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The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health

emergency. The outbreak of this virus has raised a number of questions: What is

SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients

infected with SARS-CoV-2? What are the risk factors for viral infection? What are the

differences between this novel coronavirus and other coronaviruses? To answer these

questions, we performed a comparative study of four pathogenic viruses that primarily

attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute

respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV),

and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a

critical evaluation of the origin, genomic features, transmission, and pathogenicity of

these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by

SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and

medical experts to aid in curbing the pandemic’s progression.

Keywords: SARS-CoV-2, SARS-CoV, MERS-CoV, influenza A virus, COVID-19

INTRODUCTION

The 2019 novel coronavirus (SARS-CoV-2), severe acute respiratory syndrome coronavirus
(SARS-CoV),Middle East respiratory syndrome coronavirus (MERS-CoV), and influenza A viruses
are major pathogens that primarily target the human respiratory system. Diseases associated with
their infections vary from mild respiratory illness to acute pneumonia and even respiratory failure.
Since 1918, the influenza A viruses have caused four pandemics. The first andmost severe pandemic
in recent history, known as “Spanish influenza,” occurred in 1918 and was caused by an H1N1
influenza A virus (IAV) strain (1). Approximately 500 million people were infected, and 50 million
people died during this pandemic. The second pandemic, known as “Asian influenza,” occurred
in 1957, was caused by an H2N2 IAV strain, and resulted in ∼1.1 million deaths worldwide (2).
The third pandemic, known as “Hong Kong flu,” occurred in 1968 and was caused by an H3N2
IAV strain, resulting in ∼1 million deaths worldwide (3). The fourth pandemic was caused by the
influenza A (H1N1) pdm09 virus, also known as the “novel influenza A virus,” and resulted in
151,700–575,400 deaths worldwide from 2009 to 2010 (4, 5). Since that time, the novel influenza
A virus has continued to spread as a seasonal flu virus. From September 2019 to February 2020,
this virus caused at least 34 million flu illnesses and 20,000 deaths. In November 2002, before the
fourth influenza A pandemic, an epidemic caused by a betacoronavirus (SARS-CoV) and known as
severe acute respiratory syndrome (SARS) began in South China and spread to 29 countries. The
SARS outbreak caused∼8,000 infections and 774 deaths before it was contained in July 2003, with

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.552909
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.552909&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiaosheng.wang@cpu.edu.cn
https://doi.org/10.3389/fimmu.2020.552909
https://www.frontiersin.org/articles/10.3389/fimmu.2020.552909/full


Abdelrahman et al. COVID-19, SARS, MERS, and Influenza

a case fatality rate (CFR) of 9.6% (the CFR was ∼50% among
patients 65 or older) (6). However, since 2004, there have
not been any SARS cases reported anywhere in the world. In
September 2012, Saudi Arabia reported the first case of Middle
East respiratory syndrome (MERS), which was caused by another
type of betacoronavirus (MERS-CoV). MERS-CoV spread to 27
countries and caused 2,519 infections and 866 deaths by January
2020, with a CFR of 34.4% (7).

In December 2019, cases of the new coronavirus disease 2019
(COVID-19), caused by a new betacoronavirus (SARS-CoV-
2), were first reported in Wuhan, China (8). These cases were
characterized by acute pneumonia-associated symptoms, such as
fever, dry cough, chills, shortness of breath, and muscle pain
(9). The SARS-CoV-2 outbreak rapidly spread worldwide. It has
infected more than 14 million individuals and resulted in more
than 500,000 deaths as of 20 July 2020. In comparison with the
other two coronaviruses, SARS-CoV-2 appears to be much more
contagious and infectious; it has rapidly resulted in a pandemic
constituting a global health emergency (Figures 1A–C).

To better understand the current COVID-19 pandemic
caused by SARS-CoV-2, we have performed a comparative
study between SARS-CoV-2 and past epidemic/pandemic viral
infections that primarily affect the respiratory system: the
influenza A viruses (H3N2 and H1N1 strains) and the
two coronaviruses SARS-CoV and MERS-CoV. We have
explored the genomic characteristics, transmission, reservoirs,
and pathogenesis of these four pathogens. We have also
considered the preventive and control measures conducted by the
World Health Organization (WHO) against the spread of these
pathogens. Additionally, we have elucidated how these viruses
attack the immune system and the associated host immune
system response. This comparative study will aid in informing
public health administrators and medical experts on how to
adequately distinguish between these viruses and identify the
preventive and control measures recommended by the WHO
against the spread of SARS-CoV-2.

A brief comparison between the four pathogenic viruses,
including their characteristics, pathogenesis, and transmission, is
summarized in Table 1.

TAXONOMY, STRUCTURE, AND GENOMIC
PROPERTIES OF THE VIRUSES

Influenza A
Influenza A viruses that infect humans mainly consist of two
strains (H1N1 and H3N2). Both strains are characterized as
enveloped, negative-sense, single-stranded RNA viruses with a
total genome size of ∼13.5 kb (18, 19). The influenza A virus
genome consists of eight different segments, with each segment
containing a region that encodes one or two proteins with
specific functions, including hemagglutinin (HA), polymerase

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus

2; SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, the

Middle East respiratory syndrome coronavirus; WHO, world health organization;

CDC, center of disease control and prevention; nt, nucleotide; kb, kilobase; KDa,

kilodalton molecular weight unit.

basic protein 2 (PB2), nucleoprotein (NP), polymerase basic
protein 1 (PB1), neuraminidase (NA), matrix (M), nonstructural
protein (NS1), and polymerase acidic protein (PA) (20, 21).

The HA protein of influenza A viruses binds to the
glycoprotein terminal sialic acid and glycolipid receptors, which
contain α-2,6 and α-2,3 sialic acid groups attached to galactose.
Although HA is considered to be a more crucial antigenic
determinant than NA, both proteins are potentially restrictive
factors for viral evolution (20, 22). In addition, there are three
viral polymerase proteins, PB1, PB2, and PA, encoded on
segments 1, 2, and 3, respectively; these polymerase proteins
form an enzyme complex that plays a role in transcription and
replication. Finally, the NP protein encoded on segment 5 is used
as a model to generate additional copies (23, 24).

Influenza A viruses exhibit antigenic drift/shift properties,
allowing them to avoid the host immune response. The Centers
for Disease Control and Prevention (CDC) defines antigenic drift
as genetic variation that occurs in antigen structures owing to
point mutations in the HA and NA genes over time, whereas
antigenic shift is the result of a sudden genetic reassortment
between two or more closely related influenza viral strains (23,
24). A well-known example of the antigenic shift phenomenon
is the triple reassortment that occurred in the influenza A pdm09
virus and caused the 2009 pandemic as a result of the replacement
of the hemagglutinin H2 and polymerase PB1 genes of the avian
H2N2 virus with two new avian H3 and PB1 genes (25, 26)
(Figure 2A). These antigenic drift/shift properties can potentially
reduce the effectiveness of vaccines and become a considerable
challenge in antiviral therapy (27, 28).

SARS-CoV
The coronavirus family is so named because of the large spike
protein molecules that are present on the virus surface and
gives the virions a crown-like shape; coronavirus genomes
are the largest among RNA viruses (29). This family has
been classified into at least three primary genera (alpha, beta,
and gamma). Within this family, seven viruses are currently
known to infect humans, namely, NL63 and 229E from the
alpha genus and OC43, HKU1, SARS-CoV, MERS-CoV, and
SARS-CoV-2 from the beta genus. SARS-CoV is a positive-
stranded RNA virus belonging to the family Coronaviridae
(30), order Nidovirales, genus Betacoronavirus, lineage B (from
the International Committee on Taxonomy of Viruses). It was
characterized as a giant, enveloped, positive-stranded RNA virus
with a genome comprising 29,727 nucleotides (∼30 kb), 41% of
which are guanine or cytosine. The genomic body of this virus
has the original gene order of 5’-replicase (rep), which makes
up approximately two-thirds of the genome and consists of the
large genes ORF1a and ORF1b. ORF1a and ORF1b of the rep
gene encode two large polyproteins known as pp1a (486 kDa)
and pp1ab (790 kDa). In addition, the 3’ structural spike (S),
envelope (E), membrane (M), and nucleocapsid (N) proteins are
encoded by four open reading frames (ORFs) downstream of the
rep gene (31). The rep gene products are translated from genomic
RNA, whereas the remaining viral proteins are translated from
subgenomic mRNAs. In addition to the original genes, the SARS-
CoV genome encodes another eight putative accessory proteins,
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FIGURE 1 | General characteristics of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A viruses. (A) Epidemics of SARS-CoV-2, SARS-CoV, MERS-CoV, and

influenza A viruses. The timeline, natural reservoirs, total number of deaths, and symptoms of the patients infected with these viruses. (B) Cumulative numbers of

cases and deaths caused by SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A (during the last seasonal flu 2019–2020) viruses. Influenza A virus infected the

most people, while SARS-CoV-2 caused the most deaths. (C) Case-fatality rate (CFR) of patients infected with SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A

(the last seasonal flu 2019–2020) viruses stratified by age.

known as ORFs 3a, 3b, 6, 7a, 7b, 8a, 8b, and 9b, which vary in
length from 39 to 274 amino acids. Although the SARS-CoV
rep gene and structural proteins have some sequence homology
with other coronaviruses, the accessory proteins do not show
substantial homology to the viral proteins of other coronaviruses
at the amino acid level (31).

MERS-CoV
Although MERS-CoV belongs to the same family, order, and
genus as SARS-CoV, it was the first betacoronavirus lineage C
member identified as a “novel coronavirus” with a genome size
of 30,119 nucleotides. The genome of MERS-CoV encodes 10
proteins. These 10 proteins comprise two replicase polyproteins
(ORF1ab and ORF1a), four structural proteins (E, N, S, and M),
and four nonstructural proteins (ORFs 3, 4a, 4b, and 5) (32).

In addition to the rep and structural genes, there are accessory
protein genes interspersed between the structural protein genes
that may interfere with the host innate immune response in
infected animals (7).

SARS-CoV-2
Although SARS-CoV-2 belongs to the same family and genus
as SARS-CoV and MERS-CoV, genomic analysis revealed
greater similarity between SARS-CoV-2 and SARS-CoV. Thus,
researchers classified it as a member of lineage B (from the
International Committee on Taxonomy of Viruses). Initially,
the Coronaviridae Study Group of the International Committee
on Taxonomy of Viruses identified this virus as a sister clade
to the prototype human and bat severe acute respiratory
syndrome coronaviruses (SARS-CoVs) of the species Severe acute
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TABLE 1 | General characteristics of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A viruses.

Characteristic SARS-CoV-2 SARS-CoV MERS-CoV Influenza A

Year of the first reported

case

2019 2002 2012 1918

Country/Region of the first

reported case

China China Middle East United States

Natural reservoir Unclear (possibly bats) Chinese horseshoe bats Camels (possibly bats) Birds

Intermediate host Debatable (possibly pangolins) (10) Civet cats Dromedary camels Pigs

Primary modes of

transmission

Droplet, aerosol, and contact Droplet, aerosol, and contact Droplet, aerosol, and contact Droplet, aerosol, and

contact

Incubation period 2–14 days 2–7 days 2–14 days 2 days

Reproduction number (R0) R0 = 3.1 (coefficient of

determination, r2 = 0.99)

Median: 0.58; IQR: 0.24–1.18 Mean: 0.69 (95% CI 0.50–0.92) Median: 1.27; IQR:

1.19–1.37

Host receptor ACE2 ACE2 DPP4 Sialic acid-containing

molecules

Dominant cell entry

pathway

Unclear Clathrin- and

caveolae-independent endocytic

pathway (11)

Cell membrane fusion (12) Receptor-mediated

endocytosis (13)

Blood test results Lymphopenia, thrombocytopenia,

leukopenia, leucocytosis,

monocytosis, and low CRP (14)

Lymphopenia, thrombocytopenia,

and leukopenia (15)

Leucocytosis, monocytosis,

and low CRP (16)

Lymphopenia, eosinopenia,

hypoferremia, decreased

levels of serum CO2-CP,

increased levels of serum

CRP and serum CH50 (17)

Case fatality rate 1–3% ∼15% 34.4% 0.1%

IQR, interquartile range; CRP, C-reactive protein; CI, confidence interval; ACE2, Angiotensin-converting Enzyme 2; DPP4, Dipeptidyl peptidase-4 inhibitor; CO2-CP, carbon dioxide;

CH50, Total Complement Activity.

respiratory syndrome-related coronavirus. Later, it was labeled
as SARS-CoV-2 (33). The RNA genome size of SARS-CoV-2 is
30,000 bases in length. Among other betacoronaviruses, this virus
is characterized by a unique combination of polybasic cleavage
sites, a distinctive feature known to increase pathogenicity and
transmissibility in other viruses (34).

Genomic analysis of SARS-CoV-2 revealed that the genome
consists of six major ORFs and shares less than an 80% nucleotide
sequence identity with SARS-CoV.However, the seven conserved
replicase domains in the ORF1ab amino acid sequence share a
94.4% identity with those in SARS-CoV (35). Genomic analysis
also revealed that the SARS-CoV-2 genome is highly similar
to that of the bat coronavirus (Bat CoV RaTG13), with a
sequence identity of 96.2%. Furthermore, the receptor-binding
spike protein shares a 93.1% similarity to Bat CoV RaTG13 (35).
Meanwhile, relative to SARS-CoV, significant differences were
observed in the sequence of the S gene of SARS-CoV-2, including
three short insertions in the N-terminal domain, changes in four
out of five of the crucial residues in the receptor-binding motif,
and the presence of an unexpected furin cleavage site at the S1/S2
boundary of the SARS-CoV-2 spike glycoprotein. This insertion
is a novel feature that differentiates SARS-CoV-2 from SARS-
CoV and several SARS-related coronaviruses (SARSr-CoVs) (36).

VIRAL ORIGIN AND EVOLUTION

Influenza A
Influenza A H1N1 and H3N2 subtype viruses are two of the
three combinations known to have circulated widely in humans

and to currently cause seasonal influenza; these strains originated
from birds and swine. Before 1979, the only lineage detected in
swine herds from Europe was the classical swine influenza virus
A H1N1 lineage 1A (25). This strain shares a mutual ancestor
with the virus that caused the 1918 human influenza A pandemic.
However, in the early 1980s, the classical swine H1N1 strain
was displaced by a new European enzootic swine influenza A
viral strain: the Eurasian, avian-like H1N1 (H1avN1) lineage
1C (26). After its rapid transmission from birds to mammals,
the H1avN1 virus underwent rapid and sustained adaptation
in mammals. Furthermore, this virus has also undergone rapid
reassortment, resulting in the appearance of multiple genotypes.
The two primary enzootic subtypes are H1N2 (H1huN2) lineage
IB and H3N2, which occurred through the acquisition of HA or
NA gene segments originating from seasonal human influenza
viruses (Figure 2B) (37).

As previously mentioned, influenza A exhibits antigenic
drift/shift phenomena resulting from the HA protein’s ability to
undergo rapid evolution because of the plasticity of the viral
RNA-dependent RNA polymerase. It is believed that mutations
occurring in the HA protein, including reassortments and
mutations among animals and humans, were the drivers of
previous pandemics (38).

Adaptive mutations can lead to a number of phenotypic
changes, including variations in antigenicity, increased diversity
in viral protein sequences, the ability to avoid antibody pressure,
receptor preference, virulence, altered fusion functionality, and
evasion of the immune response. Rapid modifications can give
rise to new strains with features that are different from any viruses
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FIGURE 2 | Influenza A evolution. (A) Triple reassortment influenza A viruses of the H1N1 subtype containing avian, swine, and human gene segments. The colored

solid genes represent the gene segments as follows: yellow, classical swine A (H1N1) virus; green, North American avian virus; blue, human A (H3N2) virus; gray,

Eurasian avian-like swine A(H1N1). (B) Reservoirs and interspecies transmission events of the pathogenic influenza A viruses. Wild birds, domestic birds, pigs, horses,

and humans maintain their influenza A viruses. Spillover events occasionally occur, most frequently from wild birds (arrows in green).

that have previously been confronted, potentially causing another
epidemic/pandemic (38).

SARS-CoV
In the early stages of the SARS outbreak, most of the new
patient cases had animal exposure before developing the disease.

Wide-ranging investigations revealed that SARS-CoV strains
were transmitted to palm civets from other animals (39–41).
Later, two studies reported the discovery of coronaviruses
related to human SARS-CoV, which were named SARS-
like coronaviruses or SARSr-CoVs, in horseshoe bats (genus
Rhinolophus) (42, 43). Another study revealed that the viral
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strains of the SARS-like coronaviruses contain all of the genetic
elements that are needed to form SARS-CoV. In particular,
the bat strain WIV16, the closest relative to SARS-CoV, likely
occurred through recombination of two other prevalent bat
SARSr-CoV strains. These results suggest that bats may be the
natural reservoirs for the virus and that palm civets are only
intermediate hosts (Supplementary Figure 1) (44, 45).

Thus, the hypothesis formed was that the direct ancestor
of SARS-CoV was produced by recombination within bats and
then transmitted to palm civets or other mammals via fecal–
oral transmission. When virus-infected civets were transported
to Guangdong market, the virus spread among the civets in the
market and underwent further mutations before transmission to
humans (46).

MERS-CoV
Unlike the SARS cases, most of the MERS cases had previous
contact with dromedary camels. The MERS-CoV strains isolated
from camels were almost identical to those isolated from humans
(47, 48), and the MERS-CoV isolates were found to be highly
prevalent in camels from the Middle East, Africa, and Asia (49,
50). Genomic sequence analysis indicated that the Tylonycteris
bat coronaviruses HKU4 and HKU5 are phylogenetically related
to MERS-CoV (they are all representatives of betacoronavirus
lineage C) (51). Generally, all of the related MERS-CoVs isolated
from bats support the hypothesis that MERS-CoV originated
from bats (Supplementary Figure 1) (46).

SARS-CoV-2
Before the epidemic outbreak of COVID-19 in late January 2020,
several patients had been exposed to different animals (from wild
animals to poultry) at the Huanan seafood wholesale market.
When the CDC declared the situation to be an epidemic, several
studies identified potential reservoirs, but at present, the origin
and evolution of SARS-CoV-2 remain debatable. The earliest
genomic sequence analysis of SARS-CoV-2 indicated that it is
a member of the genus Betacoronavirus and falls within the
subgenus Sarbecovirus, which also includes SARS-CoV (9, 35,
52–54). As mentioned above, preliminary comparisons revealed
that SARS-CoV-2 has an almost 79% similarity with SARS-
CoV at the nucleotide sequence level and a 96% similarity with
horseshoe bat RaTG13 (55–57). Correspondingly, a comparative
study between the RmYN02 virus from Rhinolophus bats
in Yunan Province, China, and SARS-CoV-2 indicated that
RmYN02 was the closest relative to the long replicase gene of
SARS-CoV-2 (∼97% nucleotide sequence similarity) (35, 36).

Even though bats are likely to be the reservoir host for this
virus, their general biological differences from humans make
it feasible that other mammalian species acted as intermediate
hosts, in which SARS-CoV-2 obtained some or all of the
mutations needed for effective human transmission. One of the
suspected intermediate hosts, the Malayan pangolin, harbors
coronaviruses showing high similarity to SARS-CoV-2 in the
receptor-binding domain, which contains mutations believed
to promote binding to the angiotensin-converting enzyme 2
(ACE2) receptor and demonstrates a 97% amino acid sequence
similarity. By contrast, the genomic similarity was more

divergent from SARS-CoV-2 (∼91%) at the whole genome level
(Supplementary Figure 1) (58, 59).

Coronaviruses have lower mutation rates than other RNA
viruses, especially influenza A viruses, and high rates of viral
replication within hosts because of the 3′-to-5′ exoribonuclease
activity associated with the nonstructural protein nsp.14
(36, 60). This protein has an RNA proofreading function
and is responsible for coronaviruses’ resistance to RNA
mutagens (60, 61).

RECEPTOR BINDING OF VIRUSES

The high unpredictability among influenza A viral strains and
their HAs relates to the significant discrepancy among host cells
in showing different vulnerabilities to viral infection. HA plays a
role in mediating the binding of influenza A viruses to sialic acid
host cell receptors (62). The receptor-binding site lies at the top of
the R domain of HA and contains exceptionally variable antigenic
binding loops (63). Once the virus is bound to the host receptor,
endocytosis of the virus element occurs. Additionally, a pH-
dependent membrane fusion process is significant in controlling
the viral genome’s release into the host cell. Influenza A viral
strains and their HAs are very variable, which contributes to
the significantly different vulnerabilities of host cells to viral
infection (64).

Influenza A viruses have demonstrated dominant genomic
mutations, such as those within the HA 220 loop (Q223) and
the D222G and D222N mutations, in which aspartic acid (D)
is replaced by glycine (G) or asparagine (N), respectively. The
D222G mutation is responsible for a change in receptor-binding
affinity that enables the virus to bind to α-2,6 and α-2,3 sialic
acid receptors on the epithelial cells of the upper respiratory
tract and ciliated epithelial cells in the lower respiratory tract,
respectively (65, 66).

Although HA plays a crucial role in receptor binding and
concurrent mutation capabilities, NA also has a key role in
removing sialic acids from cellular receptors and from the new
HA and NA on budding virions, which are sialylated as part of
the glycosylation processes within the host cell (67). A balance
between HA and NA is essential for viral fitness. Any mutations
in HA or environmental changes, such as low pH conditions, can
affect NA’s activity against sialoglycans (68, 69).

The SARS-CoV trimeric spike protein facilitates coronavirus
entry into host cells by binding to the host receptor and
subsequently fusing the viral and host membranes. The spike
protein consists of three segments, one of which is the
ectodomain (70). The ectodomain is composed of two subunits:
S1 and S2. The S1 subunit contains two individual domains, an
N-terminal domain (NTD) and a C-domain, and each NTD or C-
domain (sometimes both) binds to the host receptor to function
as the receptor-binding domain (RBD). ACE2 is the host cell
receptor of SARS-CoV and the primary target of deactivating
antibodies. Several studies have shown that the binding affinity
between the RBD of each SARS-CoV strain and ACE2 positively
correlates with the contagion of different SARS-CoV strains in
host cells (Supplementary Figure 2) (71, 72).
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The MERS-CoV spike protein subunit S1 C-domain has also
been identified as the RBD (73). However, unlike SARS-CoV,
MERS-CoV uses a dipeptidyl peptidase 4 (DPP4) β-propeller
as its receptor. Likewise, the RBD of MERS-CoV contains an
accessory subdomain that functions as the receptor-binding
motif (RBM). Although the RBD core structures are remarkably
analogous between MERS-CoV and SARS-CoV, their RBMs are
distinct and may result in the recognition of different receptors
(Supplementary Figure 2) (73).

Since the outbreak of SARS-CoV-2, several studies have
analyzed its genome and compared it with other coronaviruses,
such as MERS-CoV and SARS-CoV (74, 75). The results of
these studies have shown that SARS-CoV-2 has a similar RBD
structure to that of SARS-CoV, despite amino acid variations
at some key residues (9). Genomic comparison of SARS-CoV-2
with SARS-CoV and bat SARS-like coronaviruses revealed that
the S1 subunits of the spike proteins have a sequence identity
of ∼75%, and recent experimental studies confirmed that ACE2
is the human receptor of SARS-CoV-2 (34). Therefore, it is
essential to characterize the human receptor-binding capacity
of SARS-CoV-2 to evaluate its human–human transmissibility.
A recent study used the protein–protein docking method to
measure the interaction between the SARS-CoV-2 spike RBD
and ACE2; it was revealed that the SARS-CoV-2 human
receptor-binding affinity was 73% of that of SARS-CoV, which
suggests that SARS-CoV-2 binds to ACE2 with intermediate
affinity (76) (Supplementary Figure 2).

HOST FACTORS, DISEASE SEVERITY, AND
PATHOGENESIS

Influenza, SARS, and MERS have caused major global health
threats, and now the COVID-19 pandemic is rapidly spreading
worldwide and is having a widespread and profound impact.
Both viral and host factors determine the severity and clinical
outcomes of the diseases caused by these viruses. Host
factors include host immunity, age, sex, morbidities, and
genetic variations.

Influenza infections can cause high morbidity and mortality
rates in the elderly (65 or older) and young populations with
comorbidities (Figure 1C). Pathogenesis following influenza A
infection occurs in two stages. The first stage is defined by the
peak viral titer, along with the peak amount of inflammation
associated with the infection, and lasts ∼1 to 3 days. In the
second stage, the infection progresses in some patients, and
in severe cases, it may be associated with acute respiratory
distress syndrome and sometimes death (77). Once a patient is
infected with an influenza A virus, the humoral immune response
will release neutralizing antibodies to target the influenza HA
protein by blocking the binding of HA to sialic acids, thereby
preventing viral fusion, inhibiting the release of offspring virions,
and delaying proteolytic cleavage of HA by host receptors (78).

Once a patient is infected with SARS-CoV, MERS-CoV, or
SARS-CoV-2, the host innate immune system will identify the
virus by using pattern recognition receptors, such as a toll-like
receptor, NOD-like receptor, or RIG-I-like receptor, to recognize

pathogen-associated molecular patterns. The adaptive immune
response also plays a significant antiviral role by stabilizing
the host defense mechanism against pathogens and minimizing
the risk of developing an autoimmune reflex response or
inflammation (9, 79). In general, human coronaviruses can be
classified into two types: lowly pathogenic and highly pathogenic.
Viruses with low pathogenicity, including HCoV-229E, HCoV-
OC43, HCoV-NL63, and HCoV-HKU, can cause mild upper
respiratory tract infections. In contrast, highly pathogenic
viruses, including SARS-CoV, MERS-CoV, and SARS-CoV-2,
can cause lower respiratory tract infections, severe pneumonia,
and sometimes fatal acute lung injury or acute respiratory
distress syndrome, especially in older individuals (≥65 years old)
(Figure 1C) (80).

In addition to the lungs, coronavirus infection may damage
other organs or tissues, including the gastrointestinal tract (81),
spleen, lymph nodes, brain, skeletal muscles, thyroid, and heart
(82, 83). The destruction of lung cells prompts a local immune
response, engaging macrophages and monocytes that respond
to the infection, release cytokines, and enhance adaptive T
and B cell immune responses. In some cases, a dysfunctional
immune response occurs, which can cause severe lung and
systemic pathology. The invading coronavirus may incite host
immune responses, and an excessive immune responsemay cause
immunopathological damage (known as a cytokine storm) in
patients with coronavirus infections (9, 84). Cytokine stormsmay
enhance the infiltration of non-neutralizing antiviral proteins
that facilitate viral entry into host cells, leading to increased
viral infectivity (82, 85). Therefore, cytokine storms play a key
role in the pathogenesis and clinical outcomes of patients with
coronavirus infection.

TRANSMISSIBILITY AND VIRULENCE

The initiation of a pandemic requires the rise of a virus in a
human population in which there is little or no pre-existing
immunity, and the virus must be able to persist through human-
to-human transmission (86, 87). The ability of influenza A viruses
to adapt to various hosts and undergo reassortment events
ensures the constant generation of new strains. These strains have
variable degrees of pathogenicity, pandemic transmissibility,
and reproduction numbers (R0) (Table 1) (88). However, only
three subtypes of influenza A (H1–H3) have acquired the
properties to cause pandemics in the last two centuries. Thus,
an understanding of the capability of a virus to attain a
contagious phenotype is a critical factor in evaluating the
pandemic potential of novel subtypes (89, 90). The use of
animal models has facilitated detailed studies of influenza A virus
transmission by the contact and respiratory droplet routes. The
presence of a single sick individual in a small space, such as
an airplane or room, has been shown to be adequate for an
outbreak among healthy individuals (Supplementary Figure 3)
(91). Although infection and case fatality rates vary from one
pandemic to another, the rates of influenza A virus infections
in the pandemics were high, especially among people with little
to no pre-existing immunity. When pandemic viruses become
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established in humans, their effective seasonal spread among
healthy individuals eventually provides an enduring and even
more significant public health issue in terms of hospitalizations
and, in some cases, fatalities. Particle size (92), the distance of
spread (92), disposition (92, 93), temperature (94), and relative
humidity (95) are all considered to be factors that influence
the rate of transmissibility of influenza A viruses. In addition,
sialic acid receptors (α-2,3 and α-2,6) can affect the general
species-specific cellular tropism of influenza A viruses (63).

Contaminated surfaces also play an essential role in
transmission. A respiratory pathogen can survive on surfaces,
be transferred to hands or other equipment, and initiate
infection through contact with the eyes, nose, or mouth
(Supplementary Figure 3) (96). Influenza A has been shown
to survive for 24–48 h on stainless steel and plastic surfaces.
Inversely, the strains survived for <8–12 h on cloth, paper,
and tissues. Quantifiable amounts of influenza A viruses were
observed to be transmitted from stainless steel surfaces to
hands after 24 h and from tissues to hands for up to 15min.
Viruses also survive on hands for up to 5min after transfer
from environmental surfaces. These results indicate a high
transmission rate for influenza A viruses (97).

SARS-CoV, MERS-CoV, and SARS-CoV-2 can survive on
surfaces for extended periods, sometimes up to months. Like the
influenza A viruses, the factors affecting the survival of these
viruses on surfaces include the strain variation, titer, surface type,
mode of deposition, temperature, humidity, and method used
to determine the viability of the virus (98, 99). Several studies
have indicated that SARS-CoV, MERS-CoV, and SARS-CoV-2
can survive on dry surfaces for a sufficient duration to accelerate
onward transmission. Viable MERS-CoV was detected on steel
and plastic surfaces after 48 h at 20◦Cwith 40% relative humidity,
with a decreased viability of about 8 h at 30◦C with 80% relative
humidity and of about 24 h at 30◦C with 30% relative humidity.
The estimated half-life of MERS-CoV ranges from ∼0.5 to 1 h
(98). On the other hand, another study conducted on the viability
of SARS-CoVs detected on plastic surfaces and on polystyrene
Petri dishes revealed that the virus survived for more than 5 days
and more than 20 days, respectively, at room temperature. The
viral viability was constant at lower temperatures (28◦C) and
lower humidity (80–89%) (100), whereas survival times ranged
from 5min to 2 days on paper, disposable gowns, and cotton
gowns (99).

Since the SARS-CoV-2 outbreak began, several researchers
have attempted to analyze the survival time of this virus
on different surfaces. One study published in the middle of
March 2020 analyzed the aerosol and surface stabilities of
SARS-CoV-2 and SARS-CoV. The study utilized five different
environments (aerosols, plastic, stainless steel, copper, and
cardboard). The results showed that the half-lives of SARS-
CoV-2 and SARS-CoV were similar in aerosols and on copper.
However, on cardboard surfaces, the half-life of SARS-CoV-
2 was longer than that of SARS-CoV, and the highest levels
of viability for both viruses were observed on stainless steel
and plastic (∼5.6 h on stainless steel and 6.8 h on plastic). The
researchers concluded that the differences in the epidemiological
characteristics of these viruses could result from other factors

and that aerosol and fomite transmission of SARS-CoV-2 is
probable because the virus can remain viable and infectious
in aerosols and on surfaces for hours and hours to days,
respectively (101).

The effective management and control of such infections
are increasingly performed with extensive contributions from
mathematical modeling, which not only provides information on
the nature of the infection itself but also makes predictions about
the likely outcome of alternative courses of action (102). One
useful mathematical model is the reproductive number R0, which
is defined as the average number of secondary cases generated
per typical infectious case (103). A value of R0 > 1 indicates
that the infection may persist or grow in the population, whereas
a value of R0 < 1 indicates that this infection will decrease in
the population, although exceptions occur (103). The majority
of seasonal influenza R0 values have been calculated for different
populations and different continents, such as Europe and North
America, with a median point estimate of R0 = 1.27 (IQR: 1.19–
1.37) (104). The initial estimations of the reproduction numbers
of SARS-CoV and MERS-CoV were calculated for China and the
Middle East with R0 median = 0.58 (IQR: 0.24–1.18) (105) and
R0 mean= 0.69 (95%CI: 0.50–0.92) (106), respectively. However,
among the four viruses, SARS-CoV-2 has been calculated to
be the most contagious, such as the R0 value associated with
the Italian outbreak with a median point estimate of R0 = 3.1
(coefficient of determination, r2 = 0.99) (107).

PREVENTION, CONTROL, AND
TREATMENT OF VIRUS INFECTION

Strategies for preventing and controlling pandemic/epidemic
viruses can be improved by being well-prepared. Preparedness
strategies, which primarily include the quarantine of infected
persons, self-protection (wearing facemasks, using disinfectants,
washing hands, and disinfecting surfaces with bleach or
alcohols), and social distancing are all considered to be
important for a comprehensive plan that can be tested
and promoted by conducting exercises to engage the whole
of society.

An influenza pandemic can be catastrophic, and in a typical
year of seasonal outbreaks, influenza A viruses cause as many as 5
million cases of severe illness in humans and over 500,000 deaths.
After the first confirmed cases of H1N1 influenza appeared
in Mexico in February 2009, cases began to spread to the
United States, and by the end of April 2009, cases had been
reported in several United States cities and other countries
on various continents, such as Canada, the United Kingdom,
and New Zealand (108). During the last pandemic, the
first activation of the International Health Regulations (IHR)
provisions was prompted. The discussions that led to the IHR
implementation were based on the SARS outbreak experience in
2003. These regulations describe the responsibilities of individual
countries and the leadership role of the WHO in declaring
and managing a public health emergency of international
concern, establishing systematic approaches to surveillance,
promoting technical cooperation, and sharing logistic support
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TABLE 2 | List of antiviral drugs and vaccine approaches for SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza viruses.

Virus Drug or vaccine Drug mechanism of action/comments

SARS-CoV-2 Bevacizumab, Chloroquine

phosphate,

Methylprednisolone,

Fingolimod, Favipiravir,

Lopinavir and ritonavir,

Remdesivir, mRNA-1273*,

ChAdOx1 nCoV-19*

• Bevacizumab: inhibiting vascular endothelial growth factor (VEGF), which is higher in COVID-19 patients than

in healthy controls; VEGF is the most potent vascular permeability inducer that induces hypoxia and severe

inflammation

• Chloroquine: increasing endosomal pH, which is required for virus fusion; interfering with the glycosylation of

cellular receptors of SARS-CoV; suppressing the production or release of tumor necrosis factor α and interleukin 6

• Glucocorticoids: suppressing “cytokine storms”

• Fingolimod: preventing acute respiratory distress syndrome development

• Favipiravir: based on the results of two trials conducted in Wuhan and Shenzhen, China recommended this drug

as a treatment approach for COVID-19

• Lopinavir/ritonavir: reducing viral replications in patients infected with SARS and MERS; ritonavir reduces the first

pass metabolism of lopinavir to increase its bioavailability

• Remdesivir: antiviral drug against a wide array of RNA viruses that works by combining with the nascent viral

RNA chains to result in premature termination, reducing virus infections (82, 117–122)

SARS-CoV Ribavirin, Methylprednisolone,

Interferons, Lopinavir and

ribavirin, Pentaglobin*

• Ribavirin: preventing replication of RNA and DNA viruses

• Methylprednisolone: using interferons plus corticosteroids to reduce disease-associated impaired oxygen

saturation, radiographic lung abnormalities, and creatine kinase levels (controversial arguments about using

corticosteroids in SARS)

• Interferons: reducing viral replication

• Lopinavir and ribavirin: blocking the final step of virion assembly; reducing the peak viral load and the

associated immunopathological damage (123)

MERS-CoV Ribavirin and interferon-α2a,

Lopinavir/ritonavir,

Convalescent plasma*

• Ribavirin: combining interferon-α2b to reduce MERS-CoV replication

• Lopinavir/ritonavir: improving the outcomes of MERS-CoV infection; improving pulmonary function but not

reducing virus replication or severe lung pathology (124)

Influenza A virus

(drugs

recommended

by CDC to treat

flu in the

2019–2020

season)

Oseltamivir phosphate,

Zanamivir, Peramivir, Baloxavir

marboxil, flu vaccines (such

as flu shots, nasal spray flu

vaccine, quadrivalent

influenza)

• Oseltamivir: blocking neuraminidases on the surfaces of influenza viruses; interfering with host cell release of

complete viral particles

• Zanamivir: inhibiting influenza A and B virus neuraminidases; preventing the release of progeny viruses from host

cell surfaces; inhibiting viral replication

• Peramivir: inhibiting influenza virus neuraminidases

• Baloxavir marboxil: inhibiting polymerase acidic endonuclease, an enzyme essential for viral replication; being a

prodrug converted by the hydrolysis of baloxavir

• Flu vaccines: including flu shots, nasal spray flu vaccine (FluMist Quadrivalent), quadrivalent influenza vaccine, flu

vaccination by jet injector, Fluzone high-dose seasonal influenza vaccine, flu vaccine with adjuvant (FLUAD),

cell-based flu vaccines (Flucelvax Quadrivalent), recombinant influenza vaccine, and intradermal influenza

vaccination (125, 126).

*Indicates that the drug is under investigation; otherwise, it has been approved by the FDA.

(108). However, because of the significant diversity of influenza
viruses in animal hosts, extensive experimental testing and the
development of pandemic preparedness measures against all
viruses is unachievable (109).

In this regard, the WHO periodically updates the influenza
risk management and preparedness plan, and the latest guidance
document, Pandemic Influenza Risk Management (PIRM),
was released in May 2017 (110). This updated document
supports national and global pandemic preparedness and risk
management and utilizes lessons learned at the country, regional,
and global levels (110). Furthermore, several WHO preparedness
documents have been released since PIRM, such as Essential
steps for developing or updating a national pandemic influenza
preparedness plan (released in March 2018) and A practical guide
for developing and conducting simulation exercises to test and
validate pandemic influenza preparedness plans (published in
September 2018) (111).

During the SARS epidemic, more than 8,000 people were
infected, and 774 deaths occurred between November 2002 and
December 2003. SARS is highly contagious and is transmitted
primarily by respiratory droplets; the highest transmission rates
of SARS occurred in healthcare facilities (112). At the end
of the SARS outbreak, the cases of over 1,700 healthcare

workers who had been affected were reported to the WHO,
from China (19% of total cases), Canada (43%), France (29%),
and Hong Kong (22%). During this epidemic, insufficient or
inappropriate infection control measures, such as inconsistent
use of personal protective equipment, reuse of N95 masks,
and lack of adequate infection control, were related to the
high risk of infection among healthcare workers (113). Thus,
in 2004, after the epidemic was contained, the WHO released
a framework that was prepared according to the six phases
of an epidemic, moving from preparedness, planning, and
routine surveillance for cases, through to the prevention of
the consequent international spread, to the disruption of global
transmission (114).

Since 2012, 27 countries have reported cases of MERS; Saudi
Arabia has reported ∼80% of human cases, and more than 50%
of the cases in healthcare workers were nurses (115). The WHO,
in collaboration with the Food and Agriculture Organization of
the United Nations (FAO), the World Organization for Animal
Health (OIE), and national governments, have been working with
healthcare workers and scientists in affected countries to gather
and share scientific evidence based on the previous coronavirus
epidemic. This information gathering process has been beneficial
for better understanding of the virus and the disease it causes
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and for the regulation of outbreak response priorities, treatment
approaches, and clinical management tactics (113).

Although accumulated knowledge and risk preparedness from
the influenza pandemics and SARS/MERS epidemics allowed
researchers to examine the effectiveness of strategic plans in
dealing with the ongoing pandemic of COVID-19, several
challenges have been raised in preventing the spread of COVID-
19, such as the lack of medical supplies and laboratory facilities
for the assessment of the disease and the presentation of
a high number of asymptomatic cases. In response to the
announcement of the emergency, governments were bound by
the IHR to disclose vital information regarding the identification
and detection of COVID-19, regardless of the causative agent.
Within the context of the Global Humanitarian Response Plan,
a Health Cluster platform has been created to assess the response
to the COVID-19 pandemic worldwide. This framework has
adopted the following strategies: contain the spread of the
COVID-19 pandemic and decrease morbidity and mortality;
decrease the deterioration of human assets and rights, social
cohesion, and livelihoods; and protect, assist, and advocate
for refugees, internally displaced people, migrants, and host
communities who are particularly vulnerable to the pandemic
(source: WHO). The primary goal of the Health Cluster is to
coordinate and support partners to fulfill essential health services
to achieve the framework strategies. This goal is achieved by
different roles and tasks, such as by raising awareness, alertness,
and response planning at the country level and by conducting
training and simulation exercises. The WHO Health Cluster
framework is a gateway to useful resources to support COVID-19
preparedness and response (116).

Generally, each pandemic/epidemic has presented a public
health emergency of uncertain scope and effect; thus, essential
elements of current approaches to pandemic preparedness
and extenuation, such as the development of vaccines and
stockpiling of antiviral drugs, necessitate detailed virological
and immunological data on viruses with apparent pandemic
potential. However, the development of vaccines against new
strains is challenging. Therefore, physicians and health workers
have found themselves facing the massive challenge of preventing
infections or stabilizing patients’ conditions. Thus, several
promising attempts have been made to utilize different antiviral
treatments that have already been approved by the U.S. Food
and Drug Administration (FDA) for the treatment of viral
pneumonia infections. A list of antiviral drugs and vaccine
approaches for influenza viruses, SARS-CoV, MERS-CoV, and
SARS-CoV-2 that have been used in clinics or are undergoing
clinical trials are summarized in Table 2.

DISCUSSION AND CONCLUSION

Although the mode of transmission for SARS-CoV-2 is still
somewhat unclear, all four viruses are thought to be transmitted
by the same mechanism. Infection via respiratory droplets
or secretions of infected individuals is the primary mode
of transmission between humans. The spread of infection is
occurring more rapidly for the current outbreak than in the
SARS and MERS epidemics, although rates of human-to-human
transmission were generally lower for MERS.

The CFRs across the four viruses range from 0.1 to 35%
(Table 1), with the highest rate for MERS cases and the lowest for
seasonal influenza; however, it is essential to note that the CFR for
COVID-19 should be interpreted carefully because the outbreak
is still ongoing.

With the exception of the influenza A viruses, the other
viruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) are similar
in zoonotic transmission. The MERS-CoV reservoir hosts are
dromedary camels, and the SARS-CoV reservoir hosts are likely
bats. It is still unclear whether SARS-CoV-2 was zoonotically
transmitted from an infected palm civet, snake, or other animal
at the Chinese seafood market.

Regarding the origin of the virus, SARS-CoV and SARS-CoV-
2 originate from China and share a high degree of similarity,
including exposure to wild animals, whereas MERS-CoV and
SARS-CoV-2 have shared similarities in that cases can remain
asymptomatic while still spreading the disease. Furthermore,
influenza A viruses and SARS-CoV-2 also have a similar
characteristic when it comes to transmissibility (127).

In the setting of extensive SARS-CoV-2 transmissions, the
possibility of SARS-CoV-2 should be considered in all persons
with a fever or lower respiratory infection, because it is
challenging to straightforwardly distinguish between seasonal
influenza and COVID-19, even if an epidemiologic link cannot
be readily established. Furthermore, the timely reporting of cases,
updates on clinical status and disposition of patients, the real-
time analysis of data, and the appropriate dissemination of
information are essential for outbreak-managing decisions.

AUTHOR CONTRIBUTIONS

ZA: conceptualization, methodology, investigation, writing—
original draft, and visualization. ML: visualization. XW:
conceptualization, methodology, project administration, funding
acquisition, writing—review and editing, and supervision.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the China Pharmaceutical
University (grant number 3150120001 to XW).

ACKNOWLEDGMENTS

We thank China Pharmaceutical University for its support
and funding.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.552909/full#supplementary-material

Supplementary Figure 1 | The origins and intermediate hosts of SARS-CoV-2,
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Supplementary Figure 2 | Virus-host interaction. Th1, T helper 1; Th17, T helper

17; ACE2, angiotensin-converting enzyme 2; INF-1, interferon 1; INFγ, interferon
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gamma; DPP4, dipeptidyl peptidase-4; HA, hemagglutinin; NA, neuraminidase;

M2e, Matrix 2 protein; MHC-1, major histocompatibility complex class 1.

Supplementary Figure 3 | Potential transmission routes of respiratory infection

between infected and susceptible individuals (128). Respiratory infections with a

droplet nuclei size ≤5µm can travel to a distance ≥1m. In contrast, respiratory

infections with a droplet nuclei size ≥5µm cannot travel to a distance ≥1m. Large

droplets may fall on different surfaces and infect healthy individuals through direct

or indirect contact.
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