0.3586 + j 0.3676 9.702e-4, 8.555e-4 0.3585 + j 0.3676 5.455e-4, 4.812e-4

h3 0.3052 + j 0.2053 0.3052 + j 0.2052 9.278e-4, 8.596e-4 0.3052 + j 0.2052 5.219e-4, 4.834e-4

h4 0.2300 + j 0.1287 0.2300 + j 0.1286 7.806e-4, 8.650e-4 0.2300 + j 0.1286 4.391e-4, 4.865e-4

h5 0.7071 + j 0.7071 0.7070 + j 0.7069 1.161e-3, 1.178e-3 0.7071 + j 0.7070 6.530e-4, 6.627e-4

h6 0.6123 − j 0.3732 0.6122 − j 0.3733 1.051e-3, 1.115e-3 0.6122 − j 0.3732 5.913e-4, 6.271e-4

h7 −0.3584 + j 0.3676 −0.3583 + j 0.3675 9.100e-4, 1.056e-3 −0.3584 + j 0.3675 5.119e-4, 5.939e-4

h8 −0.2053 − j 0.3052 −0.2054 − j 0.3051 9.343e-4, 9.233e-4 −0.2053 − j 0.3051 5.253e-4, 5.193e-4

h9 0.1287 − j 0.2300 0.1287 − j 0.2299 8.017e-4, 8.728e-4 0.1287 − j 0.2299 4.508e-4, 4.908e-4

OBO = 5 dB

h0 1 1 1

h1 −0.3732 − j 0.6123 −0.3731 − j 0.6122 7.385e-4, 8.198e-4 −0.3732 − j 0.6123 4.154e-4, 4.611e-4

h2 0.3584 + j 0.3676 0.3586 + j 0.3675 7.687e-4, 6.879e-4 0.3585 + j 0.3675 4.322e-4, 3.869e-4

h3 0.3052 + j 0.2053 0.3052 + j 0.2052 7.505e-4, 6.757e-4 0.3052 + j 0.2053 4.221e-4, 3.799e-4

h4 0.2300 + j 0.1287 0.2300 + j 0.1286 6.253e-4, 6.947e-4 0.2300 + j 0.1287 3.517e-4, 3.907e-4

h5 0.7071 + j 0.7071 0.7071 + j 0.7069 9.318e-4, 9.480e-4 0.7071 + j 0.7070 5.239e-4, 5.332e-4

h6 0.6123 − j 0.3732 0.6121 − j 0.3732 8.424e-4, 8.854e-4 0.6122 − j 0.3732 4.739e-4, 4.978e-4

h7 −0.3584 + j 0.3676 −0.3583 + j 0.3675 7.471e-4, 8.454e-4 −0.3584 + j 0.3675 4.202e-4, 4.754e-4

h8 −0.2053 − j 0.3052 −0.2053 − j 0.3052 7.568e-4, 7.381e-4 −0.2053 − j 0.3052 4.256e-4, 4.151e-4

h9 0.1287 − j 0.2300 0.1287 − j 0.2299 6.476e-4, 6.922e-4 0.1287 − j 0.2299 3.641e-4, 3.892e-4
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IV. COMPARATIVE PERFORMANCE EVALUATION

We evaluated the comparative performance of the CV

B-spline based NIFDDFE and the CV polynomial based

NIFDDFE for a 64-QAM Hammerstein channel in which the

HPA was described by (6) and (7) with the parameter set

given in (8). The dispersive channel had 10 taps (Lcir = 9)

whose CIR coefficients are given in Table III. The size of the

transmitted data block was N = 2048. The system’s signal-

to-noise ratio (SNR) was defined as SNR = Ex

/
No, where

Ex was the average power of the input signal xk to the HPA

and No = 2σ2
e .

For the CV B-spline neural network based approach, the

piecewise quartic polynomial of Po = 4 was chosen, and the

number of B-spline basis functions was set to NR = NI = 8,

while the knot sequences adopted by the two CV B-spline

neural networks for identifying and inverting the HPA’s nonlin-

earity are listed in Table IV. For the CV polynomial modeling

based approach, we set the polynomial degree to Po = 4. All

the estimation results were obtained by averaging over 100

random runs.

The effectiveness of the CV B-spline neural network based

approach to identify this Hammerstein channel is demonstrated

in Table III as well as Figs. 5 and 6. It can be seen from

Table III that the identification of the CIR tap vector in

the Hammerstein channel was achieved with high precision

even under the adverse operational condition of OBO= 3 dB

and Ex

/
No = 5 dB. Note that under the HPA operational

condition of OBO= 5 dB, the peak amplitude of |xk| was

less less than 0.09, while under the condition of OBO= 3 dB,

the peak amplitude of |xk| was less than 0.14. The results

of Figs. 5 and 6 clearly demonstrate the capability of the

proposed CV B-spline neural network to accurately model

the HPA’s nonlinearity, within the HPA’s operational input
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Fig. 5. Comparison of the HPA’s nonlinearity Ψ( ) and its B-spline estimate
bΨB( ) averaged over 100 runs, under OBO= 3 dB and Ex

‹
No = 5 dB.

range. As a comparison, the results obtained by applying

the CV polynomial based modeling approach to identify this

Hammerstein channel are shown in Table V as well as Figs. 7

and 8. Table V indicates that the linear subsystem of this

Hammerstein channel is also identified with high precision

by the CV polynomial based approach, which is expected. By

comparing Figs. 7 and 8 with Figs. 5 and 6, it can be seen that

the CV HPA’s nonlinearity identified by the polynomial based

TABLE V
IDENTIFICATION RESULTS AVERAGED OVER 100 RUNS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL USING THE CV

POLYNOMIAL MODELING APPROACH.

Tap True Ex/No = 5 dB Ex/No = 10 dB
No. parameter average estimate standard deviation average estimate standard deviation

OBO = 3 dB

h0 1 1 1

h1 −0.3732 − j 0.6123 −0.3735 − j 0.6120 9.176e-4, 1.027e-3 −0.3735 − j 0.6120 5.160e-4, 5.778e-4

h2 0.3584 + j 0.3676 0.3596 + j 0.3680 9.723e-4, 8.540e-4 0.3595 + j 0.3680 5.468e-4, 4.805e-4

h3 0.3052 + j 0.2053 0.3052 + j 0.2058 9.262e-4, 8.591e-4 0.3053 + j 0.2059 5.209e-4, 4.831e-4

h4 0.2300 + j 0.1287 0.2310 + j 0.1277 7.786e-4, 8.603e-4 0.2310 + j 0.1277 4.379e-4, 4.837e-4

h5 0.7071 + j 0.7071 0.7072 + j 0.7066 1.165e-3, 1.187e-3 0.7072 + j 0.7067 6.552e-4, 6.677e-4

h6 0.6123 − j 0.3732 0.6118 − j 0.3721 1.052e-3, 1.116e-3 0.6118 − j 0.3721 5.920e-4, 6.278e-4

h7 −0.3584 + j 0.3676 −0.3582 + j 0.3689 9.077e-4, 1.055e-3 −0.3582 + j 0.3689 5.105e-4, 5.930e-4

h8 −0.2053 − j 0.3052 −0.2064 − j 0.3052 9.327e-4, 9.284e-4 −0.2063 − j 0.3052 5.245e-4, 5.221e-4

h9 0.1287 − j 0.2300 0.1284 − j 0.2291 8.057e-4, 8.615e-4 0.1284 − j 0.2292 4.531e-4, 4.844e-4

OBO = 5 dB

h0 1 1 1

h1 −0.3732 − j 0.6123 −0.3740 − j 0.6121 7.360e-4, 8.281e-4 −0.3741 − j 0.6121 4.138e-4, 4.657e-4

h2 0.3584 + j 0.3676 0.3595 + j 0.3681 7.778e-4, 6.846e-4 0.3594 + j 0.3681 4.374e-4, 3.851e-4

h3 0.3052 + j 0.2053 0.3058 + j 0.2058 7.471e-4, 6.809e-4 0.3058 + j 0.2058 4.202e-4, 3.829e-4

h4 0.2300 + j 0.1287 0.2310 + j 0.1271 6.298e-4, 6.991e-4 0.2310 + j 0.1272 3.542e-4, 3.931e-4

h5 0.7071 + j 0.7071 0.7074 + j 0.7074 9.378e-4, 9.594e-4 0.7074 + j 0.7074 5.273e-4, 5.396e-4

h6 0.6123 − j 0.3732 0.6124 − j 0.3729 8.423e-4, 8.941e-4 0.6125 − j 0.3729 4.737e-4, 5.028e-4

h7 −0.3584 + j 0.3676 −0.3583 + j 0.3686 7.338e-4, 8.443e-4 −0.3584 + j 0.3686 4.127e-4, 4.748e-4

h8 −0.2053 − j 0.3052 −0.2056 − j 0.3056 7.538e-4, 7.359e-4 −0.2056 − j 0.3056 4.239e-4, 4.138e-4

h9 0.1287 − j 0.2300 0.1285 − j 0.2297 6.469e-4, 6.860e-4 0.1285 − j 0.2297 3.638e-4, 3.858e-4
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Fig. 6. Comparison of the HPA’s nonlinearity Ψ( ) and its B-spline estimate
bΨB( ) averaged over 100 runs, under OBO= 5 dB and Ex

‹
No = 10 dB.

approach is less accurate than the B-spline based approach

within the HPA’s operational input range, which confirms the

analysis of Subsection III-D.

The combined responses of the HPA’s true nonlinearity and

its estimated inversion obtained by the CV B-spline inverting

scheme under the two operating conditions are depicted in
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Fig. 7. Comparison of the HPA’s nonlinearity Ψ( ) and its polynomial

estimate bΨP ( ) averaged over 100 runs, under OBO= 3 dB and Ex

‹
No =

5 dB.
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Fig. 8. Comparison of the HPA’s nonlinearity Ψ( ) and its polynomial

estimate bΨP ( ) averaged over 100 runs, under OBO= 5 dB and Ex

‹
No =

10 dB.

Figs. 9 and 10. The results clearly show the capability of

the CV B-spline neural network to accurately model the

inversion of the HPA’s nonlinearity based only on the pseudo

training data. More specifically, the results of Figs. 9 and

10 clearly indicate that the combined response of the true

HPA’s nonlinearity Ψ( ) and its estimated inversion Φ̂B( )
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Fig. 9. Combined response of the true HPA and its estimated B-spline
inversion averaged over 100 runs, under OBO= 3 dB and Ex
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No = 5 dB.
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Fig. 10. Combined response of the true HPA and its estimated B-spline
inversion averaged over 100 runs, under OBO= 5 dB and Ex

‹
No = 10 dB.

satisfies Φ̂B

(
Ψ(x)

)
≈ x. That is, the magnitude of the

combined response is
∣∣Φ̂B

(
Ψ(x)

)∣∣ ≈ |x| and the phase

shift of the combined response is approximately zero. In

other words, Φ̂B( ) is an accurate inversion of Ψ( ). This

clearly demonstrates the optimal robustness property of the

B-spline modeling presented in Subsection III-D. By contrast,

the combined responses of the HPA’s true nonlinearity and its
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Fig. 11. Combined response of the true HPA and its estimated polynomial
inversion averaged over 100 runs, under OBO= 3 dB and Ex

‹
No = 5 dB.
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Fig. 12. Combined response of the true HPA and its estimated polynomial
inversion averaged over 100 runs, under OBO= 5 dB and Ex

‹
No = 10 dB.

estimated polynomial inversion depicted in Figs. 11 and 12

under the two HPA operating conditions unmistakably show

that the polynomial based inversion estimate Φ̂P ( ) is much

less accurate than the B-spline based estimate. Evidently, the

polynomial modeling is much more sensitive to the noise

contained in the pseudo training input {ŵk}.

The bit error rate (BER) performance of the B-spline based

NIFDDFE constructed using the estimated CIR, HPA and

HPA’s inversion are plotted in Fig. 13 under the two HPA

operating conditions. From Fig. 13, it can be seen that four

iterations are sufficient for the NIFDDFE. Since the first itera-

tion of the NIFDDFE is identical to the NFDE solution without

using decision feedback [3], the results of Fig. 10 confirm

that the NIFDDFE significantly outperforms the NFDE. The

BER performance of the polynomial based NIFDDFE again

constructed using the estimated CIR, HPA and HPA’s inversion
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Fig. 13. BER performance of the B-spline based NIFDDFE under the two
HPA operating conditions of OBO= 3 dB and OBO= 5 dB.
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Fig. 14. BER performance comparison of the B-spline based NIFDDFE and
the polynomial based NIFDDFE.

are depicted in Fig. 14, in comparison with the results of

the B-spline based NIFDDFE. The results of Fig. 14 clearly

demonstrates that the B-spline based NIFDDFE significantly

outperforms the polynomial based NIFDDFE. In particular,

when the HPA is operating in the severe nonlinear region, the

polynomial based NIFDDFE exhibits a high error floor but

this is not the case for the B-spline based NIFDDFE.

V. CONCLUSIONS

This paper has evaluated comparative performance of the

CV B-spline neural network and polynomial modeling ap-

proaches applied to state-of-the-art iterative frequency-domain

decision feedback equalization of Hammerstein communica-

tion channels with nonlinear HPA at transmitter. The optimal

robustness of the B-spline modeling has been reviewed and

it has been shown that the CV B-spline modeling approach

has a comparable computational complexity to the conven-

tional CV polynomial modeling approach. Simulation results

obtained have verified that the CV B-spline based NIFDDFE

significantly outperforms the CV polynomial based NIFDDFE

design of comparable complexity. Our conclusions have thus

demonstrated that the CV B-spline neural network approach

offers a highly effective and accurate means for identifying

and inverting Hammerstein systems.
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