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Abstract

Objectives: We systematically reviewed the current literature evaluating the ability of fully-automated deep learning
(DL) and semi-automated traditional machine learning (TML) MRI-based artificial intelligence (Al) methods to differen-
tiate clinically significant prostate cancer (csPCa) from indolent PCa (iPCa) and benign conditions.

Methods: We performed a computerised bibliographic search of studies indexed in MEDLINE/PubMed, arXiv,
medRxiv, and bioRxiv between 1 January 2016 and 31 July 2021. Two reviewers performed the title/abstract and
full-text screening. The remaining papers were screened by four reviewers using the Checklist for Artificial Intelligence
in Medical Imaging (CLAIM) for DL studies and Radiomics Quality Score (RQS) for TML studies. Papers that fulfilled

the pre-defined screening requirements underwent full CLAIM/RQS evaluation alongside the risk of bias assessment
using QUADAS-2, both conducted by the same four reviewers. Standard measures of discrimination were extracted
for the developed predictive models.

Results: 17/28 papers (five DL and twelve TML) passed the quality screening and were subject to a full CLAIM/RQS/
QUADAS-2 assessment, which revealed a substantial study heterogeneity that precluded us from performing quanti-
tative analysis as part of this review. The mean RQS of TML papers was 11/36, and a total of five papers had a high risk
of bias. AUCs of DL and TML papers with low risk of bias ranged between 0.80-0.89 and 0.75-0.88, respectively.
Conclusion: We observed comparable performance of the two classes of Al methods and identified a number of

common methodological limitations and biases that future studies will need to address to ensure the generalisability
of the developed models.
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Key points

+ Fully-automated and semi-automated MRI-based Al
algorithms show comparable performance for differ-
entiating csPCa/iPCa.

+ DL and TML papers share common methodological
limitations discussed in this review.

+ Consensus on datasets, segmentation, ground truth
assessment, and model evaluation are needed.

Background

The introduction of pre-biopsy multiparametric magnetic
resonance imaging (mpMRI) has considerably improved
the quality of prostate cancer (PCa) diagnosis by reduc-
ing the number of unnecessary biopsies and increasing
the detection of clinically significant disease compared
to the conventional PSA-transrectal ultrasound (TRUS)
pathway [1-3]. However, the high dependence of the
diagnostic performance of mpMRI on reader experience
[4, 5] and image quality [6], coupled with the need to bal-
ance the time-consuming delineation of biopsy targets
against the increasing pressure on radiology departments
[7], limits the population-based delivery of high-quality
mpMRI-driven PCa diagnosis.

The recent joint position paper by the European Soci-
ety of Urogenital Radiology (ESUR) and European Asso-
ciation of Urology (EAU) Section of Urological Imaging
(ESUI) has highlighted the importance of developing
robust and clinically applicable artificial intelligence
(AI) methods for overcoming the aforementioned limi-
tations and facilitating the successful deployment of the
mpMRI-driven PCa diagnostic pathway [8] to the com-
munity. Importantly, the authors suggest the use of Al
as a triage tool to detect and delineate areas suspicious
for clinically significant PCa (csPCa), where its accurate
differentiation from indolent PCa (iPCa) and benign con-
ditions determines the need for subsequent biopsy and
defines the diagnostic accuracy of mpMRI. While several
recent systematic [9-12] and narrative [13] reviews have
described the performance of Al methods for detecting
csPCa on MRI, little is known about the comparative
performance of fully-automated and semi-automated
approaches when applied to this specific clinical task. The
rationale for this comparison is based on several inher-
ent differences between the two approaches. Specifically,
fully-automated methods rely on learned deep radiomic
features and do not require human input following initial

training and validation, which underpins their disrup-
tive potential for significantly reducing the radiologists’
clinical workload. Conversely, semi-automated methods,
most commonly based on hand-engineered radiomic
features, require manual delineation and image pre-pro-
cessing that may increase the radiologists’ time while not
adding significant diagnostic benefit.

Therefore, the primary objective of this systematic
review was to analyse the current literature on fully-auto-
mated and semi-automated Al methods to differentiate
csPCa from iPCa and benign disease on MRI. In addition,
we aimed to both identify and offer prospective solutions
to common methodological limitations and biases of the
existing studies. Addressing these issues going forward
will facilitate the development of robust, generalisable,
and clinically applicable MRI-derived AI models for PCa
diagnosis.

Materials and methods

To avoid bias, the review protocol was agreed

by all authors and registered with PROSPERO
(CRD42021270309) before the start of the review
process.

Search strategy

Data collection and reporting were conducted following
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) [14], with a complete
PRISMA 2020 checklist presented in Additional file 2:
Table S1. We performed a computerised bibliographic
search of published and unpublished studies indexed
in MEDLINE/PubMed, arXiv, medRxiv, and bioRxiv
between 1 January 2016 and 31 July 2021. The full search
strategy is summarised in Additional file 1.

Eligibility criteria

The population of interest included treatment-naive
patients who underwent MRI of the prostate that was
subsequently processed using either fully-automated or
semi-automated AI methods for lesion detection and
subsequent binary classification as (a) csPCa or (b) iPCa
or benign disease. The performance of AI methods (index
test) was referenced against histopathological assessment
of MRI target lesions, with csPCa defined as International
Society of Urogenital Pathology (ISUP) grade group>2
disease and iPCa defined as ISUP grade group 1 disease.
The outcome measures included the diagnostic perfor-
mance of Al approaches for differentiating csPCa from
iPCa and benign disease measured as an area under the
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receiving operator characteristic curve (AUC), sensitivity,
specificity, accuracy, positive predictive value (PPV), and
negative predictive value (NPV). Only studies written in
English and presenting original results were included in
this review.

Systematic review process

We deployed a three-stage process to identify papers suit-
able for inclusion in this review using Covidence [15] as a
Web-based support tool. In the first stage, a team of two
reviewers (N.S., L.R.) independently performed the title
and abstract screening to ensure relevance, with conflicts
resolved by the third reviewer (T.B.). In the second stage,
the same two reviewers screened the full text of each
paper for eligibility, with conflicts resolved by the same
third reviewer. In the third stage, four reviewers (Team
1, N.S., NMDS; Team 2, L.R., M.Y.) evaluated the qual-
ity of the documentation of methodologies in the papers
to assess the reproducibility of their results. Papers using
fully-automated AI methods based on deep learning (DL)
methods were assessed using the Checklist for Artificial
Intelligence in Medical Imaging (CLAIM) [16], while
studies deploying semi-automated Al approaches rely-
ing on traditional machine learning (TML) methods were
evaluated using the Radiomics Quality Score (RQS) [17]
as detailed in Additional file 1.

Risk of bias assessment

We used the Quality Assessment of Diagnostic Accu-
racy Studies (QUADAS-2) tool [18] to assess the risk of
bias and applicability of studies included in this system-
atic review. In line with the QUADAS-2 guidance, we
developed a review-specific protocol on how to assess
each signalling question, which is summarised in Addi-
tional file 1. QUADAS-2 assessment was conducted by
the same two teams of two reviewers, with each paper
reviewed independently by the reviewers prior to conflict
resolution by consensus of all four reviewers.

Data extraction

The data extraction criteria were agreed prior to the
review commencement and then independently extracted
by the same reviewer teams. The full list of extracted
parameters is presented in Additional file 3, with the key
diagnostic performance characteristics being AUC, sen-
sitivity, specificity, accuracy, NPV and PPV for the inter-
nal holdout or external test sets (when available).

Data analysis

Given the substantial heterogeneity of patient character-
istics, Al algorithms, ground truth assessment methods,
and validation strategies used in the diagnostic accu-
racy studies included in this review, we chose narrative
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synthesis over meta-analysis of the pooled data to avoid a
biased result [19].

Results

Study selection

The study selection process is presented in Fig. 1. Our
initial search identified 314 papers, of which 4 were high-
lighted as duplicates by Covidence and removed by us
following manual verification. 60/310 papers had titles
or abstract deemed relevant to the review question;
of those, 28 were retained for quality review after full-
text screening. 12/28 papers deployed fully-automated
Al methods based on DL methods and were therefore
screened using CLAIM, while 16/28 papers used TML
methods to develop semi-automated Al approaches and
were assessed using RQS. Of these, 5/12 (42%) DL papers
[20-24] and 12/16 (43%) TML papers [25-36] passed the
quality screening and were subject to full QUADAS-2
assessment, data extraction, and narrative synthesis.

Quality review

Three out of 12 DL studies (25%) [37—39] that under-
went quality screening using CLAIM failed at least three
pre-identified mandatory criteria, with 2/12 [40, 41]
failing two, and 2/12 [42, 43] failing just one criterion.
Four of the seven rejected papers (57%) [37-39, 43] did
not describe data processing steps in sufficient detail
(Q9), 4/7 [38-40, 42] did not explain the exact method
of selecting the final model (Q26), and 3/7 [38, 40, 41]
failed to provide enough details on training approach
(Q25). Following the subsequent full CLAIM assessment
of the remaining five papers, we found that none of them
reported the following items: selection of data subsets
(Q10), robustness or sensitivity analysis (Q30), validation
or testing on external data (Q32), and failure analysis of
incorrectly classified cases (Q37). The results of CLAIM
quality screening and full assessment are presented in
Additional file 1.

One out of 16 TML studies (6%) [44] that under-
went quality screening using RQS scored 2/8, 1/16 [45]
scored 6/8, and 2/16 [46, 47] scored 7/8, which led to
their exclusion from subsequent full RQS assessment.
None of the excluded papers had well-documented
imaging protocols (Q1) and neither performed mul-
tiple segmentations by different radiologists nor con-
ducted robustness analysis of image segmentations to
region-of-interest (ROI) morphological perturbations
(Q2). The mean RQS of the remaining 12 papers that
underwent full assessment was 10.94+2.0 (standard
deviation) out of 36 points possible. None of the papers
performed phantom studies to detect scanner-depend-
ent features (Q3), reported calibration statistics (Q10),
registered a prospective study (Q11), and reported on
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Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram for literature search. csPCa, clinically
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Inappropriate setting (n = 4)

the cost-effectiveness of the clinical application of the
proposed models (Q14). Only one (8%) paper [32] dis-
cussed a potential biological correlate for some radi-
omic features included in the final model (Q7), and only
two papers [28, 36] performed external testing of their
models (Q12). Furthermore, only six out of 12 (50%)
papers [25, 26, 29-32] had image segmentation per-
formed by multiple radiologists or instead assessed the
robustness of radiomic features to ROI morphological
perturbations (Q2). Eight out of 12 (67%) papers [25-
27, 30-32, 34, 35] did not make available any images,
code, or feature values used to train the models (Q16),
and only 4/12 (33%) papers [30, 31, 34, 36] incorporated
non-radiomic features into the multivariable analysis
(Q6). The results of RQS screening and full assessment
are presented in Additional file 3.

Risk of bias assessment

The full results of QUADAS-2 assessment are presented
in Additional file 1, with their graphical summary pro-
vided in Table 1 and Fig. 2. Overall, 11/17 (65%) [12,
20-23, 25, 26, 29, 31, 34, 36, 1/17 [35], and 5/17 [24, 27,
30, 32, 33] papers had low, unclear, and high risk of bias,
respectively. All papers had low applicability concerns.
Inappropriate patient selection led to a high risk of bias
in 3/5 (60%) studies [27, 30, 33], with two papers con-
taining inappropriate exclusions and one study using a
case—control design. One study [30] did not pre-specify
a threshold prior to evaluation of the index test perfor-
mance on the test set. One study [32] used transrectal
ultrasound guided (TRUS) biopsy performed six weeks
prior to MRI as a reference standard, which introduced
a high risk of bias. Two (40%) papers [24, 32] had high
risk of bias associated with data flow and timing between
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Table 1 QUADAS-2 risk of bias and applicability concerns
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Risk of bias Applicability concerns
patient Patient
Wang © © © © © © ©
e @ © @ © ® © ®
Schelb © © © © © © ©
Deniffel @ @ @ @ @ @ @
Seetharaman @ @ @ ® @ @ @
Bonekamp @ @ @ @ @ @ @
Min @ @ @ @ @ @ @
Bleker @ @ @ @ @ @ @
Li ® ® © © © © ©
Woznicki @ @ @ @ @ @ @
Bevilacqua ? © ® ® © © ©
Toivonen @ @ @ @ @ @ @
Hiremath @ @ @ @ @ @ @
Kwon @ @ @ ? @ @ @
Antonelli @ @ @ @ @ © @
Yoo © © © ? © © ©
Castillo @ @ @ @ @ @ @
OLow risk ®High risk ? Unclear risk

the index test (MRI) and reference standard (biopsy),
with one paper using both surgical pathology and biopsy
results as reference standards, and one paper reporting
a six week interval between biopsy and MRI, which was
below the recommended threshold of at least six months
[48]. The only paper with an unclear risk of bias did not
report any information regarding the timing between
MRI and biopsy, as well as the specific type of biopsy and
whether it was consistent in all patients in the study.

Study characteristics

Summary demographic characteristics of patients
included in the studies that passed the quality screen-
ing are presented in Table 2. Two out of five (40%) DL
papers [20, 21] used patient data available as part of the
open-source PROSTATEXx challenge dataset [49], while
the remaining three (60%) studies [22-24] used data
from single institutions. Importantly, one paper [24] used
radical prostatectomy and targeted biopsy interchange-
ably in one of its patient cohorts. None of the DL stud-
ies reported the time between MRI and biopsy, while
all studies performed MRI using a single vendor. The

number of readers annotating MR images varied between
1 and 4, with reader experience ranging between 0.5 and
20 years.

Ten out of 12 (83%) TML papers [12, 25, 26, 30-36]
utilised non-publicly available institutional datasets,
with the remaining 2/12 (17%) studies [27, 29] using
the PROSTATEx challenge dataset [49]. In eight (67%)
papers [25-27, 29-32, 34], the histopathological ground
truth was obtained using targeted biopsy, while two stud-
ies [28, 33] relied on radical prostatectomy data, one [36]
was a multi-institutional study relying on either biopsy
(targeted or systematic) or prostatectomy data in differ-
ent cohorts, and one [35] did not explicitly report the
source of ground truth. Only two (17%) papers [31, 32]
reported the time between biopsy and MRIL in these
studies, biopsy was performed either three months [31]
or six weeks [32] prior to MRI. Nine (75%) studies [25—
27, 29, 30, 32-35] had one centre and one vendor each,
while the remaining three studies [28, 31, 36] were multi-
vendor. The number of readers varied between 1 and 5,
with reader experience ranging between 0.5 and more
than 25 years.
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Fig. 2 Summary QUADAS-2 risk of bias and applicability concerns assessment
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CONCERNS regarding APPLICABILITY

Predictive modelling characteristics

Summary predictive modelling characteristics of DL
papers are presented in Table 3. All studies used differ-
ent convolutional neural network (CNN) architectures,
with 3/5 (60%) studies [20, 23, 24] proposing their own
networks and 2 papers using off-the-shelf networks,
including VGG16 [21] and U-Net [22]. None of the
papers included non-imaging features for the purposes

of predictive modelling and conducted external testing
of the developed predictive models. All DL papers were
designed as a classification task to distinguish csPCa
from iPCa and benign lesions. Four (80%) studies [21-24]
performed the analysis at the level of the whole prostate,
and one study [20] separately analysed peripheral and
transition zone lesions. Importantly, none of the DL stud-
ies validated their results using external datasets.
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Similar predictive modelling characteristics of TML
papers are summarised in Table 4. The three most com-
monly used ML models included random forests (50%
papers), logistic regression (42% papers), and support
vector machines (25% papers), with 7/12 studies testing
several different models. Imaging features were extracted
from apparent diffusion coefficient maps, T,-weighted
images, and diffusion-weighted images with different
b-values in 12/12 (100%) [25-36], 9/12 [25-31, 33, 36],
and 7/12 [25-29, 32, 35] papers, respectively. In contrast
to the DL papers, only 7/12 (58%) TML studies [25, 27,
29-31, 35, 36] differentiated csPCa from iPCa and benign
lesions, whereas the remaining five studies (42%) [26, 28,
32-34] did not include benign disease, thereby focus-
ing only on distinguishing csPCa from iPCa. Eight (67%)
papers [26, 28, 30-33, 35, 36] performed the analysis at
the level of the whole prostate, two [27, 34] reported the
results for peripheral and transition zone lesions sepa-
rately, one [25] developed models for the whole prostate
as well as peripheral and transition zone lesions, and one
[29] included peripheral zone tumours only. Seven (58%)
studies [25-27, 29-32] validated their results using inter-
nal hold-out, three papers [33-35] used cross-valida-
tion, and the remaining two studies [28, 36] used either
a mixed hold-out cohort or a fully external hold-out
dataset.

Comparative performance of fully-automated
and semi-automated Al methods
Three out of 5 (60%) DL studies [21-23] had clearly
defined thresholds at which performance characteristics
of the developed models were calculated; these are pre-
sented in Table 5. For studies combining peripheral and
transition zone lesions for classification [21, 23, 24], the
AUC:s of the best-performing models reported in the test
sets for differentiating csPCa from iPCa and benign dis-
ease ranged between 0.80 and 0.89. Importantly, the AUC
range changed to 0.85-0.89 when a study by Seethara-
man et al. [24] was excluded from the calculation due to
its high risk of bias reported on QUADAS-2 assessment
(Table 1). In a study by Wang et al. [20], AUC:s for periph-
eral zone and transition zone lesions were 0.89 [0.86—
0.93] and 0.97 [0.95-0.98], respectively, and a study by
Schelb et al. [22] did not report AUC values. Four (80%)
studies [21-24] did not report accuracy of the developed
models, while Wang et al. [20] reported accuracy of 0.91
[0.86-0.95] and 0.89 [0.87-0.91] in the peripheral and
transition zone lesions, respectively. All studies reported
sensitivity and specificity of the proposed models, while
only 2/5 (40%) [22, 23] studies presented NPV and PPV,
with NPV being higher in both cases (Table 5).

Six out of 12 (50%) TML studies [25, 3032, 34, 36]
defined specific thresholds for diagnostic performance,
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with the resulting characteristics summarised in Table 5.
The AUCs of the best-performing models for stud-
ies combining peripheral and transition zone lesions
ranged between 0.75 and 0.98. The AUC range changed
to 0.75-0.88 when five papers [27, 30, 32, 33, 35] with
high or unclear risk of bias on QUADAS-2 (Table 1)
were removed from the calculation. A study by Li et al.
[30] (high risk of bias, see Table 1) was one of two papers
reporting accuracy of the proposed model (0.90), in addi-
tion to a study by Hiremath et al. [36] where it reached
0.78; both studies applied their models to peripheral and
transition zone lesions combined. 3/12 (25%) [27, 33, 35]
papers did not report sensitivity and specificity of their
models, and only one study by Li et al. [30] presented
NPV and PPV of their model.

Discussion

This systematic review highlights the intensity of research
efforts in developing both fully-automated and semi-
automated MRI-derived Al methods for differentiating
csPCa from iPCa and benign disease. While formal meta-
analysis and direct comparison of the two approaches
were not possible due to a substantial heterogeneity of
studies included in this review, the narrative synthesis
revealed their comparable performance that was mar-
ginally higher for fully-automated methods. If common
methodological limitations outlined in this review are
addressed, future studies will have the potential to make
Al-driven expert-level prostate MRI assessment widely
accessible and reproducible among multiple centres and
readers with different experiences.

In keeping with this report, previous systematic and
narrative reviews investigating the diagnostic perfor-
mance of DL- and TML-based Al methods for PCa
diagnosis [9, 11-13] have also highlighted substantial
heterogeneity and poor reproducibility of the developed
predictive models. While a meta-analysis by Cuocolo
et al. [10] showed higher AUC of TML-based models
compared to DL-based models, the authors drew the
data from all studies included in the qualitative synthesis.
Some of these studies had a high risk of bias and showed
important differences among their patient populations,
ground truth assessment methods, zonal distribution of
predictive models, and other potential confounders. In
our review, the addition of full CLAIM and RQS qual-
ity evaluation to QUADAS-2 assessment highlighted
high methodological heterogeneity of both DL- and
TML-based studies, which limited the reliability of their
quantitative synthesis. The outcomes of qualitative syn-
thesis, however, suggest that DL-based fully-automated
Al methods may prove more clinically useful in the long
run given their comparable performance to TML-based
semi-automated methods. A crucial practical advantage
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Table 5 Diagnostic performance of fully-automated and semi-automated Al methods for differentiating between csPCa and iPCa or

benign disease

Study Threshold AUC [95% CI] Accuracy Sensitivity Specificity NPV PPV
Studies using deep learning-based fully-automated Al algorithms
Wang [20] NR PZ:0.89 PZ:0.91 PZ:0.60 PZ:0.98 NR NR
[0.86-0.93] [0.86-0.95] [0.52-0.69] [0.95-1.0]
T7:097 T7:0.89 T2:1.0[1.0-1.00 TZ:088
[0.95-0.98] [0.87-0.91] [0.82-0.93]
Fernandez- 0.5 0.89 NR 085 094 NR NR
Quilez [21]
Schelb [22] Several for dif- NR NR PI-RADS>3:096 PI-RADS>3:0.31 PI-RADS > 3: PI-RADS >3:0.53
ferent PI-RADS PI-RADS>4:0.92 PI-RADS>4:047 084 PI-RADS > 4: 0.67
cut-offs PI-RADS > 4:
0.83
Deniffel [23] Risk of 0.85[0.76-0.97]  NR 1.0 [1.0-1.0] 0.52[032-068] 1.0[1.0-1.0] 0.56 [0.48-0.66]
csPCa>0.2
Seetharaman?® NR 0.80 (per lesion)  NR 0.70 (per lesion)  0.77 (perlesion)  NR NR
[24]
Studies using traditional machine learning-based semi-automated Al algorithms
Bonekamp [25]  0.79 WP: 0.88 NR WP: 0.97 WP:0.58 NR NR
PZ:0.84 (per lesion) (per lesion)
TZ:0.89 (per
lesion)
Min [26] NR 0.82[0.67-0.98] NR 0.84 0.73 NR NR
Castillo [28] NR 0.75 NR 0.88 0.63 NR NR
Bleker [29] NR 0.871[0.75-0.98]  NR 0.86 0.73 NR NR
Woznicki [31] 045 0.84[0.6-1.0] NR 091[0.81-098]  0.57[038-0.74] NR NR
Antonelli [34] Reader SP (train-  PZ: 0.83 NR PZ: 90 PZ: 65 NR NR
ing) TZ:0.75 T12:92 TZ:56
Hiremath [36] Maximising 0.81[0.76-0.85]  0.78 0.83 0.59 NR NR
accuracy (0.361)
Kwon? [27] NR WP: 0.82 NR NR NR NR NR
Li* [30] —042 0.981[0.97-1.00]  0.90 0.95 087 0.97 0.82
Bevilacqua®[32]  0.58 0.84[0.63-0.90] NR 0.9 0.75 NR NR
Toivonen® [33] NR 0.881[0.92-0.95] NR NR NR NR NR
Yoo? [35] NR 0.84[0.76-0911  NR NR NR NR NR

AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; NR, not reported; PI-RADS, prostate imaging-reporting and data system;
PPV, positive predictive value; PZ, peripheral zone; SP, specificity; TZ, transition zone; WP, whole prostate

2These papers had either high or unclear risk of bias on QUADAS-2 assessment (see Table 1; Fig. 2)

of fully-automated approaches is its potential time-saving
effect that is important in the context of an ever-increas-
ing workload in radiology departments. That said, almost
all DL papers included in this review still require even
minimal manual interaction from the readers, including
lesion identification as patches [20] or bounding boxes
[22-24], thereby still introducing a known element of
interobserver variability. However, a head-to-head com-
parison of DL- and TML-based Al methods in the same
patient cohort presents a highly important area of unmet
research need. If addressed, this has the capacity to
directly answer the clinical question behind this review.
In this review, a combination of full CLAIM, RQS,
and QUADAS-2 assessment revealed several common

methodological limitations, some of which are applica-
ble to both DL and TML studies. These common limita-
tions fall into four distinct domains: (1) datasets used for
model development, (2) methods used to ensure quality
and reproducibility of image segmentation, (3) ground
truth assessment methods, (4) strategies used for model
evaluation. The following paragraphs summarise the key
limitations within each of the four domains, with detailed
recommendations for their prospective mitigation pro-
vided in Additional file 1.

First, the overwhelming majority of papers included in
this review either utilised non-publicly available single-
centre datasets or used the same open-source single-
centre PROSTATEx challenge dataset [49]. The use of
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single-centre datasets, both public and private, without
external testing presents a critical limitation to the clini-
cal applicability of the developed models. Conversely,
the use of a single public dataset without additional data
encourages community-wide overfitting that limits the
utility of the dataset itself.

Second, nearly half of the studies did not process
images segmented by multiple radiologists, thus limit-
ing the generalisability of the developed predictive mod-
els due to known interobserver variability even among
experts [50—52]. The same applies to the original PROS-
TATEx dataset [49] that includes lesion coordinates
based on the outlines provided by a single reader. While
one DL study included in our review [20] used the origi-
nal single-reader segmentations, another study [21] over-
came this limitation by utilising segmentations validated
by several readers in a dedicated study by Cuocolo et al.
[53]. Even if trained on the same dataset and using the
same Al methods, models developed using different seg-
mentations will inevitably differ in their performance,
which brings additional layer of heterogeneity to the field.

Third, only 80% of DL and 67% of TML papers used
MRI-targeted biopsy specimens as a source of ground
truth. The remaining studies either relied on radical pros-
tatectomy data or included mixed patient cohorts where
the ground truth was obtained using different methods.
While radical prostatectomy specimens offer definitive
assessment of lesion morphology, the resulting predictive
models will have very limited clinical applicability due
to overrepresentation of patients with intermediate-risk
disease. If predictive models are trained to differentiate
between iPCa and csPCa and therefore help clinicians
decide on the need for subsequent biopsy, then MRI-tar-
geted biopsy using cognitive, US/MRI fused, or in-bore
approaches present an appropriate standard for ground
truth assessment.

Fourth, none of the DL papers and only two TML
papers used external testing to assess the generalisabil-
ity of the developed predictive models [54]. Given the
intrinsically low reproducibility and repeatability of MRI-
derived radiomic features [55, 56], the lack of robust
external testing and prior assessment of feature robust-
ness to scanning parameters present major obstacles to
the clinical use of any MRI-based Al algorithms. How-
ever, even if external testing becomes the norm, it is also
important to avoid common mistakes in reporting stand-
ard measures of discrimination that help evaluate model
performance. These often include the lack of clearly
identified operating points at which they were calculated
and confidence intervals that reflect the uncertainty in
the estimate. Ideally, the operating points should reflect
the expected performance of expert radiologists, with
the pooled NPV of 97.1% (95% CI 94.9-98.7%) [2] being

Page 14 of 17

the key clinical benchmark that has established mpMRI
as a diagnostic test that can effectively rule out csPCa.
Importantly, a thorough failure analysis of incorrectly
classified cases is key to understanding and communi-
cating diagnostic pitfalls of the developed models, which
is paramount to their safe and evidence-based clinical
use. Finally, despite pointing out the above pitfalls, we
acknowledge the overall high quality of publications in
the field of applying AI methods to mpMRI-driven PCa
diagnosis. Improving their methodological quality, the
next steps will require a consolidated international and
multi-institutional effort, the success of which will pri-
marily depend on the quality of data used for training
and validating AI algorithms.

This review has several limitations. The introduction of
stringent CLAIM and RQS methodological screening led
to the exclusion of several high-quality papers published
in high-impact journals, such as Journal of Magnetic
Resonance Imaging, European Radiology, and Cancers.
This approach, which we previously adopted for another
review [57], allowed us to only include studies that are
reproducible. It is, however, important to acknowledge
that the CLAIM requirements are harder to fulfil com-
pared to the RQS ones. We also acknowledge that some
relevant studies may not have been included, particu-
larly those published between our search and publication
of this review. Due to the considerable heterogeneity of
studies, we did not pool the data for a formal comparison
of the diagnostic accuracy of fully-automated and semi-
automated Al methods. This was, however, compensated
by an extensive narrative synthesis that identified com-
mon pitfalls and inconsistencies of the included studies
that formed the basis of their heterogeneity.

Conclusions

In conclusion, we observed comparable performance
of fully-automated and semi-automated MRI-derived
Al methods for differentiating csPCa from iPCa and
benign disease. In-depth CLAIM and RQS methodo-
logical quality assessment of the studies included in this
review revealed several important pitfalls that limit clini-
cal applicability and generalisability of the vast majority
of the proposed predictive models. These include, but are
not limited to, the use of single-centre datasets without
external test cohorts, lack of multi-reader image seg-
mentation, use of inappropriate ground truth assessment
methods, and insufficient reporting of model evaluation
metrics that can inform their interpretability and clinical
applicability. Future studies that address these limitations
will help to unlock the disruptive potential of AI and har-
ness the benefits of expert-quality mpMRI-driven PCa
diagnosis for the wider community.
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