
Full citation: MacDonell, S.G. (1994) Comparative review of functional complexity assessment
methods for effort estimation, Software Engineering Journal 9(3), pp.107-116.

Comparative review of functional complexity assessment methods
for effort estimation

Stephen G. MacDonell
Computer and Information Science

University of Otago, Dunedin, New Zealand
stevemac@commerce.otago.ac.nz

Abstract

Budgetary constraints are placing increasing pressure on
project managers to effectively estimate development effort
requirements at the earliest opportunity. With the rising
impact of automation on commercial software development
the attention of researchers developing effort estimation
models has recently been focused on functional
representations of systems, in response to the assertion that
development effort is a function of specification content [1].
A number of such models exist - several, however, have
received almost no research or industry attention. Project
managers wishing to implement a functional assessment
and estimation programme are therefore unlikely to be
aware of the various methods or how they compare. This
paper therefore attempts to provide this information, as
well as forming a basis for the development and
improvement of new methods.

1. INTRODUCTION

Software development project planning frequently involves
the use of estimates in the determination of projected effort
requirements. Numerous research studies over the last two
decades have therefore attempted to develop and validate
estimation models, so that systems development effort can
be predicted with some quantitative degree of accuracy and
consistency [2, 3]. The intuitive relationship that exists
between ‘software complexity’ and development effort has
provided the basis for many of these estimation models.
This relationship states that a more complex piece of
software will generally require greater effort in
development than a less complex counterpart. Thus a wide
variety of factors thought to contribute to complexity have
been proposed as possible determinants of development
effort. Most early estimation models, for example, provided
post-development estimates of effort (to be used for future
projects) based on the number of delivered lines of code [4,
5]. Other effort estimation models have been based on
countable attributes of software designs [6]. Some
approaches have also considered the impact of external
factors, such as system type and developer experience, on
projected effort estimates. Thus the influence of many

diverse factors has been investigated in the pursuit of an
adequate estimation model.

A common element of these studies has been the
assessment of product attributes with a view to the
subsequent prediction of effort requirements, based on the
assumption that the product attributes have an impact on
development effort. Underlying this approach is another
often stated assumption that the product characteristics
examined are considered to be adequate indicators of
product ‘complexity’. Although complexity is seldom
defined in measurable terms, most of these studies have
accepted the intuitive association between aspects of system
size and interconnectivity and overall product complexity
[7, 8]. It is not the object of this paper to debate the validity
or otherwise of this approach - rather, we are concerned
here with the adequacy of estimation models given this
approach. Thus, complexity is considered here to be a
function of product size and interconnectivity. It therefore
follows that as size and interconnectivity increase, so the
complexity of a system increases, and consequently
development effort requirements are greater.

The demand for early estimates of effort, that is, before a
project is fully under way, provides the motivation behind
the development and use of function-based assessment and
estimation methods which consider the impact of
specification product attributes on development effort. In
terms of the software process, a system specification
product is a logical representation of system functionality,
with no consideration of ‘physical’ constraints, for
example, the development language to be used or the
required hardware platform. Factors such as these are
generally incorporated in the design process, with
subsequent translation into code during system
implementation. Given this classification, a specification
product in the commercial systems domain often includes
logical or conceptual models of data, process and user
interface requirements [1, 9]. Assessing the size and
interconnectivity of these models enables the functional
complexity of a system to be considered, rather than the
complexity of a particular implementation. As the degree of
automation in the development process has increased,
through the use of computer aided software engineering

(CASE) tools, it has been suggested that specification-
based indicators derived from these models should provide
a useful basis for relatively consistent effort predictions [9].
This paper therefore examines nine such functional
assessment approaches for effort estimation according to a
set of six characteristics.

The next section of this paper describes the six criteria
against which the methods are evaluated. This is followed
by a comparative review of currently known functional
complexity assessment methods for business systems
development effort estimation. An overall comparison of
the approaches is presented. Opportunities for improvement
are also discussed as a basis for further research.

2. CRITERIA FOR COMPARISON

Six characteristics were selected for the evaluation of the
methods based on criticisms directed at previously
proposed complexity assessment and effort estimation
models.

• Automation - Product-based data collection
necessary for complexity assessment and effort
prediction should now be largely automated, given
the development tools available and in use within
commercial software development departments. Not
only does this help to ensure the integrity of data, it
also reduces the intrusive nature of the data
collection task [10, 11].

• Comprehensive assessment - In criticising the
effectiveness of previous models, Case [12] and
Wrigley and Dexter [13] suggest that product factors
other than those considered by the models should
also have been included, if only so that they could
be discarded at a later stage after evidence had
illustrated that they were of little consequence. In
terms of specification products, the impact of the
size and interconnectivity of data, process and user
interface models should be assessed, as each may
make some contribution to development effort
requirements [1, 9].

• Objectivity - Kulkarni et al. [14] and Lederer and
Prasad [15] cite the issue of subjectivity as a
significant drawback associated with models
employing product-based effort predictions.
Criticism generally centres around the fact that the
impact of the subjective component can overwhelm
the usefulness of the approach. Some degree of
consistency may be possible when experienced
assessors and estimators remain in a development
group, but problems can arise when new personnel
are required to perform similar tasks.

• Specification basis - As stated in the previous
section, one of the main motivating factors behind
the development of new effort estimation
approaches is the opportunity for the earliest

possible predictions to be generated whilst still
maintaining some degree of accuracy. If this
requirement is to be fulfilled, the product complexity
assessment should be performed using conceptual
specification system models (rather than those
developed during and after the design phase) [16,
17].

• Testing - Munson and Khoshgoftaar [18] state that
there have been more than ninety assessment
methods proposed within the realm of software
measurement. It is almost certain, however, that
some of these methods remain untested in the
relevant environment. This is a most necessary
characteristic if an assessment procedure is to be
used with confidence in the software development
industry [19].

• Validity - In relation to the previous point, any
complexity assessment and effort estimation
approach should be validated on data sets derived
from systems other than those used in the original
model testing [15].

Thus the six characteristics above have been selected as
desirable attributes of complexity assessment and effort
estimation models derivable from system specifications.
For the purpose of repeatability, they are more succinctly
and objectively defined as follows:

Char 1: Automatic - can the product complexity
assessment task be totally performed in an automated
manner, requiring no input from personnel?

Char 2: Comprehensive - are aspects of the size and
interconnectivity of the data, process and user interface
representations considered by the model?

Char 3: Objective - will the model as defined always
produce the same result for a given system at a given point
in time (assuming no counting errors) irrespective of the
person requiring or performing the assessment and/or
estimation?

Char 4: Specification basis - can the complexity
assessment task be totally undertaken using
implementation-independent system representations?

Char 5: Tested - has the complete model been tested using
appropriate real-world data?

Char 6: Validated - has the complete model been evaluated
using systems other than those employed in testing the
model?

These descriptions should now enable objective binary
decisions to be made concerning the provision of each
characteristic by the various models.

3. SPECIFICATION-BASED COMPLEXITY
ASSESSMENT AND EFFORT
ESTIMATION MODELS

DeMarco [1] suggests that development effort is a function
of a system’s information content. He further asserts that
the information content of a final coded system is a well-
behaved function of the information content of that
system’s specification. Unfortunately the lack of
uniformity among specification structures, he continues,
prevents direct information theory evaluation of traditional
requirements documents - however, he does suggest that the
use of standard specification models would provide a
consistent framework for structural comparison. In
essence, this provides the basis for the development and use
of functional assessment methods. A number of existing
techniques are now discussed and evaluated according to
the six criteria described in the previous section. Although
several of these existing assessment methods have size or
productivity estimation as their overall goal they have all
attempted to consider system complexity and development
effort in some way.

3.1. Bang metrics

Bang [1] is offered as an implementation-independent,
quickly derived approach for effort prediction that can lead
to the development of size, cost and productivity estimates.
The Bang system of measures is based on a three-view
perspective of system specifications, ignoring all details of
the method to be used in system implementation. The three
views consist of a functional model, a retained data model
and a state transition model. This complete representation
enables the use of quantitative analysis to provide a
measure of the function to be delivered by the system as
perceived by the user. DeMarco [1] does state that most
systems can be adequately specified using just two of the
three views - particularly for business software this would
normally consist of the data and functional models.

There are three main basic attributes that can be used as the
principal indicators of Bang. They are the count of
functional primitives or elementary processes FP, the count
of inter-object relationships RE and the count of data
elements flowing out of the system DEO. The ratio RE/FP
is said to be a reasonable measure of data strength. If the
ratio is less than 0.7, this implies a function-strong system -
that is, a system that can be thought of almost completely in
terms of operations, for example, robotic systems; if RE/FP
is greater than 1.5, this implies a data-strong system, or one
that should be thought of in terms of the data it acts upon.
The middle range identifies hybrid systems. The DEO/FP
ratio is indicative of the system’s focus on either data
movement or data computation. Commercial systems tend
to have high levels of DEO/FP, scientific systems, low.

For function-strong systems it is suggested that the size or
information content of a process can be approximated as a
function of the number of tokens TC, or data elements,

involved in the process. Variations in process complexity
can then be accounted for through the assignment of
weighting correction factors W, based on sixteen functional
classes, to each primitive’s raw value BANGf. These
weighted figures are then summed over all elementary
processes to provide a final value of function Bang FBANG
for the system:

FBANG = ∑BANGfi * Wi

where

BANGfi = (TCi * log2(TCi))/2

The count of objects OB, or entities, in the database is the
base metric for data-strong systems, corrected for the
amount of connectedness among the objects COB. Data
Bang DBANG is the overall result obtained by this
procedure:

DBANG = ∑COBi

Hybrid systems require separate computation of both
function and data Bang so that the two figures can be used
in the prediction of different activities. DeMarco [1] states
that combining the two totals would be difficult, as it would
be almost certain that one should be weighted more heavily
than the other but that the magnitudes of these weightings
would depend specifically on the system in question.

3.1.1. Evaluation

Consideration of complexity is achieved in Bang through
the use of weightings that are dependent on the flows of
data elements or on the amount of entity connectedness.
Although DeMarco [1] provides a beginning set of
correction factors, these weightings must then be
determined through trial and error and with extensive in-
house calibration. The amount of work required by a
department to determine the appropriate weightings has
inhibited the wider use of Bang [20]. Furthermore, results
for database-oriented systems, most common in the
business domain, are sparse, despite the fact that the
technique is now more than ten years old [21].

Bang can be applied at the conceptual modelling phase and
does consider the number of data elements processed.
However, it fails to distinguish between input and output
data elements, even though the effort required to develop
their respective processing components is different [22].
Data Bang also considers the number of entity
relationships, but no assessment of the relationship types is
performed. Furthermore, assignment of the sixteen
complexity classes must be performed manually by
personnel, reducing the possibility for automatic
calculation.

Outcome: Bang metrics

• Automatic - No

• Comprehensive - Yes

• Objective - No

• Specification basis - Yes

• Tested - Yes

• Validated - No

3.2. Bang metric analysis (BMA)

This is an adaptation of the original Bang method that
considers both processing and data requirements in
transaction-based systems [23]. Each functional primitive
or elementary process is assigned a level of complexity
according to the number of create, read, update and delete
operations that it performs, with each of these operations
carrying a weighting factor. This forms the basis for the
calculation of a process’ function Bang. The formulation of
data Bang is the same as in DeMarco’s theory [1], that is,
complexity is dependent on the number of entity
relationships. Total Bang is the sum of both function and
data Bang for each elementary process.

3.2.1. Evaluation

In terms of data-oriented transaction systems this is a much
more useful approach, in that database operations are
considered instead of DeMarco’s sixteen weighted
functional classes [1]. The weightings used for the
operations were intuitively proposed, but have proved to be
useful in testing. Regression techniques have been used to
determine the appropriate coefficients for function and data
Bang in the prediction of overall development effort. This
method, however, still suffers from the same drawbacks as
DeMarco’s original proposal [1], that is, a failure to
distinguish between input and output data elements and
non-assessment of relationship types.

Outcome: BMA

• Automatic - Yes

• Comprehensive - Yes

• Objective - Yes

• Specification basis - Yes

• Tested - Yes

• Validated - No

3.3. CASE size metrics

Tate and Verner [9, 21] and Tate [24] assert that the
automatic measurement of size as a function of data
dictionary entries should be possible in a CASE
environment. Furthermore, they state that the widespread
use of graphics within CASE tools and the relative absence
of lines of code means that more appropriate size measures
should be chosen. They therefore suggest that measures of

specification size applicable to transaction-oriented
database systems may include those based on the data
model, the data flow model and the user interface.
Examples of specific product measures suggested include
counts of entities and attributes, data flows, processes and
data stores. It is suggested that measures such as these will
be useful in the development of effort estimates.
Measurement of complexity, on the other hand, is described
by Tate and Verner [9] as a relatively well-defined area of
conventional development that should follow similar
principles within CASE, except that it may be based on data
structure and data flow models. At the risk of
oversimplification, they suggest that complexity is a
measure of component interconnectivity within a software
product, an aspect that should be automatically computable
within a CASE environment and that should present no
particular problems.

3.3.1. Evaluation

As discussed earlier in this paper, complexity is considered
to be a combination of aspects of size and interconnectivity.
Thus, Tate and Verner’s discussion of specification size [9]
remains particularly appropriate here as size is certainly
thought to have an impact on overall complexity.
Therefore the automatically derivable measures suggested
above are relevant. Their study was a preliminary
examination of metric possibilities and consequently no
evidence supporting or refuting their suggestions was
provided. Subsequent empirical investigations into the
relationship between the measures and development effort,
however, have provided some support for the approach
[25].

Outcome: CASE size metrics

• Automatic - Yes

• Comprehensive - Yes

• Objective - Yes

• Specification basis - Yes

• Tested - Yes

• Validated - No

3.4. Entity metrics

Gray et al. [26] describe a set of techniques for the
assessment of the complexity of various tasks relating to the
development of data-oriented systems. They firstly propose
an ER metric for determining the effort required to
implement a database design. There are said to be four
factors that influence the complexity of a database design:
the number of entities in the design, the number of
relationships for each entity, the number of attributes for
each entity and the distribution of relationships and
attributes. The overall complexity of a complete ER

diagram is shown as the sum of the complexities of the
entities that comprise it. Individual entity complexity is
calculated using the values of the number of relationships,
functionally dependent attributes and non-functionally
dependent attributes for each entity. Weightings for these
factors are also used in the formula - it is suggested that
these weightings can be used to reflect the impact of
characteristics from the local development environment.
The calculation also considers the ‘functional complexity’
of each entity, but this is assumed to have the constant
value of one for every entity.

The third measure is an enhancement of Shepperd’s
structural IF4 metric [27] which was itself derived from
Henry and Kafura’s Information Flow metric [8]. The
original IF4 measure makes no consideration for the use of
a database - therefore an extension is suggested. Each
entity in a database is regarded as a type of module that can
receive information, through create and update transactions,
and can also provide information, through read and delete
operations. A delete operation is said to be an information
extraction because the entity will contain less information
after the transaction is completed. Thus the enhanced IF4
metric (IF4+) is said to enable the assessment of both
processing and data in a single metric approach.

Finally a measure of database operation complexity is
proposed. This treats each operation (create, read, update
and delete) as a virtual entity, being composed of the parts
of the entities accessed by the operation. The ER metrics as
proposed can then be used, with the number of entities
replacing the number of relationships in the original
formula, to assess the overall complexity of each operation.

3.4.1. Evaluation

Overall this would seem to be a positive approach for the
analysis of business systems, particularly given that its
focus is on the impact of both data and processing.

The decision to assign a delete operation as a provision of
data is interesting. Although it is certainly true that an
entity will contain fewer elements after the operation, it can
equally be said that the operation itself is one that writes a
blank record, therefore suggesting that it should be
classified as a ‘receive’ by the entity. Placing this issue
aside, the new IF4+ metric could be useful as a more
comprehensive structural complexity measure. It is not
strictly a functional measure, however, because the
processing assessment is based on design-phase module
structure charts.

The final measurement approach, considering database
operation complexity, is also a valid and worthwhile
proposal. Again, it would seem to be more comprehensive
than many other techniques in that it attempts to consider
processing and data in one metric. Moreover, the basic
measures could be determined automatically if the
representations were stored electronically. However, there
is no indication as to whether one type of operation will be

inherently more complex than another, without
consideration of the data that it manipulates. Furthermore,
the number and type of relationships between the entities
are not considered, and there is no explicit guidance
provided as to how entity look-ups or relationship
exclusivity should be treated in the assessment.

Outcome: Entity metrics

• Automatic - Yes

• Comprehensive - Yes

• Objective - Yes

• Specification basis - Yes

• Tested - No

• Validated - No

3.5. Function point analysis (FPA)

Function point analysis [28] is the most widely investigated
of the function-based approaches. Quantification of
complexity under this technique is performed as a sub-task
of the complete model, the overall original purpose being
the determination and prediction of development
productivity. Each system is considered in terms of the
number of inputs, outputs, inquiries, files and external
system interfaces that it contains. The system total for each
of these attributes is multiplied by a weighting factor
appropriate to its complexity in the system (simple, average
or complex), based on the number of data elements and/or
file types referenced. The combined total of all of these
products is then adjusted for application and environment
complexity - this can cause an increase or decrease of up to
35% in the raw function point total. Calculation of the
adjustment factor is carried out by considering the need for
certain features in the system, for example, distributed
processing, on-line data entry, end user efficiency and ease
of installation. Each of the fourteen factors is assigned a
degree of influence of between zero (no influence) and five
(strong influence), and these are summed to give a total
degree of influence, denoted N. One of the fourteen factors
is allocated for the consideration of complex processing. A
technical adjustment factor is then calculated as (0.65 +
0.01(N)). This adjustment factor is subsequently multiplied
by the raw function point total to determine the final
function point value delivered by the system. According to
Grupe and Clevenger [7] the underlying assumption of FPA
is that higher numbers of function points reflect more
complex systems; these systems will consequently take
longer to develop than simpler counterparts.

3.5.1. Evaluation

Complexity is therefore considered in two ways during
function point analysis. It is questionable, however,

whether this consideration is completely adequate.
Albrecht acknowledges that the complexity weights applied
to the raw function point counts were “...determined by
debate and trial.” [29 p.639]. The absence of empirical
foundation for these weights has since received criticism
from several quarters [30, 31]. Moreover, with respect to
the raw counts, the categorisation of the system components
as simple, average or complex, although clearly
straightforward, seems to be rather simplistic in terms of a
comprehensive assessment of complexity - Symons [32]
provides the example that a component consisting of over
100 data elements is assigned at most twice the points of a
component that contains just one data element. It is also
suggested that the weightings are unlikely to be valid in all
development situations.

There are similar problems with the technical complexity
adjustment process. It would seem unlikely that the
consideration of the same fourteen factors would be
sufficient to cope with all types of applications. Also,
adjustments to the raw counts can only be affected by a
factor within the zero to five range which, although simple,
is unlikely to be appropriate in all cases. Consideration of
processing complexity in only one of the fourteen factors is
not only inadequate, it may also not be practically
applicable at the software specification stage. It is
recommended that the value of the adjustment factor for
complex processing should be based on a number of
factors, including the need for sensitive control/security
processing and extensive logical or mathematical
processing [29, 33, 34]. It would seem unlikely, however,
that information of this kind would be available at the
conceptual modelling stage. This reinforces another
drawback of the method, in that it is not based on modern
structured analysis and data modelling techniques [21].

Overall, then, the technique tends to underestimate systems
that are procedurally complex and that have large numbers
of data elements per component [32, 35]. Shepperd [31]
and Ratcliff and Rollo [36] also remark that the
identification of the basic components from the
specification can be difficult and rather subjective -
different analysers may therefore use different logic to
determine the number and complexity of the functions
provided by the system [37, 38]. It has been suggested that
this subjective element can dominate the final results,
reducing the utility of a seemingly quantitative process [13,
32, 39]. A recent investigation by Kemerer [40], however,
has provided some evidence to refute this assertion.
Moreover, the method itself is widely used and supported.

Outcome: FPA

• Automatic - No

• Comprehensive - Yes

• Objective - No

• Specification basis - No

• Tested - Yes

• Validated - Yes

3.6. Information engineering metrics

Data representing complexity variables thought to influence
development phase effort was collected from a number of
information engineering development projects [41]. In
producing an information strategy plan for an organisation
it was found that the number of entity types had a large
impact on project effort, based on twenty-eight projects
from seventeen domains. Other important complexity
variables were the number of lowest-level functions, the
number of proposed data stores and several other factors
relating to the structure and personnel of the organisation
concerned. For business area analyses, the number of
elementary processes to be implemented in a system was
found to be highly influential, based on data derived from
twenty projects over ten application domains. Other factors
included the number of users interviewed, the number of
relationships, the number of attributes and the number of
action diagrams.

3.6.1. Evaluation

This approach is a practical, empirical evaluation of
intuitive relationships with minimal background theory.
The results obtained may be useful in the information
engineering (IE) environment, but because the formulae
derived are totally oriented towards steps of the IE
methodology, their general application may be less
effective. Furthermore, the effort data was used after the
fact for metric analysis. That is, it was not collected
specifically for assessment purposes. Therefore much of
the data was based on personal notes, personal memory,
accounting data and best guesses. Finally, several variables
relate to the development and organisational environment,
reducing the functional basis of the method. This may have
been due to the fact that only some of the projects made use
of CASE or similar tools.

Outcome: IE metrics

• Automatic - No

• Comprehensive - Yes

• Objective - No

• Specification basis - No

• Tested - Yes

• Validated - Yes

3.7. Mark II FPA

Symons [22, 32] has developed a specification-based sizing
and effort estimation technique based on a revised version
of the function point analysis method. He identified several
failings with Albrecht’s original technique, as outlined
earlier in this section, pertaining particularly to the
classification and weighting strategies used in the original
theory. Symons [32] further suggested that these problems
were compounded by technology-driven changes, so that,
for example, the original concept of a logical file was no
longer appropriate in the database environment that now
dominates business systems. Symons [32] therefore
adopted the entity type as the basic data equivalent for
transaction-centred systems.

The Mark II method involves the identification of all the
inputs, outputs and processes associated with each
externally triggered logical transaction performed by a
system. To assess the size contribution of the input and
output components, Symons’ method [32] counts the
number of data elements that are used in and produced by
the transaction. This is founded on the assumption that the
effort for formatting and validating an input or an output is
proportional to the number of data elements in each.
Symons [32] suggests that this provides greater objectivity
in the counting procedure when compared to Albrecht’s
somewhat subjective approach.

Identification and evaluation of the process component is
more difficult, in terms of developing an appropriate size
parameter for this aspect of a transaction. The method
suggested by Symons [32] relies on previous work on
internal structure measurement based on code branching
and looping [42]. It is suggested that the data structure
employed by a system may provide a basis for the
assessment of processing complexity. At the specification
stage, this is represented by the access path of a transaction
through the system entity model. Symons [32] states that
since each step in the path correlates to a branch or a loop,
the processing complexity will be directly related to the
number of entities referenced by the transaction. Although
this argument was originally considered to be rather
tentative, providing only a crude measure of processing
complexity, it has remained intact and has been reinforced
in Symons’ more recent work [22].

The formula for the raw size factor in unadjusted function
points is therefore calculated by multiplying locally
calibrated weighting factors with the basic counts of input
and output data elements and the number of entity
references in the system, and then summing together the
three weighted totals for all of the system’s transactions.
An industry standard set of weightings is available as a
starting point. The technical complexity adjustment
procedure is very similar to that of the original theory
except that the fourteen Albrecht factors [28] are
augmented by five or more new characteristics.

3.7.1. Evaluation
Using counts of data elements for the input and output
components is a positive and more contemporary approach,
as is the adoption of entity-based assessment. Under this
method, however, there is no consideration of the entity
link types traversed, despite the fact that, as Symons [32]
acknowledges, they produce different processing
requirements. The technique also counts a maximum of
one reference to each entity per transaction, in spite of the
fact that a transaction may refer to a given entity more than
once in order to manipulate different data elements. Mark
II also fails to consider the types of operation that are
performed in each transaction (that is, create, read, update
or delete), even though others [23, 26] suggest that the
operations are of differing complexities. As justification,
Symons [22] suggests that operation types should not be
counted as they might depend on the logical database
design, the file structure or the database tools used, that is,
physical considerations. This, he suggests, is contrary to
gaining a measure of the logical representation.

The use of McCabe’s work as a basis for process
complexity in terms of logical structure is certainly valid to
an extent; however, evidence has also shown that McCabe’s
measure is not comprehensive enough to reflect overall
complexity and that other contributors are assessed
inadequately using this approach [43]. Therefore this basis
should be further investigated. In calculating the input and
output components, no distinction is made between data
elements that are read from/written to the database and
those that are provided by/for the user, even though the
processing and validation requirements for each of these
situations may be quite different.

In order to perform estimation for future project
requirements, historical effort data from past development
projects must be allocated by staff after the fact to the
input/output/process components and to each of the
nineteen adjustment factors. Also acknowledged as crude
in 1988, Symons [22] has subsequently stated that the
method has provided reasonable results in validation studies
based on the analysis of more than sixty systems. It is
somewhat subjective, however, and may be jeopardised by
leading questions from the assessor. Moreover, collection
of the data required for the nineteen adjustment factors
would be difficult to automate [44]. Finally, Albrecht [45]
states that the use of local weights in the initial functional
assessment makes the method invalid as a purely functional
approach. This seems reasonable, in that he asserts that the
functional measure should be derived first and then
adjusted or weighted accordingly.

Outcome: Mark II FPA

• Automatic - No

• Comprehensive - Yes

• Objective - No

• Specification basis - Yes

• Tested - Yes

• Validated - Yes

3.8. Metrics Guided Methodology (MGM)

The Metrics Guided Methodology (MGM) was proposed by
Ramamoorthy et al. [46] as a reflection of the need for
metrics from all development phases. Discussion of the
specification stage is based on the use of requirements
specification languages (RSLs). It is suggested that a
spectrum of measures is needed to assess the different
aspects of a specification, as it is normally not possible to
specify requirements fully from just one perspective.
Normally, then, both processing and data requirements are
developed. A set of metrics that considers the control-flow
and entity models of an RSL specification is therefore
described. Measures include the number of paths, nesting
levels, ANDs and ORs, statements, data types and files.

3.8.1. Evaluation

Although this approach does consider the function of a
system, the measurements used are more lexical or
topological, due to the language-based form of RSLs. This
also means that the technique is not applicable to
conceptual data or structured analysis models. Moreover,
some of the measures (such as those that are concerned
with determining the style and meaning of the RSL
specifications) can only be determined in a subjective
manner.

Outcome: MGM

• Automatic - No

• Comprehensive - Yes

• Objective - No

• Specification basis - No

• Tested - No

• Validated - No

3.9. Usability measures

Wilson [47] has described a method for determining the
usability of systems, in order to enable the comparison of
designs that conform to the same requirements. The

approach is based on cognitive issues not generally covered
in quantitative assessment. The procedure considers the
number of user-visible concepts, terms and inter-
relationships in a system, prior to implementation. This
practice is said to actually measure the complexity of
application problems, system designs and system-supported
solutions, based on the semantic analysis of a design model
similar to the ER representation. Under this model there are
five mutually exclusive concept types:

1. entity - something that (usually) persists in time as
(some of) its attributes and relationships change;

2. event - an occurrence of a change in the attributes
and/or relationships of one or more things;

3. relationship - a directed association or connection
between something and (usually) something else;

4. attribute - an aspect of something that can be
qualitatively or quantitatively assessed;

5. value - an assessment of an attribute of something.

Different system design approaches, that is, using different
methodologies, can be assessed for complexity using
various factors, such as the number of entity types, the
number of event types, the number of value types, the
number of new terms and the average number of attributes
per subject. Generally, the design method with the lowest
total number of concepts and terms is the least complex and
therefore the most usable. Wilson suggests that the average
values of the features mentioned should conform as a
general rule to Miller’s 7±2 constraint [48], which is
believed to be related to understandability.

The complexity of solutions proposed for a system
requirement can be measured using the following factors:
number of entity types, number of entity attributes or
relationships, number of event types, number of event
attributes or relationships and the number of value types -
these figures give the total concepts - and the average
number of attributes/relationships per subject, the average
number of events per subject, number of non 1 to 1
problem-solution choices (the number of times the user is
faced with alternative ways to map problem concepts to
solution concepts) and the number of non 1 to 1problem-
solution relationships (where a problem requires none or
more than one solutions) - these values give the total
number of problem-solution relationships. The solution
with the fewest concepts is generally the one that supports
the entities and operations with the best match to the
problem and is therefore the easiest to implement. Again,
Miller’s constraint [48] is recommended for evaluation of
the average figures.

3.9.1. Evaluation

Although a novel approach, this method has seen no further
investigation. The focus on understandability reduces the
usefulness of this technique as a general, objective
procedure. The only consideration of processing in this

scheme is the counting of entity event types and only the
number of relationships is considered, not the type.

Outcome: Usability measures

• Automatic - No

• Comprehensive - No

• Objective - No

• Specification basis - Yes

• Tested - No

• Validated - No

4. COMPARISON OF METHODS
The following two tables summarise the relative merits of
the nine development effort estimation procedures
considered above, in terms of the six characteristics. (Due
to restrictions on room the six criteria have been
abbreviated in the heading of Table 2.)

Method Comments
Bang Intuitive and early, but partly subjective and

not validated.
BMA No subjectivity and easy to automate, but

minimal testing.
CASE Size Basis in conceptual models, objective and

tested.
Entity Early and objective, but as yet untested.
FPA Question over objectivity, but widely used,

tested and supported.
IE Several subjective elements but relatively

comprehensive.
Mark II FPA Not completely objective or automatable, but

well tested.
MGM Partially automatable, but only after

conceptual phase.
Usability Somewhat subjective and completely

untested.

Table 1: General comments on functional assessment and
estimation methods

Method Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Rating
 Auto. Comp. Obj. Spec. Tested Valid. (out of 6)

Bang N Y N Y Y N 3
BMA Y Y Y Y Y N 5
CASE Size Y Y Y Y Y N 5
Entity Y Y Y Y N N 4
FPA N Y N N Y Y 3
IE N Y N N Y Y 3
Mark II FPA N Y N Y Y Y 4
MGM N Y N N N N 1
Usability N N N Y N N 1

Table 2: Comparison of functional assessment and estimation methods

The rating assigned to each method in Table 2 is based on
the method’s satisfaction of the six criteria. If a method
completely satisfies the requirements of a characteristic it
receives a ‘Y’ in the table. Each ‘Y’ is worth one ‘mark’.
An ‘N’ in the table denotes that the method does not satisfy
the necessary requirement and therefore receives no
‘marks’ for that characteristic. Clearly this is an arbitrary
assignment of value to the six criteria and no weightings
have been applied, in spite of the fact that some aspects
may be more important than others to project managers.
Moreover, characteristics other than those included in the
table may also be of greater interest to managers - inclusion
of such criteria in the table may lead to changes in the
ratings achieved. This reflects the nature of this discussion
as an exploratory comparison of the various methods,
however. Indeed, it may not be comprehensive, but it
should at least provide some comparative information of
value to those managers considering their functional
assessment and estimation options.

5. OPPORTUNITIES AND
RECOMMENDATIONS FOR
IMPROVEMENT

All nine approaches discussed above have some useful
features and a few in particular would appear to be
promising avenues for both practice and further research.
Several issues of concern, however, have also been
identified. In particular, some of the approaches have been
criticised for their lack of objectivity, in that much of the
assessment can be directly dependent on decisions made by
individual evaluators. This is in spite of the fact that
automatic measurement extraction would now seem to be a
prerequisite for any successful approach [10]. Some of the
methods are not completely applicable at the conceptual
modelling phase and some are also not comprehensive in
their assessment. Most of the methods still suffer from a
lack of significant validation and are therefore likely to
remain underutilised in industry.

Clearly, then, there are a number of areas in which
improvements to the assessment function could be made.

Of particular importance (as illustrated in Table 3) are the
issues of automatic collection, subjectivity and validation.
All of these issues need to be addressed if any method, new
or existing, is to be accepted by the development industry.
Any degree of subjectivity places too much emphasis on the
working methods of particular individual assessors - if

counting methods can be interpreted differently by
individuals then the measures obtained from the same
system by different people are likely to vary. Consequently
any recommendations based on those measures will also
vary. Any new method must therefore be totally objective
to ensure consistent results and conclusions.

 Char1 Char 2 Char 3 Char 4 Char 5 Char 6
 Auto. Comp. Obj. Spec. Tested Valid.

Number of ‘Y’s 3 8 3 6 6 3
Number of ‘N’s 6 1 6 3 3 6

Table 3: Satisfaction of the six criteria

As well as reducing the influence of subjectivity on the
assessment procedure, automated data collection also
lessens the work effort imposed on developers and
assessors. Furthermore, automatic collection reduces the
risk of errors being introduced into the extracted data.
Finally, any new analysis procedure needs to be tested and
validated with real-world systems to illustrate that it is
indeed effective in the relevant development domain. Of the
six criteria considered here, these were the most poorly
fulfilled by the nine techniques.

To summarise, any new functional assessment method
should enable:

• early application - the requirements specification is
one of the earliest available products of the
development process - analysis of this representation
would enable rapid measurement and estimate
determination

• objective quantification - any assessment scheme
should be based totally on the functional
specification of system requirements; consequently,
all of the measures would be directly quantifiable in
an unambiguous, assessor-independent manner

• automatic collection - collection and analysis of the
measures should be incorporated into automated
development tools so that collection and
interpretation errors can be reduced or avoided

• comprehensive assessment - since a specification
can be considered from a number of perspectives,
for example, data, process and/or user interface,
measures applicable to the size and interconnectivity
of each perspective should be included in any new
assessment scheme

• independent results - given that automation now
plays a significant part in the development of
business systems (with the use of CASE tools), it
has been asserted that the development environment
will have far less impact on the data obtained from
different sites [9]; therefore results from different
environments may be more easily compared

• rapid uptake - as a result of the last point it is also
suggested that a lesser degree of calibration will be

needed, enabling more rapid uptake of the analysis
recommendations by organisations that do not have
pools of recent project data

• testing and validation - new assessment schemes
should be tested and validated with actual systems
developed within the commercial software industry.

ACKNOWLEDGMENTS

The work described in this paper was carried out while the
author was a graduate student at Cambridge University.
Financial support for the work came from the Cambridge
Commonwealth Trust, the New Zealand Vice-Chancellors
Committee, British Telecom plc, Clare College,
Cambridge, the Cambridge University Engineering
Department and the University of Otago. The author is also
grateful to the referees for their constructive and perceptive
suggestions.

REFERENCES

[1] DEMARCO, T.: ‘Controlling software projects’
(Yourdon, 1982)

[2] JEFFERY, D.R., and LAWRENCE, M.J.: ‘An
interorganisational comparison of programming
productivity’. Proc. 4th International Conference on
Software Engineering, Munich, West Germany, 1979

[3] SAMSON, W.B., NEVILL, D.G., and DUGARD, P.I.:
‘Predictive software metrics based on a formal
specification’, Information and Software Technology, June
1987, 29, (5), pp.242-248

[4] PUTNAM, L.H.: ‘A general empirical solution to the
macro software sizing problem’, IEEE Transactions on
Software Engineering, April 1978, 4, pp.345-361

[5] BOEHM, B.W.: ‘Software engineering economics’
(Prentice-Hall, 1981)

[6] RUBIN, H.A.: ‘Macro-estimation of software
development parameters: The ESTIMACS system’, in
‘SOFTFAIR-Software development: Tools, techniques, and
alternatives’ (IEEE, 1983)

[7] GRUPE, F.H., and CLEVENGER, D.F.: ‘Using
function point analysis as a software development tool’,
Journal of Systems Management, December 1991, pp.23-26

[8] HENRY, S., and KAFURA, D.: ‘Software structure
metrics based on information flow’, IEEE Transactions on
Software Engineering, September 1981, 7, (5), pp.510-518

[9] TATE, G., and VERNER, J.: ‘Software metrics for
CASE development’. Proc. COMPSAC ‘91, Tokyo, Japan,
1991

[10] NORMAN, R.J., and CHEN, M.: ‘Working together to
integrate CASE (Guest editors’ introduction)’, IEEE
Software, March 1992, pp.13-16

[11] HENRY, S., and LEWIS, J.: ‘Integrating metrics into a
large-scale software development environment’, Journal of
Systems and Software, 1990, 13, pp.89-95

[12] CASE, A.F. Jr: ‘Information systems development:
Principles of computer-aided software engineering’
(Prentice-Hall, 1986)

[13] WRIGLEY, C.D., and DEXTER, A.S.: ‘A model for
measuring information system size’, MIS Quarterly, June
1991, pp.245-257

[14] KULKARNI, A., GREENSPAN, J.B., KRIEGMAN,
D.A., LOGAN, J.J., and ROTH, T.D.: ‘A generic technique
for developing a software sizing and effort estimation
model’. Proc. COMPSAC ‘88, 1988

[15] LEDERER, A.L., and PRASAD, J.: ‘Nine
management guidelines for better cost estimating’,
Communications of the ACM, 1992, 35, (2), pp.51-59

[16] GRADY, R.B.: ‘Work-product analysis: The
philosopher’s stone of software?’, IEEE Software, March
1990, pp.26-34

[17] MUKHOPADHYAY, T., and KEKRE, S.: ‘Software
effort models for early estimation of process control
applications’, IEEE Transactions on Software Engineering,
October 1992, 18, (10), pp.915-924

[18] MUNSON, J.C., and KHOSHGOFTAAR, T.M.:
‘Applications of a relative complexity metric for software
project management’, Journal of Systems and Software,
1990, 12, pp.283-291

[19] COTE, V., BOURQUE, P., OLIGNY, S., and
RIVARD, N.: ‘Software metrics: An overview of recent
results’, Journal of Systems and Software, 1988, 8, pp.121-
131

[20] VERNER, J., and TATE, G.: ‘A model for software
sizing’, Journal of Systems and Software, 1987, 7, pp.173-
177

[21] TATE, G., and VERNER, J.: ‘Approaches to
measuring size of application products with CASE tools’,
Information and Software Technology, November 1991, 33,
(9), pp.622-628

[22] SYMONS, C.R.: ‘Software sizing and estimating: Mk
II FPA (Function point analysis)’ (John Wiley & Sons,
1991)

[23] BRITISH GAS: ‘Bang metric analysis’. Document
Num. 000763, Process Support, British Gas plc, Dorking,
UK, June 1991

[24] TATE, G.: ‘Management, CASE and the software
process’. Proc. 12th New Zealand Computer Conference,
Dunedin, New Zealand, 1991

[25] MACDONELL, S.G.: ‘Quantitative functional
complexity analysis of commercial software systems’.
Ph.D. Dissertation, Department of Engineering, University
of Cambridge, Cambridge, UK, 1992

[26] GRAY, R.H.M., CAREY, B.N., MCGLYNN, N.A.,
and PENGELLY, A.D.: ‘Design metrics for database
systems’, BT Technology Journal, October 1991, 9, (4),
pp.69-79

[27] SHEPPERD, M.: ‘Design metrics: An empirical
analysis’, Software Engineering Journal, January 1990,
pp.3-10

[28] ALBRECHT, A.J.: ‘Measuring application
development productivity’. Proc. IBM GUIDE/SHARE
Applications Development Symposium, California, USA,
1979

[29] ALBRECHT, A.J., and GAFFNEY, J.E. Jr: ‘Software
function, source lines of code, and development effort
prediction: A software science validation’, IEEE
Transactions on Software Engineering, November 1983, 9,
(6), pp.639-648

[30] ROLAND, J.: ‘Software metrics’, Computer Language
(USA), June 1986, pp.27-33

[31] SHEPPERD, M.: ‘An evaluation of software product
metrics’, Information and Software Technology, April
1988, 30, (3), pp.177-188

[32] SYMONS, C.R.: ‘Function point analysis: Difficulties
and improvements’, IEEE Transactions on Software
Engineering, January 1988, 14, (1), pp.2-10

[33] RUDOLPH, E.E.: ‘Measuring information systems’.
Seminar Guide and Additional Notes, Auckland, New
Zealand, 1987

[34] GORDON GROUP: ‘Before You Leap - A software
cost model’. Product User Manual, Gordon Group, San Jose
CA, USA, 1987

[35] VERNER, J., and TATE, G.: ‘Estimating size and
effort in fourth-generation development’, IEEE Software,
July 1988, pp.15-22

[36] RATCLIFF, B., and ROLLO, A.L.: ‘Adapting
function point analysis to Jackson system development’,
Software Engineering Journal, January 1990, pp.79-84

[37] RUDOLPH, E.E.: ‘Productivity in computer
application development’. Working Group Report,
University of Auckland, Auckland, New Zealand, 1983

[38] CONTE, S.D., DUNSMORE, H.E., and SHEN, V.Y.:
‘Software engineering metrics and models’
(Benjamin/Cummings Publishing, 1986)

[39] LOW, G.C., and JEFFERY, D.R.: ‘Function points in
the estimation and evaluation of the software process’,
IEEE Transactions on Software Engineering, January 1990,
16, (1), pp.64-71

[40] KEMERER, C.F.: ‘Reliability of function points
measurement: A field experiment’, Communications of the
ACM, February 1993, 36, (2), pp.85-97

[41] IE: ‘IE-metrics knowledge base’. James Martin & Co.,
Reston VA, USA, November 1989

[42] MCCABE, T.J.: ‘A complexity measure’, IEEE
Transactions on Software Engineering, December 1976, 2,
(4), pp.308-320

[43] SHEPPERD, M.: ‘A critique of cyclomatic complexity
as a software metric’, Software Engineering Journal, March
1988, pp.30-36

[44] KING, S.F.: ‘The quality gap: A case study in
information system development quality and productivity
using CASE tools’, in SPURR, K., and LAYZELL, P.
(eds.): ‘CASE: Current practice, future prospects’ (John
Wiley & Sons, 1992, pp.35-54)

[45] ALBRECHT, A.J.: ‘Open letter to the secretary of the
international function point user group’. IFPUG
Memorandum, June 1988

[46] RAMAMOORTHY, C.V., TSAI W.-T., YAMAURA,
T., and BHIDE, A.: ‘Metrics guided methodology’. Proc.
COMPSAC ‘85, Chicago IL, USA, 1985

[47] WILSON, M.L.: ‘The measurement of usability’, in
CHEN, P.P. (ed.): ‘Entity-relationship approach to systems
analysis and design’ (North-Holland, 1980, pp.75-101)

[48] MILLER, G.A.: ‘The magical number seven, plus or
minus two. Some limits on our capacity for processing
information’, Psychological Review, 1956, 63, pp.81-97

