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ABSTRACT 

In Central and Southern Italy, where durum wheat represents one of the most widely cultivated 

crops, grain filling occurs during Spring, a period characterised by sudden increases in temperature. 

Wheat grain proteins are classified into albumins, globulins, and prolamins. The non-prolamin 

fractions include proteins with metabolic activity or structural function. 

In order to investigate the consequences of heat stress on the accumulation of non-prolamin proteins 

in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes 

(heat stress vs. control) during grain filling. The 2D patterns of non-prolamin proteins were 

monitored to identify polypeptides affected by heat stress. This study shows that heat stress alters 

significantly the durum wheat seed proteome, although the fold changes range only between 1.2 and 

2.2. This analysis revealed 132 differentially expressed polypeptides, 47 of which were identified 

by MALDI TOF and MALDI-TOF-TOF MS and included heat shock proteins, proteins involved in 

the glycolysis and carbohydrate metabolism, as well as stress related proteins. Many of the heat 

induced polypeptides are considered to be allergenic for sensitive individuals. 

The differences observed with previously reported data regarding bread wheat may be explained by 

the absence of the D genome in durum wheat.  
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INTRODUCTION 

 

Wheat is a widely used cereal for human consumption. The two most important cultivated wheat 

species are Triticum aestivum L. (bread wheat) and T. durum Desf. (durum wheat). T. aestivum is a 

hexaploid species possessing the genomes AABBDD, whereas T. durum is tetraploid with genome 

composition AABB. This last species is extremely important, in the Mediterranean areas, where 

represents the most widespread crop, finding large utilization in the production of a wide range of 

end products, such as pasta, leavened and unleavened breads, cous cous etc. Genes present on D 

chromosomes, such as those determining flour texture [1] or those encoding specific high molecular 

weight glutenin subunits [2], missing in durum wheat, confer the typical bread-making properties to 

bread wheat flour. In addition, the absence of the D genome in durum wheat may affect also the 

response to biotic and abiotic stresses, because it has been shown that several stress-related genes 

are located on the D genome [3,4]. 

Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity, and oxidative 

stress are serious threats to agriculture because they affect quality properties, including yield, and 

the characteristics of the final product. These effects stem from altered synthesis and functionality 

of specific protein [5]. Proteome analysis is an effective tool for investigation of changes in protein 

accumulation in wheat kernel in response to heat stress [6]. 

The seed protein content is the most important factor determining wheat quality. Wheat kernel 

proteins are divided according to their solubility properties into prolamins (gliadins and glutenins, 

collectively known as gluten proteins), soluble in diluted acid or alkali or alcohol-water mixtures, 

and albumins and globulins, which are water and salt soluble, respectively [7]. Gluten proteins 

represent about 80% of wheat seed proteins, and are the most important determinant of the dough 

properties. 
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High temperature during the grain filling has been reported to alter the yield and the dough quality 

of bread wheat [8,9]. Heat stress, in fact, modifies the ratio between the different gluten proteins in 

the seed by affecting mainly the composition of the polymeric fraction (soluble/insoluble 

polypeptides) [10]. High temperatures thus favor synthesis of gliadins, whereas glutenin synthesis 

decreases. An explanation of the gliadin increase after heat stress might be related to the presence of 

heat stress elements (HSE) in the upstream regions of some gliadin genes [10]. Because glutenins, 

however, are the most important polypeptides in determining quality properties, their decrease, 

coupled to the relative increase of gliadins, might explain the negative performance of bread wheat 

exposed to high temperatures. 

Water-soluble albumins and salt-soluble globulins constitute about 20% of total flour protein 

[11,12]. The non-prolamin proteins have mainly metabolic activity or structural functions [13]. 

Certain wheat globulins, however, are reported to be storage proteins [14,15]. In contrast to gliadins 

and glutenins, albumins and globulins have been less thoroughly characterized, most probably due 

to their minor role in wheat quality compared to gluten proteins, although the ratio of albumin to 

globulin has been reported to correlate with bread-making quality [11]. A relationship between the 

water-soluble α-amylase/trypsin inhibitors and pasta quality has also been suggested [16,17]. The 

soluble proteins from wheat seeds are now receiving increasing attention because several 

polypeptides from this fraction have been identified as human allergens [18]. 

Effects of heat stress on metabolic proteins in wheat kernel were previously studied in bread wheat 

kernels. One of the consequences was a reduction in starch accumulation and activity of soluble 

starch synthase [19-21]. More recently, proteome analysis of bread wheat showed the involvement 

of enzymes in starch biosynthesis, e.g. glucose-1-phosphate adenyltransferase and the granule 

bound starch synthase in heat stress response. In addition, up-regulation of a large number of 

cytoplasmic heat shock proteins (HSP) was confirmed [6]. 
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Very recent investigations have shown that environmental changes, such as heat, cold, drought, and 

waterlogging mainly affect storage proteins of the 7S globulin (vicilin-like) and R-globulin 

families, along with defense proteins such as serpins and chitinases [22]. 

Durum wheat is mostly grown in the Mediterranean region where heat stress during grain filling is a 

likely event. In order to understand the response of the metabolic protein fraction to heat stress and 

make a comparison with bread wheat, we have used proteome analysis to identify the durum wheat 

soluble seed proteins that are influenced by heat stress and which may affect the nutritional and 

technological quality of the derived products. 

 

MATERIALS AND METHODS 

 

Plant material and heat treatment 

 

Durum wheat (cv Svevo) was grown in a climate chamber in a medium composed of soil, sand, peat 

(6:3:1) at 10°C (9 h day)/ 7°C (15 h night) with 60% relative humidity and photon flux of 500 µmol 

m-2 s-1 until appearance of the third leaf. At this point, conditions were gradually (according to the 

development stage) switched to 20°C (13 h day)/ 17°C (11 h night) with 55% relative humidity and 

photon flux of 500 µmol m-2 s-1. These conditions were maintained until five days after anthesis. 

Then, while control plants were maintained in the same conditions, stressed plants were subject to 

heat-shock treatment, carried out at 37/17 °C (13 h day/11 h night) with 55% relative humidity for 5 

days. Following the heat shock, the temperature was decreased to 28°C for 4 h, and then the 

growing cycle was set up at 20°C (13 h day)/ 17°C (11 h night) with 55% relative humidity and 500 

µmol m-2 s-1 photon flux. Starting from the milk maturity stage, both control and stressed plants 

were brought to complete maturity at 25°C (16 h day)/ 20°C (8 h night) with 45% relative humidity. 

In both control and stress treatments, seeds were collected from four biological replicas. 
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Protein content analysis and selective extraction 

 

The seed protein content was determined by Kjeldahl nitrogen analysis (Nx5.7). Metabolic seed 

proteins were extracted according to [23], but amounts were scaled up in order to perform larger 2D 

gels. Briefly flour (150 mg) was suspended in 600 µl of cold KCl buffer (50 mM Tris–HCl, 100 

mM KCl, 5 mM EDTA, pH 7.8). The suspension was incubated on ice for 5 min with intermittent 

mixing and centrifuged (14,500g, 15 min, 4 °C). The KCl-soluble fraction was collected and 5 

volumes (v/v) of cold 0.1 M ammonium acetate in methanol were added at room temperature. 

Following incubation overnight at -20 °C, the methanol-insoluble fraction was pelleted by 

centrifugation as above. The pellet (containing metabolic proteins) was rinsed with cold acetone, 

dried down and stored at -20°C until further use. 

 

2-DE 

Metabolic proteins were dissolved in 800 µl of strip rehydration buffer containing 7 M Urea, 2 M 

thiourea, 2% (w/v) CHAPS, 2% (v/v) Triton X100, 1.2% (v/v) Destreak reagent (GE Healthcare), 

and 0.5% (v/v) IPG buffer pH 3−10. IEF linear IPG strips (18 cm, GE Healthcare) pH 3–10 were 

used as first dimension. Strips were rehydrated overnight at 20°C with 200 µL of dissolved proteins 

(about 300 µg protein) and 150 µl of rehydration buffer was added. The same extract volume (200 

µL) was loaded. Focusing was performed at 20°C for 80 kVh (200 V 4 h, 500 V 2.5 h, 1000 V 3 h, 

5000 V 2 h, 8000 V 9 h). The gel strips were subsequently equilibrated for 25 min in 0.1 M Tris-

HCl pH 8.8 containing 6 M Urea, 30% (w/v) glycerol, 2% (w/v) SDS, 1% (w/v) DTT and 

bromophenol blue as tracking dye. For the second dimension, the strips were transferred onto 18 × 

20 cm polyacrylamide gels (15%T, 1.28%C) (Protean II X-Cell, BioRad) and run at 40 mA per gel 

for 3−4 h at 11°C until the dye front left the gel.  
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After electrophoresis, proteins were visualized by CBB staining according to [24]. All gels were 

stained for 16 h and destained for 1 h with distilled water before image acquisition. Three technical 

replicas were performed for each of the four biological replicas from each treatment, giving a total 

of 24 gels. Destained gels were scanned with Image Master LabScan (GE Healthcare) and analyzed 

using the software SameSpots Progenesis (vers. 1.0.2602.33289, Nonlinear Dynamics, UK). This 

software includes statistical analyses such as ANOVA (p≤ 0.05), determination of False Discovery 

Rate (FDR, q≤ 0.05), and Principle Component Analysis (PCA) calculated according to [25]. 

 

Protein identification by MALDI TOF-TOF 

 

Protein identification was done by picking gel spots from two independent gels to minimize 

technical variability. CBB-stained spots were excised from the gel, cut to pieces and washed twice 

with 40% ethanol until colorless. The destained gel pieces were dehydrated with ACN, treated with 

10 mM DTT in 50 mM NH4HCO3 for 1 h at 56°C and finally alkylated with 55 mM iodoacetamide 

in 50 mM NH4HCO3 for 30 min in the dark. Gel pieces were dehydrated with ACN, rehydrated 

with 1 pmol trypsin (Sigma) solution in 50 mM NH4HCO3 and incubated at 37°C overnight for 

digestion. The peptides were extracted twice from gel slices with 5% formic acid in 50% ACN. The 

peptide solution was then desalted, concentrated and applied to an Anchorchip target™ (Bruker 

Daltonic) using α-cyano-4-hydroxycinnamic acid as matrix, according to the manufacturer’s 

instructions and [26]. Mass spectrometric analysis was performed on a MALDI TOF-TOF Ultraflex 

II in positive ion reflector mode and spectra were processed and analysed using the software 

FlexAnalysis and BioTools (Bruker Daltonics). Database searching was carried out using an in-

house MASCOT server (Matrix Science, London, UK) to search NCBInr 

(ftp://ftp.ncbi.nih.gov/blast/db/) and the Wheat Gene Index 

(http://compbio.dfci.harvard.edu/tgi/tgipage.html) release 10. 
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Proteins were identified by PMF. Matrix contaminants and predominant keratin peaks were 

removed from peak lists using PeakErazor 

(http://www.protein.sdu.dk/gpmaw/Help/PeakErazor/peakerazor.html). In order to identify a protein 

unambiguously the following criteria were used: MASCOT score with p≤ 0.05; protein sequence 

coverage > 15%; at least five independent peptides matching with a mass tolerance of 50 ppm and 

maximum one trypsin miscleavage site. The Oxidation (M) and the Gln->pyro-Glu were selected as 

variable fragment modifications. Where the PMF-based identification was uncertain, fragment ion 

spectra were obtained for at least three peaks with a signal:noise ratio > 5 and m/z > 1400. Each 

fragment ion spectrum was checked against the same database as used for PMF and the 

identification was confirmed if correspondence was found. 

 

RESULTS AND DISCUSSION 

 

Heat stress can be an important factor affecting yield and quality of durum wheat Although quality 

is mostly determined by gluten proteins, that are the major protein components of wheat seeds, also 

the soluble metabolic protein fraction (albumins and globulins) plays a role, especially in terms of 

nutritional/antinutritional properties. Most of these polypeptides, in fact, show allergenic properties 

in sensitive individuals [18]. Albumins and globulins are distributed mainly in the outer layers of 

wheat kernels, and thus are important components in whole-wheat flours and semolina, towards 

which there is an increasing consumer interest, because they have a higher amount of fibers, 

proteins and functional components [27]. 

In the present paper the durum wheat cultivar Svevo, widely grown in Italy and moderately resistant 

to cold stress, was subjected to two thermal regimes, i.e. heat stress and control conditions during 
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grain filling. The effect on the metabolic protein fraction was analysed by comparison of the 

corresponding proteomes. 

Firstly, protein contents were compared between stressed and control samples, which revealed that 

heat stressed samples accumulated significatively higher amounts of protein. The protein content 

being 19.30% (±1.43) in stressed and 13.85% (±1.87) in control samples (p=0.004). A correlation 

between heat stress and increase in protein content was previously reported in bread wheat [28]. In 

our case, the increase in protein content was due mostly to gluten proteins, that were about 50% 

more abundant in heat stressed samples with respect to control samples, whereas the metabolic 

fraction increased by about 20% (data not shown). 

The highly reproducible 2-D gels showed about 1000 spots in the pI range 3−10 and comparison 

revealed differential expression of proteins (1.2<fold change<2.2) in 132 spots (Fig. 1), 65% were 

up-regulated in heat-treated samples (Fig. 2). Because only those spots satisfying ANOVA (p<0.05) 

and FDR (q<0.05) values were chosen, and the Principal Component Analysis (PCA) performed on 

the differentially expressed spots [25] indicated two separate groups corresponding to the two 

thermal regimes (Fig. 3), we are confident that the observed differences are significant. 

 

Protein identification 

MALDI TOF analysis identified 47 proteins from the picked varying spots (Table 1; Fig. 4). 

Among the identified proteins, 85% were up-regulated and 15% down-regulated. Proteins identified 

by mass spectrometry were classified based on to their main activity although most are involved in 

different pathways or signaling. 

Noteworthy is the observation that the fold changes observed, are in a narrow range (1.2>fold 

change>2.2). This is in agreement with previous findings relative to the bread wheat cultivar Butte 

86 [29]. 
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As expected, heat stress increased expression of many proteins related to desiccation and oxidation 

stress, e.g. Late Embryogenesis Abundant (LEA)-proteins, the heat shock proteins HSP70 and 

HSP26 [5, 30-32]. These proteins, through binding or interaction with other proteins, prevent 

damage of proteins and cell membranes (reviewed in [33]). Also glyoxalase I, one of the enzymes 

of the glyoxalase pathway related to the detoxification pathway of methylglyoxal in plants [34] was 

up-regulated. 

 

Carbohydrate metabolism or energy related proteins  

Nucleoside diphosphate kinase (NDPK), which is required for the synthesis of nucleotide 

triphosphate precursors of DNA and RNA, was up-regulated along with some housekeeping 

enzymes involved in glycolysis and the pentose phosphate pathway (glyceraldehyde 3-phosphate 

dehydrogenase, phosphoglycerate kinase, and glucose and ribitol dehydrogenase), in agreement also 

with that reported in [29], in which the effect of high temperature on soluble proteins of developing 

bread wheat grains has been studied. Altered expression pattern of NDPK was previously found in 

response to abiotic (including heat stress) and biotic stresses in rice and other plant species [35-36], 

suggesting that NDPK plays a regulatory role in addition to its primary metabolic functions.  

Five spots (427, 444, 460, 503, 514) which were up-regulated by heat stress contained 

glyceraldeyde 3-phosphate dehydrogenase (GADPH), which is involved in glycolysis and has been 

identified as one of the allergens implicated in bakers’ asthma [18]. Bustos and Iglesias [37] 

reported that wheat endosperm and shoot GAPDH undergoes posttranslational phosphorylation 

enabling interaction with 14-3-3 family proteins, thus exerting a regulation aimed at maintaining the 

levels of energy and reductants in the cytoplasm. Recently, it was established using a proteomics 

approach that GAPDH activity in Arabidopsis was inhibited by H2O2, suggesting that GAPDH is a 

direct target of H2O2 and might have a role in mediating ROS signaling in plants [38]. 

Page 10 of 32

Wiley - VCH

PROTEOMICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Three up-regulated spots (436, 470, 502) belonged to the glucose and ribitol dehydrogenase protein 

family.  

Among the polypeptides down-regulated after heat shock, ATP synthase β subunit (spot 110) was 

identified, in agreement with observations in bread wheat [6]. The decrease in amount of ATP 

synthase may affect energy-dependent processes involved in heat stress resistance. It has been 

reported that energy consuming processes are the primary cellular targets for a decreasing of ATP 

demand in response to stresses, such as anoxia [39], and it is known that heat shock and anoxia are 

abiotic stresses eliciting similar cellular responses [40]. 

Also phosphoglycerate kinase (spot 109), glycoside hydrolase family 85 (spot 173), and fructose 6 

phosphate-phosphotransferase (spot 299), all involved in glycolysis, were down-regulated. The 

glycoside hydrolase family is present in essentially all living organisms and has been implicated in 

a diversity of roles, such as biomass conversion in microorganisms and activation of defense 

compounds, phytohormones, lignin precursors, aromatic volatiles, and metabolic intermediates [41]. 

Phoshoglycerate kinase was previously found to be over-expressed in the nuclear proteome of 

Arabidopsis in the cold stress response [42].  

 

Stress related 

Two members of the heat shock protein family, HSP70 (spots 70, 426) and HSP26 (spot 497) were 

up-regulated after the heat stress. HSP70s have been linked to the development of acquired 

thermotolerance in heat stress, although they seem also to correlate with tolerance to low 

temperature stress [43]. HSP26 belongs to the family of small heat shock proteins (sHSP) exhibiting 

chaperone activity and thought to protect proteins from irreversible aggregation [44].  

A polypeptide of the 14-3-3 protein family was slightly down-regulated by heat stress (spot 341). 

Also Hurkman et al [29] observed down-regulation of members of this protein family after heat 

stress in bread wheat. Transcripts encoding proteins belonging to the 14-3-3 family accumulate in 
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barley after biotic stresses [45,46] and in wheat a region of chromosome 4AL containing genes 

coding for 14-3-3 is associated with a resistance QTL against specific fungal diseases [47]. The up-

regulated polypeptides after heat treatment moreover included flavonoid O-methyltransferase (spot 

445), a 14-3-3-binding protein involved in production of antimicrobial secondary metabolites ,thus 

showing a potential role in response to a pathogen attack in barley [48]. Furthermore these 

compounds have antioxidants properties and could thus be involved in oxidative stress. 

Serpins (serine protease inhibitors) were identified in multiple spots (89, 94, 395, 456) as up-

regulated in response to high temperature. The same observation was made by Hurkman et al [29]. 

Serpins, found in the soluble fraction of wheat seeds, undergo differential regulation in response to 

environmental stress [49]. The serpins are widespread in the plant kingdom and represent up to 4% 

of the total protein in the mature endosperm of cereal grains [50,51]. While the precise 

physiological role of serpins remains unclear, their activity suggests that they are involved in 

inhibition of endogenous proteases, or proteases from grain pests. Because of their high 

concentration in the endosperm, serpins have potential to influence grain quality traits [52-54]. 

Other proteins with a defense role have a modified expression profile in response to heat shock. 

Such proteins are typically identified in multiple forms on 2-D gels [55] and include: tritins (spots 

140, 222), α-amylase inhibitors (spot 362), and some 14-3-3 related or binding proteins. Most of 

these proteins besides having a metabolic role, are also considered as storage proteins. Furthermore, 

some are also considered wheat grain allergens along with the serpins [56]. 

Another enzyme found in response to the heat treatment is glyoxalase I (spot 508). The glyoxalase 

system is a set of enzymes that carry out detoxification of methylglyoxal and other reactive 

aldehydes that are produced during normal metabolism. In plants it has been demonstrated that 

different kinds of stress, such as salt and metal stress, elicits enhance the expression of glyoxalase I 

[57-59].  
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LEA proteins (spots 483 and 484) were up-regulated and are involved in stress responses. They are 

typically correlated with cellular dehydration in response to cold stress. Other LEA functions 

include roles as antioxidants and membrane and protein stabilisers during water stress [60].  

Finally, 1-Cys peroxiredoxin (spot 14), also observed to be up-regulated, has antioxidant and 

chaperone activity [61]. 

 

Storage proteins 

Up-regulated proteins with a storage role here identified in the heat response mainly belong to the 

globulin-like protein family (spots 110, 232 350, 509, 511) or protein homologous to embryo 

globulin (spots 58, 239, 468, 505). Spot 239 (Homologue to Embryo Globulin) was found to be 

down-regulated by heat stress. A role for these proteins in thermotolerance is not known. They may 

be directly related to heat stress response by an unknown mechanism or, indirectly, be a target for 

other proteins involved in the heat shock response. This is in agreement with [29]. 

 

CONCLUDING REMARKS 

The results here reported offer a picture of the consequences of heat stress occurring during grain 

filling on the accumulation of the soluble proteins in the mature seeds of the widely grown Italian 

durum wheat cv Svevo. The results provide a basis for understanding how this environmental 

change influences on protein synthesis and consequently the metabolic and quality traits of the 

durum wheat kernel. Moreover, since the durum wheat kernel is of primary interest because the 

semolina obtained by crushing mature seeds is the basis of many products of common use, among 

which pasta is the most important, it is critical to understand if the different types of stresses that 

wheat plants can potentially undergo, may alter protein composition, and, consequently, qualitative 

and nutritional properties of the derived products. 
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In the present study 47 metabolic proteins were identified from the soluble seed fraction of durum 

wheat which were induced or repressed by heat shock. The fold changes observed were between 1.2 

and 2.2, and this was also in agreement with [29]. 

In agreement with previous studies performed in bread wheat cultivars [6,29,62] both HSP70 and 

LEA proteins were up-regulated in response to heat stress. Other proteins, such as ATP synthase β 

subunit and nucleoside diphosphate kinase (NDPK) related to the energy metabolism also 

responded to heat treatment. This agrees also with the findings of Hurkman et al [29]. Interestingly, 

we did not find any difference in the level of expression of starch related enzymes, although this 

was a finding of Majoul et al [6] in bread wheat. This might be a result either of the different 

protein extraction procedures, or of a different protein turnover in the plant material, or the enzyme 

forms that are regulated in bread wheat may be coded by genes present on the D genome, that is 

absent in durum wheat. 

GAPDH, a housekeeping enzymes involved in glycolysis, was found to be up-regulated. Others 

recently suggested a relationship between this enzyme and certain abiotic stresses [63]. Proteins 

reported to be influenced by abiotic stresses, e.g. oxidative and drought stresses, and also found as 

differentially regulated in the present work include 14-3-3 proteins, serpins, LEA proteins, 1-Cys 

peroxiredoxin, glyoxalase I, and proteins with a storage function (e.g. globulin-like proteins). 

It is noteworthy that some of the differentially regulated proteins are considered as allergens (α-

amylase inhibitors, serpins, tritins, GAPDH) and were found to be up-regulated after heat stress, 

which obviously represents a disadvantage for sensitive individuals. 

These results illustrate that there is a common network “response” to different types of abiotic 

stress, such as drought, oxidative, cold and heat stress. 
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Tab.1 Proteins responsive to heat shock identified by PMF and MS-MS analysis. The following criteria were used: MASCOT score (p<0.05), 

minimal coverage 13%, at least 6 independent peptides should match with a mass tolerance of 50 ppm and 1 miss cleavage site. The database search 

was applied in NCBInr and TIGR wheat. For all the identifications three peptide fragmentations were done (MS-MS) and used in combination in the 

database search. The ANOVA value for each spot, the fold change of the normalized volumes between the spots in the control and heat stressed 

maps, the proteins names, accession numbers, the MASCOT scores, the protein coverage and the theoretical molecular weight of the proteins 

identified are reported. 

Spot  Anova Fold Change  Protein Accession Species Score/coverage% Theor Mw (kDa) 

Up-regulated proteins 

14 1.58E-05 1.7  1-Cys peroxiredoxin PER 1 gi/1710077 T. durum 87/35 24.1 

42 0.004 1.2  Isoflavone reductase homolog TC235506  148/30 42.8 

58 1.21E-08 2.5  Homologue to Embryo 
globulin 

TC234172  135/27 71.3 

70 3.58E-05 1.6  HSP70 gi/2827002 T. aestivum 83/21 71.4 

89 0.001 2.2  Serpin gi/5734506 T. aestivum 96/21 43.3 

94 4.61E-04 2  Serpin gi/5734506 T. aestivum 109/33 43.3 

114 0.035 1.3  Nucleoside diphosphate Kinase TC262718  96/26  19 

222 2.45E-04 1.4  Tritin gi/147744620 T. aestivum 111/38 29.5 

232 0.002 1.9  Globulin-like protein TC246874  356/45 71.1 
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336 0.015 1.3  Globulin-like protein 57% TC246703  133/22 68.2 

350 0.002 1.4  Globulin-like protein TC246874  76/18  71.1 

362 0.008 1.5  Endogenous α amylase 
inhibitor (WASI) 

gi/123975 H. vulgare 232/85  14.7 

390 0.033 1.2  Globulin-like protein TC246703  257/27 68.2 

395 0.033 1.3  Serpin gi/5734506 T. aestivum 74/29 43.3 

413 0.008 1.4  Globulin-like protein TC246703  133/19 68.2 

426 0.014 1.2  HSP70 gi/476003 H. vulgare 87/30 71.4 

427 0.002 1.2  GAPDH cytosolic gi/32478662  103/53 18.2 

436 0.023 1.5  Glucose and ribitol 
dehydrogenase 

TC233140  113/17 31.6 

444 0.007 1.3  GAPDH gi/148508784 T. aestivum 125/42 36.6 

445 0.027 1.5  Flavonoid 7-O-
Methyltransferase-like (52%) 

TC252404  141/26 49.7 

447 0.026 1.3  Rubisco large subunit binding 
protein 

gi/2493650 Secale 141/38 53.7 

453 0.014 1.2  Globulin-like protein TC246874 T. aestivum 383/47  71.1 

456 0.049 1.2  Serpin TC236181  87/34 34.8 

460 0.01 1.2  GAPDH cytosolic gi/32478662 T. aestivum 103/53 18.2 

468 0.047 1.4  Embryo globulin TC234134  94/16 76.5 

470 0.022 1.3  Glucose and ribitol 
dehydrogenase 

gi/7431022 H. vulgare 89/28 31.6 
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483 0.032 1.3  Late embryogenesis abundant 
(LEA) 

TC268629  97/32 30.5 

484 0.003 1.3  Late embryogenesis abundant 
(LEA) 

TC268629  126/34  30.5 

497 0.004 1.6  HSP26 gi/147225072 T. aestivum 110/45 26.6 

502 0.006 1.2  Glucose and ribitol 
dehydrogenase homologue 

gi/7431022 H. vulgare 95/31 31.6 

503 0.005 1.2  GAPDH gi/148508784 T. aestivum 123/61 36.6 

505 0.01 1.4  Embryo-specific protein TC235043  98/14 37.6 

508 0.012 1.4  Glyoxalase I TC264636  91/36 44 

509 0.006 1.7  Globulin-like protein TC246874  290/50 71.1 

511 0.009 1.3  Globulin-like protein TC246703  112/26 68.2 

513 0.033 1.3  Hypothetical protein Oryza 
with Enolase Domain 

gi/115451911 O .sativa 69/22 51.1 

514 0.046 1.2  GAPDH cytosolic gi/120680  
TC264316 

 119/28 36.6 

Down regulated proteins       

109 0.018 -1.3  Phosphoglycerate Kinase gi/129916 T. aestivum 176/43 42.1 

110 0.016 -1.6  ATP Synthase β subunit gi/525291 and 
TC264886 

T. aestivum 123/21 77.5 

110 0.016 -1.6  Globulin-like protein TC246874  104/23 71.1 

140 8.82E-04 -1.6  Tritin gi/391929 T. aestivum 112/24 29.5 
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158 0.002 -1.4  ATP Syntase β subunit gi/525291 T. aestivum 81/13 59.3 

173 0.007 -1.3  Glycosyl hydrolase 85 gi/30695320 A. thailiana 85/29 40.7 

239 0.022 -1.2  Homologue to Embryo 
globulin 

TC234045  163/41 77.3 

245 0.008 -1.3  Single stranded nucleic acid 
binding protein 

gi/974605, 
TC249148 

 100/19 19.3 

299 0.003 -1.2  Fructose-6-P 1 
phosphotransferase 

TC248170  71/13 82.3 

341 0.007 -1.4  14-3-3 homologue gi/22607 and 
TC233195 

H. vulgare 172/47 29.4 
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Fig. 1. 2-D PAGE map of metabolic proteins in the 3−10 pH range: circles indicate the differential 

spots   
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.  

FIG 2 2D-PAGE of the metabolic proteins that are differentially regulated after the heat treatment: 

the yellow selection is referred to spots down-regulated, whereas the black one to up-regulated (fold 

change between 1.2 and 2.2). In the map all other proteins not involved in the heat response have 

been removed. 
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Fig. 3. PCA representation in which differential spots relative to each gel analysed are reported. 

Circles: heat stressed samples; squares: control samples. Numbers represent the differentially 

expressed spots. 
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Fig. 4. 2-D PAGE map of metabolic proteins in the 3-10 pH range: circles indicate the identified 
proteins by MALDI-TOF and MALDI-TOF-TOF 
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