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Abstract

We consider a formal approach to comparative risk aversion and applies it to intertemporal

choice models. This allows us to ask whether standard classes of utility functions, such as

those inspired by Kihlstrom and Mirman [15], Selden [26], Epstein and Zin [9] and Quiggin

[24] are well-ordered in terms of risk aversion. Moreover, opting for this model-free approach

allows us to establish new general results on the impact of risk aversion on savings behaviors.

In particular, we show that risk aversion enhances precautionary savings, clarifying the link

that exists between the notions of prudence and risk aversion.
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1. Introduction

A common approach to study the role of risk aversion is to consider a particular class

of preferences, presumably well-ordered in terms of risk aversion, and then analyze the

decisions that result from preferences within this class. In the context of intertemporal

choice, a number of different classes of utility functions have been considered. The most

popular choice consists of preferences à la Epstein and Zin [9], while the frameworks in

Kihlstrom and Mirman [15] and Quiggin’s [24] provide alternative settings.
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Predictions about the impact of risk aversion radically depends on the model that is

chosen. For example, regarding the relation between risk aversion and precautionary savings

in a simple two-period model, the preferences in Kihlstrom and Mirman [15] and Quiggin

[24] lead to the conclusion that precautionary savings rise with risk aversion (Drèze and

Modigliani [8], Yaari [28], and Bleichrodt and Eeckhoudt [3]). On the contrary, this relation

is ambiguous when Epstein and Zin’s [9] preferences are used (Kimball and Weil [17]).1

The current paper makes three contributions. First, it discusses the extent to which

the utility classes mentioned above are well-ordered in terms of risk aversion. In particular,

we show that, when we consider aversion to marginal increases in risk, Epstein and Zin

preferences are not well-ordered. Second, we suggest a model-free approach that makes

it possible to discuss the role of risk aversion without focusing on any specific model of

rationality. Third, we apply this setup to establish new general results on the role of risk

aversion. In particular, we show that risk aversion enhances precautionary savings, clarifying

the link that exists between risk aversion and prudence.

Our paper relies on an abstract procedure to define comparative risk aversion, which

assumes no particular structure for the set of consequences. This definition is inspired by

the seminal work of Yaari [27]. It states that if a given increase in risk is perceived as

worthwhile for a decision maker (because it yields a higher level of ex ante welfare), it

should also be so for any less risk-averse decision maker.

A considerable number of papers have used Yaari’s approach to define comparative risk-

(or uncertainty-) aversion. This is explicitly the case in Kihlstrom and Mirman [15], Ghi-

rardato and Marinacci [11] and Grant and Quiggin [12], but also implicit in the papers that

have focused on certainty equivalents, such as Chew and Epstein [7] and Epstein and Zin [9],

as well as in Pratt’s [23]. In most cases, although Grant and Quiggin [12] is a noteworthy

exception, Yaari’s procedure was (implicitly or explicitly) implemented based on a minimal-

ist risk ordering, where random objects are only compared to deterministic constructs. Our

paper departs from this minimalist approach to provide novel insights. Instead of focusing

on certainty equivalents to assess the individual’s degree of risk aversion, we also account for

individual preferences over marginal variations in risk.

The notion of comparative aversion that we derive when considering marginal risk vari-

ations is stronger than that focusing on certainty equivalents. In consequence, although

preferences may be well ordered in terms of risk aversion when considering certainty equiva-

lents, this may no longer hold when considering our more stringent comparison. This turns

out to be the case for Epstein and Zin preferences. No similar case can be made against

1More details on the meaning of the preferences à la Kihlstrom and Mirman, Quiggin, and Epstein and
Zin are provided in Section 2.
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Kihlstrom and Mirman or Quiggin’s anticipated utility functions. These latter utility classes

actually seem to be well-suited to provide insights into the impact of risk aversion.

Abandoning these standard but somewhat restrictive frameworks, we establish a general

result allowing us to make predictions about the impact of risk aversion without assuming

any particular form of rationality. It is possible to determine the impact of risk aversion

under relatively weak assumptions on ordinal preferences, as long as states of the world can

be ranked from bad to good independently of the agent’s action. The intuition behind this

result is that risk aversion enhances the willingness to redistribute from good to bad states.

We provide direct applications to savings under uncertainty. In particular we prove, under

weak conditions on ordinal preferences, that risk aversion enhances precautionary savings.

Moreover, we show that risk aversion has a negative (resp. positive) impact on savings

when the rate of return is uncertain, as soon as the intertemporal elasticity of substitution

is larger (resp. smaller) than one. Risk aversion is also found to have a negative impact on

savings when the lifetime is uncertain, therefore underlining that the relation between time

preference, risk aversion and mortality risk discussed in Bommier [4] is general and is not

restricted to the expected-utility framework.

The remainder of the paper is organized as follows. In Section 2, we present several classes

of utility functions that have been used to analyze the role of risk aversion in intertemporal

models. The main theoretical contents appear in Section 3, which is split up into several

subsections. Subsection 3.1 introduces the relevant concepts, and Subsection 3.2 then focuses

on the simplest random objects that we can think of: “heads or tails” gambles, which are

lotteries with two equally-probable outcomes. This is sufficient to provide the main intuition

and to show that Epstein and Zin preferences are not well-ordered in terms of risk aversion.

To increase applicability, the analysis is extended in Section 3.3 to general lotteries. We

define a formal notion of comparative risk aversion and show how it can be used to obtain

model-free results on the impact of risk aversion. A number of applications providing insights

into the impact of risk aversion on savings behavior are then developed in Section 4.

To help the reader to grasp the paper’s main message, we restrict the use of the term

Proposition to the most significant results. The paper also includes other statements, which

are useful for general understanding, or for the relation of our work to that of others, but

which are admittedly less important or original. These are labeled as Result.

2. Popular classes of utility functions disentangling risk aversion from intertem-

poral substitution

We present in this section the main risk preferences that have been suggested in the

literature to discuss the role of risk aversion in intertemporal frameworks. As in Selden [26]
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and many other papers on precautionary savings, we restrict our attention to preferences

over “certain× uncertain” consumption pairs that we denote (c1, c̃2) – the tilde emphasizing

that the second element is random.

Kihlstrom and Mirman [15] convincingly explain that the comparison of agents’ risk

aversions is possible if and only if agents have identical preferences over certain prospects. We

therefore focus on utility classes involving different risk attitudes, while leaving preferences

over certain consumption paths unchanged. This rules out the standard class of expected-

utility models assuming additively-separable utility functions. Under additive separability,

it is impossible to change risk preferences, without affecting ordinal preferences.2

We consider three extensions of the standard additively-separable expected-utility model,

where we can analyze risk aversion without affecting ordinal preferences. This is not of course

an exhaustive review of what can be found in the literature, but rather focuses on the most

popular specifications. The first setup, which assumes expected utility, was suggested by

Kihlstrom and Mirman [15]. The second one was introduced by Selden [26], building on

the framework in Kreps and Porteus [18], and was then extended by Epstein and Zin [9]

to deal with infinitely-long consumption streams, and appears to be a very convenient way

of studying many intertemporal problems. This has now become by far the most popular

approach to the analysis of risk aversion in intertemporal frameworks. The third class, based

on Quiggin’s [24] anticipated-utility theory, is developed in Yaari [28] for example.

The initial contributions of Kihlstrom and Mirman [15], Selden [26] and Quiggin [24]

were very general, and not limited to the analysis of intertemporal choices. However, applied

works on savings often assume that preferences over certain consumption paths are additively

separable. The (ordinal) utility U(c1, c2) associated with the certain consumption profile

(c1, c2) is expressed as the sum of the utilities associated with the first-period and second-

period consumptions: U(c1, c2) = u1(c1)+u2(c2). We include this assumption of the additive

separability of ordinal preferences in our definitions of what we call “Kihlstrom and Mirman”,

“Selden” or “Quiggin” utility functions that rank certain consumptions pair as U does.3

Definition 1 (Utility classes). A utility function U(c1, c̃2) is called:

• A Kihlstrom and Mirman utility function UKM
k if there exist continuous increasing real

2One very popular representation is the additive expected utility specification: U(c1, c̃2) =
c
1−ρ

1

1−ρ
+E

[
c̃
1−ρ

2

1−ρ

]
,

where ρ is interpreted as reflecting the agent’s risk aversion. However, changing ρ involves changing ordinal
preferences (in particular, the intertemporal elasticity of substitution 1

ρ
) and cannot be used to analyze the

impact of risk aversion. Kihlstrom and Mirman [15] and Epstein and Zin [9] among others discuss this.
3It should be clear that our terminology is only indicative of the general frameworks in which these

particular specifications may be related. We do not aim to provide a complete account of the contributions
of the corresponding papers, which consider both much broader utility classes and more complex settings.
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functions u1, u2 and k such that UKM
k (c1, c̃2) = k−1 (E [k (u1(c1) + u2(c̃2))]).

• A Selden utility function US
v if there exist continuous increasing real functions u1, u2

and v such that US
v (c1, c̃2) = u1(c1) + u2 (v

−1 (E[v(c̃2)])).

• A Quiggin utility function UQ
φ if there exist continuous real functions u1, u2 and a con-

tinuous increasing function φ : [0, 1] → [0, 1] , with φ(0) = 0 and φ(1) = 1, such that

UQ
φ (c1, c̃2) = u1(c1) + Eφ[u2(c̃2)], where Eφ[·] denotes the Choquet expectation opera-

tor associated with φ. For a real random variable z̃ characterized by the cumulative

distribution function F , this operator is defined as Eφ[z̃] = −
∫ +∞

−∞
z d (φ (1− F (z))).

One popular specification results from choosing isoelastic functions in the Selden utility

function. Setting u1(c) = u2(c) = c1−ρ

1−ρ
and v(x) = x1−γ

1−γ
yields a class of utility functions

assuming a constant intertemporal elasticity of substitution and homothetic preferences.

Such utility functions are often called “Epstein and Zin utility functions”, although they

indicate only imperfectly what can be found in Epstein and Zin [9], who consider preferences

over infinitely-long consumption paths, which is a much more complex issue. Even so, this

terminology has become very popular in the Economic literature, and we think it is more

productive and less confusing to adhere to it, rather than introducing a new one.

Definition 2. UEZ
γ (c1, c̃2) is called an Epstein and Zin utility function if there exist positive

scalars ρ 6= 1 and γ 6= 1 such that:4 UEZ
γ (c1, c̃2) =

c
1−ρ
1

1−ρ
+ 1

1−ρ

(
E
[
c̃1−γ2

]) 1−ρ
1−γ .

Certainty-equivalent arguments have been used to suggest that these Kihlstrom and Mir-

man, Selden, Epstein and Zin, and Quiggin utility functions are well-suited for the analysis

of risk aversion. It can indeed easily be shown that the greater is the concavity of k (for

Kihlstrom and Mirman utility functions), the greater is the concavity of v (for Selden utility

functions), the greater is the scalar γ (for Epstein and Zin utility functions) and the greater

is the convexity of φ (for Quiggin utility functions), the smaller (in terms of ordinal utility)

is the certainty equivalent assigned to any random element (c1, c̃2). It is then generally con-

sidered that these utility classes are well-ordered in terms of “risk aversion”. Though, we

come back on this statement in Section 3, once we have introduced our formal approach to

comparative risk aversion.

We provide two examples to illustrate that relying on different utility classes may yield

different conclusions regarding the impact of risk aversion. A first example comes from

4The extension to the cases where ρ = 1 or γ = 1 could easily be considered, but is ruled out here to
avoid the systematic discussion of these particular cases.
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the literature on precautionary savings. In a two-period consumption model, precautionary

saving is the optimal amount of saving when second-period income is uncertain minus savings

when income risk can be fully insured. For Kihlstrom and Mirman utility functions, it is

straightforward to conclude from Drèze and Modigliani [8] (at least for small risks) that

precautionary savings increase with the concavity of k as long as first-period consumption

is a normal good. Risk aversion would then increase precautionary saving. A similar result

is obtained by Bleichrodt and Eeckhoudt [3] for Quiggin utility functions. On the contrary,

Kimball and Weil [17] prove in their Proposition 7 that the amount of precautionary savings

is not monotonic in γ, for Epstein and Zin preferences, suggesting that there is no simple

relationship between risk aversion and precautionary savings.

A second example concerns savings when the rate of return is random. Kihlstrom and

Mirman [15] prove that risk aversion increases or decreases optimal savings when the return

on saving is uncertain, according to whether the intertemporal elasticity of substitution is

smaller or greater than one. This finding is contradicted by Langlais [19], who shows that

no such result holds in the Selden framework.

Both examples illustrates that the above classes of utility functions may lead to divergent

conclusions regarding the impact of risk aversion on saving behavior. However, we shall see

that for both problems, the role of risk aversion becomes unambiguous and particularly

intuitive once a formal and general sense is given to comparative risk aversion.

3. Theory

3.1. Common features

Many papers, including Pratt [23], Yaari [27], Kihlstrom and Mirman [15], Chew and

Epstein [7], Epstein and Zin [9] define the notion of “more risk-averse than” by considering

certainty equivalents and state that the fact that an agent systematically has lower certainty

equivalents than another one means greater risk aversion. This approach is equivalent to

Yaari [27]’s one, who compares agents in terms of risk aversion by stating that any risk

increase preferred by a given individual should also be preferred by a less risk averse individ-

ual. He uses a minimalist but indisputable definition of “riskier than” where a lottery ℓ1 is

said to be riskier than a lottery ℓ2 if and only if ℓ2 is a degenerate lottery providing a given

outcome with certainty. Our paper departs from Yaari [27]’s minimalist approach by stating

“being more risk-averse” should mean “greater aversion to increases in risk”, and not only a

greater willingness to avoid all uncertainty. We argue that there are many cases where two

non-degenerate lotteries can be unambiguously compared in terms of riskiness. We account

in this paper for some of these cases, which allows us to define a notion of comparative risk

6



aversion which is stronger than that in Yaari [27], and which leads to interesting predictions

regarding the impact of risk aversion in many concrete problems.

We therefore need a definition of “being riskier than” which is not a trivial issue. As

explained in Chateauneuf, Cohen, and Meilijson [6], the literature on monetary lotteries has

not reached a consensus on what an increase in risk is.5 They review different notions, which

are shown to yield different predictions regarding the role of risk aversion. We overcome

the difficulty by considering consensual risk comparisons. First, we restrict our attention to

basic “heads or tails” gambles, which only have a good and a bad payoff. Risk comparison

is then particularly indisputable. Second, we extend our analysis to more general lotteries

allowing us to derive results with a broader scope. For sake of clarity, we name these random

objects respectively gambles and lotteries.

3.1.1. The setting

This section sets out the common setting for both gambles and lotteries.

State and lottery sets. We consider an abstract space set X endowed with an ordinal pref-

erence relation �. Uncertainty is represented by a probability space (Ω,F , P r), where Ω is

the sample space including all states of the world (it is countable in the case of heads or

tails, but not for more general lotteries), F is the σ−algebra of events, which are subsets

of Ω, and Pr is the associated probability measure. Lotteries are random variables, more

precisely measurable functions from the sample space Ω to the state space X. We denote by

L(X) the set of lotteries with outcomes in X. The function ℓ : Ω → X of L(X) is a random

variable, while ℓ(ω) ∈ X with ω ∈ Ω represents the realization of the lottery when state ω

occurs. We denote by δx ∈ L(X) a degenerate lottery, which pays off x ∈ X with certainty.

At this stage, it noteworthy that we do not define the set of lotteries as the set of measures

defined on the state space X, as it is often popular in the risk literature since Anscombe

and Auman [1] and Fishburn [10]. However, our paper deals with the impact of comparative

risk aversion in two period saving problems. Defining lotteries as random variables allows

us to simplify the discussion of intuitions driving our results and notably to speak of lottery

outcomes in ‘good’ and ‘bad’ states.

Risk preferences. We consider two agents A and B with respective preferences �A and �B

over a subset Y of L(X). This set Y may be equal to L(X) but for greater generality we

5Chateauneuf, Cohen, and Meilijson only consider mean-preserving increases in risk, but the notions they
discuss could easily be generalized to compare distributions with different means.
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only assume that Y includes the set of degenerate gambles.

{δx|x ∈ X} ⊆ Y ⊆ L(X)

We assume that the risk preferences �A and �B are consistent with ordinal preferences:

Assumption 1 (Consistency with ordinal preferences). Preferences over gambles are

consistent with ordinal preferences if:

x � y ⇔ δx �
i δy for all x, y ∈ X and i = A,B

Agents A and B rank degenerate lotteries as ordinal preferences rank outcomes. Without

reproducing the discussion in Kihlstrom and Mirman [15] and Epstein and Zin [9], we take

for granted that agents are comparable in terms of risk aversion if and only if they have the

same ordinal preferences.

Another natural property when considering risk preferences is ordinal dominance, as

formalized for example in Chew and Epstein [7]. The intuition behind this property is

simple: any agent should prefer a lottery providing always a better outcome than another

lottery (whatever the state of the world). Formally:

Definition 3 (Ordinal dominance). Preferences over gambles �i (i = A,B) fulfill ordi-

nal dominance when we have for any lotteries ℓ, ℓ′ ∈ Y :

(i) if for all ω ∈ Ω, ℓ(ω) � ℓ′(ω) then ℓ �i ℓ′,

(ii) moreover, if there exists ω ∈ Ω such that ℓ(ω) ≻ ℓ′(ω), then ℓ ≻i ℓ′.

According to this definition, a first-order stochastically dominated lottery should not be

preferred. Moreover, a first-order stochastically dominating lottery is strictly preferred if

and only if it pays off a strictly better outcome in at least one state of the world.

It can be argued that this is a reasonable requirement for defining rational risk preferences.

However, as some popular preferences (such as Selden and Epstein and Zin ones) do not

satisfy this property (see for example the discussion in Chew and Epstein [7]), we do not

systematically make this assumption, but mention it whenever necessary.

3.1.2. A formal definition of comparative risk aversion

We now clarify the procedure we use to give a sense to risk-aversion comparisons, when

we consider a general set of outcomes. Intuitively, as in Yaari [27], an agent A will be said to

be more risk-averse than an agent B, if any increase in risk that is considered to be desirable
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by A is also considered so by B. This procedure is general in the sense that it is valid in

both the gamble and the lottery setups. However, the definition of an “increase in risk” is

different from Yaari’s one and across these setups.

Formally, we suppose that there exists a binary relation R defined over the lottery set

Y . This relation is interpreted as “riskier than” and more precisely as “at least as risky as”.

For example, for ℓ, ℓ′ ∈ Y , ℓR ℓ′ means that the lottery ℓ is (weakly) riskier than ℓ′. The

relationship R is supposed to be reflexive and transitive, and thus defines a partial preorder.

We now set out our definition of comparative risk aversion.

Definition 4 (Comparative risk aversion). Let R be a partial preorder “riskier than”

defined over the lottery set Y . A is more (weakly) risk-averse than B with respect to R if

for all ℓ, ℓ′ ∈ Y :

ℓR ℓ′ and ℓ �A ℓ′ =⇒ ℓ �B ℓ′

This definition states that any riskier lottery, which is preferred by the more risk-averse

agent is also preferred by the less risk-averse agent. This definition is reflexive by construc-

tion, and has of course to be completed with a reasonable notion of “riskier than”.

3.2. Theory, Part 1: Heads or tails gambles

We precise the previous setting, when we restrict our attention to heads or tails gambles.

3.2.1. The setting

We suppose that the sample space is reduced to heads or tails: Ω = {h, l} and that both

states h and l occur with the same probability. We denote by H(X) the set of heads or tails

gambles with outcomes in X. An element of H(X) denoted (xl; xh) is the lottery yielding

xl ∈ X with probability 0.5 and xh ∈ X with probability 0.5. For sake of simplicity and

without loss of generality, we always suppose that the first outcome is not better than the

second: xh � xl. Remember that we call these simple binary lotteries gambles, while the

more general ones are called lotteries.

We consider two agents A and B with preferences �A and �B over gambles in Y ⊆ H(X)

that are consistent with ordinal preferences (Assumption 1).

3.2.2. Comparative riskiness

Definition 4 of comparative risk aversion supposes a relation R comparing the riskiness

of gambles. We take advantage of the very basic structure of gambles to derive reasonable

properties of the partial preorder R and see that it is not necessary to make fully explicit

this relation to derive non-trivial results. We consider two gambles (xl; xh) and (yl; yh) of

9



the set Y . Since outcomes are ordered (xh � xl and yh � yl), we are left with four possible

combinations:

Case 1: (xh ≻ yh and xl � yl) or (xh � yh and xl ≻ yl)

Case 2: (yh ≻ xh and yl � xl) or (yh � xh and yl ≻ xl)

Case 3: xh � yh � yl � xl

Case 4: yh � xh � xl � yl

In Cases 1 and 2, one gamble strictly first-order dominates the other one. There may

be diverse views about the relative riskiness of (xl; xh) and (yl; yh), depending on the values

of xl, xh, yl and yh, but this does not really matter as we expect preferences between these

gambles to be guided by monotonicity properties and unrelated to risk and risk aversion.

In Cases 3 and 4, the lucky outcome of one gamble is better than the lucky outcome

of the other, while the reverse is true for the unlucky outcome. We characterize such cases

using the notion of spread that we define below:

Definition 5 (Gamble spread). The gamble (xl; xh) is a spread of (yl; yh) (outcomes are

ordered) , which is denoted by (xl; xh) ⊢ (yl; yh), if the following relationship holds:

(xl; xh) ⊢ (yl; yh) ⇐⇒ xh � yh � yl � xl

If (xl; xh) is a spread of (yl; yh), choosing (xl; xh) instead of (yl; yh) involves taking the

chance of being in a better position if the odds are good, but ending up in a worse situation

if the odds are bad. It is then indisputable that (xl; xh) is riskier than (yl; yh). If the ordinal

preference relation � is represented by a utility function, (xl; xh) ⊢ (yl; yh) implies that

the distribution of ex-post utilities associated with the gamble (xl; xh) is more dispersed

than that with the gamble (yl; yh) in the strong sense of Bickel and Lehman [2], whatever

the utility function representing �. The fact that (xl; xh) is considered to be riskier than

(yl; yh) whenever (xl; xh) ⊢ (yl; yh) is therefore particularly robust: it is not restricted to any

particular choice of ex-post utility dispersion, and is independent of the cardinality.

While there may be disagreement about the relative riskiness of (xl; xh) and (yl; yh) in

Cases 1 and 2, a minimal requirement for any “riskier than” relation R is that it respects the

ranking of the spread relationship ⊢. We additionally impose that if the gamble (xl; xh) is a

spread of (yl; yh) in a strict sense (that is with either xh ≻ yh or yl ≻ xl) then (yl; yh) cannot

be considered to be riskier than (xl; xh). We call these requirements spread compatibility :
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Definition 6 (Spread compatibility). A partial-order “riskier than” R is spread compat-

ible if and only if:

1. (xl; xh) ⊢ (yl; yh) ⇒ (xl; xh)R(yl; yh)

2. If (xl; xh) ⊢ (yl; yh) and (xh ≻ yh or yl ≻ xl), it cannot be the case that (yl; yh)R(xl; xh).

The next result proves that the ordinal dominance together with the agreement over the

statement that a spread involves an increase in risk are sufficient to define an unambiguous

measure of comparative risk aversion for gambles. It is then not necessary to fully explicit

the relation R in order to obtain a universal sense for being “more risk-averse than”.

Result 1. We consider two agents A and B with preferences satisfying the ordinal dom-

inance. If agent A is more risk-averse than agent B with respect to a spread-compatible

partial order R, then it will also hold for any other spread compatible partial order R′.

Proof. We consider two gambles (xl; xh) and (yl; yh), with (xl; xh)R
′(yl; yh) and (xl; xh) �

A

(yl; yh). We prove that (xl; xh) �
B (yl; yh). There are at most four possibilities:

1. (xl; xh) strictly first-order dominates (yl; yh). Due to ordinal-dominance, (xl; xh) �B

(yl; yh).

2. (yl; yh) strictly first-order dominates (xl; xh). We rule out this possibility, because

ordinal-dominance implies (yl; yh) ≻
A (xl; xh), which contradicts (xl; xh) �

A (yl; yh).

3. (xl; xh) ⊢ (yl; yh), which implies (xl; xh)R(yl; yh), since R is spread compatible. A being

more risk-averse than B relative to R, the Definition 4 of comparative risk aversion

implies (xl; xh) �
B (yl; yh);

4. (yl; yh) ⊢ (xl; xh). The spread compatibility implies (yl; yh)R
′(xl; xh). Since we also

have (xl; xh)R
′(yl; yh), it implies xl ∼ yl and xh ∼ yh (part (ii) of the definition of

spread compatibility), and thus (xl; xh) �
B (yl; yh) due to ordinal-dominance.

3.2.3. Application to standard classes of preferences over certain× uncertain consumption

pairs

We now examine whether the utility classes mentioned in Section 2 are well-ordered

with respect to this comparative risk aversion relation. We specify our setting to ensure

compatibility with these utility classes. The set of outcomes X is the set of admissible
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two-period consumption profiles. We restrict our attention to gambles, where first-period

consumption is certain. The sole source of uncertainty concerns second-period consumption,

which may be either low (state l) or high (state h) with equal probability. We call Y the

set of such gambles, with certain first-period consumption. An element of Y is denoted

(c1, (c
l
2, c

h
2)), where c1 is the certain first-period consumption, while (cl2, c

h
2) is the gamble

over second-period consumption.

The preferences associated with Kihlstrom and Mirman, and Quiggin utility functions

satisfy ordinal dominance. From Result 1, every spread-compatible relation R yields identical

conclusions about comparative risk aversion within these utility classes. The following result

characterizes the comparative risk aversion ordering in both frameworks.

Result 2 (Standard risk preferences and risk aversion). For Kihlstrom and Mirman,

and Quiggin utility functions, the following characterization holds:

1. An agent with utility function UKM
kA

is more risk-averse than an agent with utility

function UKM
kB

with respect to any spread-compatible relation R if and only if kA is

more concave than kB.

2. An agent with utility function UQ

φA
is more risk-averse than agent with utility function

UQ

φB
with respect to any spread-compatible relation R if and only if φA(1

2
) ≤ φB(1

2
).

Proof. See the Appendix.

The above result states that both Kihlstrom and Mirman and Quiggin preferences are

well-ordered in terms of risk aversion. However, such a simple characterization does not hold

for Epstein and Zin utility classes. On the contrary, we prove the following negative result:

Proposition 1 (Epstein and Zin utility functions and risk aversion). Let A and B

be two agents with respective utility functions UEZ
γA

and UEZ
γB

, where γA 6= γB. There exists

no spread-compatible relation R, such that A is more risk-averse than B with respect to R.

Proof. Assume that γA > γB and consider a spread-compatible relation R. We show that

neither A is more risk-averse than B, nor is B more risk-averse than A.

Proof that A is not more risk-averse than B.

We construct two gambles Ga ⊢ Gb (and thus GaRGb for every spread-compatible rela-

tion R), such that agent A is indifferent between both gambles, and agent B strictly prefers

Gb to Ga. This generates a contradiction with A being more risk-averse than B.
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With 0 < ε << 1, ca, cb > 0, Ga and Gb are defined as follows:

Ga =
(
ca,

(
3

1

1−ρ (1− ε), 3
1

1−ρ (1 + ε)
))

Gb = (cb, (1− 2ε, 1 + 2ε))

where:6

c1−ρa − c1−ρb =

[
(1− 2ε)1− γA + (1 + 2ε)1−γA

2

] 1−ρ
1−γA

− 3

[
(1− ε)1−γA + (1 + ε)1−γA

2

] 1−ρ
1−γA

1. Agent A is indifferent between Ga and Gb. UEZ
γB

(Ga) = UEZ
γB

(Gb) directly stems from

the construction of ca and cb.

2. The gamble Ga is a spread of Gb, Ga ⊢ Gb, if:

c1−ρa

1− ρ
+

3

1− ρ
(1− ε)1−ρ <

c1−ρb

1− ρ
+

1

1− ρ
(1− 2ε)1−ρ (1)

<
c1−ρb

1− ρ
+

1

1− ρ
(1 + 2ε)1−ρ <

c1−ρa

1− ρ
+

3

1− ρ
(1 + ε)1−ρ

Using Taylor expansions to express c1−ρa − c1−ρb , we show in the following that the

inequality (1) holds when 0 < ε << 1. First:

(j = 1, 2)

[
(1− jε)1−γA + (1 + jε)1−γA

2

] 1−ρ
1−γA

= 1−
γA(1− ρ)

2
j2ε2 +O(ε3), (2)

where O(ε3) denotes a function such that O(ε3)
ε3

is bounded as ε tends to zero.

Using the above first-order approximations (j = 1, 2), the difference c1−ρa − c1−ρb sim-

plifies into:
c1−ρa

1− ρ
−

c1−ρb

1− ρ
= −

2

1− ρ
−
γA
2
ε2 +O(ε3) (3)

In addition, both of the following approximations hold:

3

1− ρ
(1± ε)1−ρ −

1

1− ρ
(1± 2ε)1−ρ =

2

1− ρ
± ε+O(ε2) (4)

Combining Eq. (2)–(4), we obtain that condition (1) holds for 0 < ε << 1. Ga is then

a spread of Gb, which implies that GaRGb since R is spread compatible.

6It is always possible to find a pair of first-period consumptions (ca, cb) that satisfy this equality, whatever
the value of ρ, since the range of x1−ρ − y1−ρ is R, when x and y cover R+.
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3. Agent B strictly prefers Gb to Ga. We have:

UEZ
γB

(Gb)− UEZ
γB

(Ga) =
c
1−ρ
b

1− ρ
−

c
1−ρ
a

1− ρ

+
1

1− ρ

[
(1− 2ε)1−γB + (1 + 2ε)1−γB

2

] 1−ρ
1−γB

−
3

1− ρ

[
(1− ε)1−γB + (1 + ε)1−γB

2

] 1−ρ
1−γB

Using approximations (2) and (3) where γA is replaced by γB, we obtain:

UEZ
γB

(Gb)− UEZ
γB

(Ga) =
1

2
(γA − γB)ε

2 +O(ε3) > 0 since γA > γB

As a conclusion, A cannot be more risk-averse than B with respect to R.

Proof that B is not more risk-averse than A.

We consider two gambles Ha and Hb, with c > 0 and 0 < ε << 1:

Ha =
(
c,
(
(1− ε)

1

1−γB , (1 + ε)
1

1−γB

))
and Hb = (c, (1, 1))

Hb is a degenerate gamble paying off the consumption profile (c, 1) with certainty.

1. Agent B is indifferent between both gambles, since UEZ
γB

(Ha) = UEZ
γB

(Hb) = c1−ρ

1−ρ
+ 1

1−ρ
.

2. The gamble Ha is obviously a spread of Hb. ThusHaRHb since R is spread compatible.

3. Agent A strictly prefers Hb to Ha, since we have:

UEZ
γA

(Ha)− UEZ
γA

(Hb) =
1

2

γB − γA
(1− γB)

2
ε2 +O(ε3) < 0 since γA > γB

As a conclusion, B cannot be more risk-averse than A with respect to R.

This latter proposition emphasizes that, unless we deny that a spread in a simple heads

or tails gamble is an increase in risk, Epstein and Zin utility functions cannot be considered

as appropriate tools for exploring the role of risk aversion. Changing the parameter γ in

Epstein and Zin utility functions does involve changing cardinal preferences while holding

ordinal preferences constant, but there is no direct relation between risk aversion and the γ

parameter. An agent with a higher value of γ will exhibit greater aversion to some particular

increases in risk (the second example in the proof), but also reduced aversion for some other

kinds of increases in risk (the first example in the proof). Interpreting the results obtained

from changes in the value of γ as reflecting the impact of risk aversion is therefore misleading.
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Since Epstein and Zin utility functions are a particular case of Selden utility functions,

Proposition 1 a fortiori implies that considerations about the concavity of the function v in

Selden utility functions has no direct interpretation in terms of risk aversion.

The reason for which Epstein and Zin utility functions are not well ordered in terms of

risk aversion is fairly intuitive. Rewrite the Epstein and Zin utility function as:

UEZ
γ (c1, c̃2) =

c1−ρ1

1− ρ
+

E[c̃2]
1−ρ

1− ρ

(
E

[(
c̃2

E[c̃2]

)1−γ
]) 1−ρ

1−γ

It is clear that a greater value of γ means greater relative risk aversion with respect

to second-period consumption. But, there is no monotonic relation between relative risk

over second-period consumption and aggregate risk over lifetime utility – with the latter

being what matters for comparative risk aversion. A gamble may imply greater relative risk

over second-period consumption than another, but at the same time less absolute risk over

lifetime utility. This is actually the case when we compare the gambles Gb and Ga defined

above. Even if the “relative” risk expressed as a share of average second-period consumption

is larger in Gb than in Ga, the (absolute) risk embedded in Ga is greater than that in Gb.

Agent B with γB < γA prefers lottery Gb with the greatest second-period “relative risk”

while were he to be less risk-averse he should prefer lottery Ga with less aggregate risk.

The divergence between our conclusions and those of Epstein and Zin stems from that,

according to our approach, the risk that matters to individuals is life-time risk, and not the

risk over second period consumption. The difference becomes of course of importance when

looking at behaviors that impact individual’s well being at different periods of time, like

saving behaviors.

3.3. Theory, Part 2: General Lotteries

In the remainder of the paper, we consider the general case of lotteries. The cost for

this generalization is that there are now many possible definitions for an increase in risk,

implying different meanings for being “more risk-averse than”. We argue that this difficulty

should be acknowledged, rather than ignored. Different definitions of what is an increase

in risk provide different notions of comparative risk aversion. However, we will show that

the consideration of simple spreads (which are just a generalization of the spread relation

introduced above for gambles) allows us to derive a general model-free result that makes it

possible to derive unambiguous conclusions regarding the impact of risk aversion in a wide

variety of frameworks.
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3.3.1. The setting

The setting is very similar to that initially described in Section 3.1.1, the only difference

being that we no longer restrict the sample space Ω, which is a priori uncountable, nor the

probability Pr. The set X is endowed with a preference relation �, and L(X) is the set of

lotteries, defined over Ω and paying off in X. As we only consider risks with well specified

probabilities, there is no loss of generality to restrict to a canonical probability space, such

that Ω = [0, 1], F is the Borel σ−algebra of subsets in [0, 1], and Pr is the Lebesgue measure.

For simplicity’s sake, we suppose that the ordinal preference relationship � over X can

be represented by a function U : X → R. We shall however insist on the fact that the results

we derive do not depend on a particular utility representation. Any utility representation of

�, based on a different utility function would yield the same conclusions. The cumulative

distribution function for a lottery ℓ ∈ L(X) is denoted Fℓ and is defined over R. For any

real number u, Fℓ(u) is simply the probability (Pr defined over the probability space) that

the utility of the lottery realization (whose value is in X) is smaller than a given u:

∀u ∈ R, Fℓ(u) = Pr{U(ℓ(ω)) ≤ u|ω ∈ Ω}

A lottery ℓ will be said to first-order dominate a lottery ℓ′ if and only if Fℓ(u) ≤ Fℓ′(u)

for all u, and to strictly first-order dominate ℓ′, if there additionally exists v such that

Fℓ(v) < Fℓ′(v). It is clear that this notion of dominance is independent of the utility function

that is chosen to represent the preference relation �.

The preferences of agents A and B �i (i = A,B) over a subset Y ⊆ L(X) of lotteries are

compatible with ordinal preferences (Assumption 1) and ordinal dominance (Property 3).

3.3.2. Comparative riskiness

In order to apply the general procedure for comparing risk aversion (Definition 4), we

need a notion of “riskier than” that is valid for lotteries. We generalize the notion of spread

introduced in Definition 5 as follows:

Definition 7 (p−Spread). Given a scalar p ∈]0, 1[, a lottery ℓ is a said to be a p−spread

of the lottery ℓ′ that we denote by ℓ ⊢p ℓ
′, if there exists u0 ∈ R such that:

1. for all u < u0, p ≥ Fℓ(u) ≥ Fℓ′(u),

2. for all u ≥ u0, p ≤ Fℓ(u) ≤ Fℓ′(u).

This definition generalizes the previous notion of gamble spread. In particular, if Gx a

gamble spread of Gy according to Definition 5, Gx is also a 1
2
−spread of Gy according to

16



Definition 7. This definition also means that Fℓ single-crosses Fℓ′ , with the crossing occurring

at the y-value of p. In Figure 1, lottery ℓ is a p−spread of lottery ℓ′.

1

u

F (u)

ℓ′

ℓ

u0

p

Figure 1: p−spread ℓ ⊢p ℓ′

It is worth noting that the above definition does not depend on the choice of the rep-

resentation U of preferences, but only on ordinal preferences.7 If a lottery ℓ is a utility

spread of another lottery ℓ′ for a given utility representation U , then it will also be so for

any representation corresponding to the same ordinal preferences. The p−spread property

is therefore an ordinal and not a cardinal concept.

We can then easily check that the p−spread relation is reflexive and transitive, and thus

defines a partial preorder on Y . We also argue that if a lottery ℓ is a p−spread of the lottery

ℓ′, then ℓ is riskier than ℓ′. Comparing ℓ to ℓ′, states of the world can be split up into “bad

states” with measure p, and “good states” with measure 1 − p, such that: (i) the outcome

of ℓ or ℓ′ obtained in any good state of the world is preferable to that which is obtained

in bad states of the world; (ii) conditional on the state being good, the lottery ℓ first-order

dominates the lottery ℓ′, while the reverse holds when states are bad. The lotteries ℓ and

ℓ′ can be seen as the result of binary gambles (determining whether the state of the world

is bad, with probability p, or good, with probability 1 − p) with the good outcome of ℓ

dominating the good outcome of ℓ′, and the bad outcome of ℓ being dominated by the bad

outcome of ℓ′. In this sense, it seems clear that ℓ is riskier than ℓ′, since it pays off more in

good states and less in bad states.

7This would not be the case for other notions of dispersion, such as that suggested by Bickel and Lehman
[2], or for mean-preserving spreads, second-order stochastic dominance, etc.
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It is possible to define a notion of spread as ℓ ⊢ ℓ′ if and only if ℓ ⊢p ℓ
′ for some p ∈]0, 1[.

A number of papers, such as Jewitt [13] and Johnson and Myatt [14], have used such spreads

or single-crossing properties as a criterion of greater dispersion. This definition has many

appealing features, but is not transitive and thus does not build a risk order. As it may

seem unappealing to have a notion of “riskier than”, which is not transitive, we introduce

the notion of a p−spread. Results relying on assumptions valid for all p can equivalently be

expressed using the spread relation ⊢. It is noteworthy that taking the transitive closure of

this single-crossing property is not a good alternative to the p−spread, since the succession

of two single crossings may yield something infinitely close to an increase in risk. Formally,

we can have ℓ1 ⊢ ℓ2 ⊢ ℓ3 and ℓ3 very close to a lottery ℓ0 such that ℓ0 ⊢ ℓ1.

When considering preferences over certain× uncertain consumption pairs, both the Kihl-

strom and Mirman and Quiggin utility functions can easily be ordered in terms of aversion

for p−spread increases in risk. This result extends the characterization obtained in Result 2.

Result 3 (Comparative risk aversion and standard utility classes). The following re-

sults hold for Kihlstrom and Mirman and Quiggin utility functions:

• An agent with a utility function UKM
kA

is more risk-averse than an agent with a utility

function UKM
kB

with respect to the p−spread relation for every p ∈]0, 1[ if and only if

kA is more concave than kB.

• An agent with a utility function UQ

φA
is more risk-averse than an agent with a utility

function UQ

φB
with respect to the p−spread relation for every p ∈]0, 1[ if and only if φA

is more convex than φB.

Proof. See the Appendix.

Regarding the Epstein and Zin class, Proposition 1 states that Epstein and Zin utility

functions are not properly ranked with respect to aversion for 1/2−spread increases in risk,

so that there is no chance of reaching a conclusion similar to those of Result 3.

3.3.3. A model-free result

Having provided a formal meaning of comparative risk aversion, we are now interested

in deriving results for the impact of risk aversion on agents’ behaviors. We suppose that

agents may chose an action t ∈ I ⊆ R, which modifies the payoff of a lottery. Such a

lottery is noted ℓt ∈ Y and its realization when state ω ∈ Ω occurs is ℓt(ω) ∈ X. With

minimal assumptions, which are detailed below, we prove a very general result stating that

the optimal action under uncertainty covaries monotonically with risk aversion.
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Our first assumption is that the action t has a true effect on lotteries.

Assumption 2 (Non-Constant). Consider two actions t1 ∈ I and t2 ∈ I. If ℓt1(ω) ∼

ℓt2(ω) for all ω ∈ Ω, then t1 = t2.

The above assumption is obviously a necessary condition for our model-free result. In

the extreme case, when t does not have any influence on the lottery ℓt, we would obviously

be silent about the impact of the risk aversion on the choice of the action.

Second, we make an assumption of single-peakedness. For each ω ∈ Ω, the application

t 7→ ℓt(ω) is single-peaked, which implies that in a given state of the world ω: (i) there exists

a best action tω and (ii) an action is all the more preferred the closer it is to tω.

Assumption 3 (Single-Peakedness). For all ω ∈ Ω:

(i) ∃tω ∈ Ω such that ∀t ∈ I, ℓtω(ω) � ℓt(ω)

(ii) t1 ≤ t2 ≤ tω ≤ t3 ≤ t4 (∈ I), ⇒





ℓtω(ω) � ℓt2(ω) � ℓt1(ω)

ℓtω(ω) � ℓt3(ω) � ℓt4(ω)

Third, we assume that actions do not modify the initial order of the lottery outcomes.

In other words, for any pair of actions t and t′, the lotteries ℓt and ℓt′ are comonotonic.

Assumption 4 (Comonotonicity). Consider two states ω1, ω2 ∈ Ω. Lottery outcomes

satisfy the following implication:

(ℓt(ω1) � ℓt(ω2) for some t ∈ I) ⇒ (ℓt′(ω1) � ℓt′(ω2) for all t′ ∈ I)

When Assumption 4 holds, the states of the world may be ranked from good to bad,

independently of agents’ actions. We then write ω1 ≥ ω2 if ℓt(ω1) � ℓt(ω2) for all t ∈ I. This

assumption holds whenever it is possible to tell what constitutes good news, without knowing

agents’ actions. It is for example the case when considering random income, random returns,

provided that we suppose that agents’ well-being increases with wealth. This assumption

may not however hold in other circumstances, for example when action t involves betting on

a particular horse, since in this case the action determines which outcome is preferred.

The last assumption we make for practical purposes is that the sequence of optimal

actions (tω)ω∈Ω is ordered according to the states of the world ω. The better the state of the

world ω, the greater is the optimal action tω.
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Assumption 5 (Action order). For any states ω1, ω2 ∈ Ω, ω1 ≥ ω2 =⇒ tω1
≥ tω2

.

This last assumption is simply technical. We can always define a bijection ψ : I → I

such that ψ(t) is well-ordered and that Assumption 5 holds.

It is now possible to formalize a general result about the role of risk aversion:

Proposition 2 (A general model-free result). Consider two agents A and B who have

to choose an action t providing them with a lottery satisfying Assumptions 2, 3, 4, and 5.

We assume that the preferences of agents A and B satisfy ordinal dominance and define the

respective single optimal actions tA and tB. The following implication then holds:

If agent A is more risk-averse than agent B with respect to the p−spread relation for

every p ∈]0; 1[ then tA ≤ tB.

Proof. We assume that tA > tB. In order to obtain a contradiction, we prove that lottery

ℓtA is a p−spread of ℓtB for some p ∈]0; 1[. In this case we have that ℓtA �A ℓtB and ℓtA ⊢p ℓtB ,

which would imply that ℓtA �B ℓtB because A is more risk-averse than B, contradicting the

optimality of tB for agent B. Proving that lottery ℓtA is a p−spread of ℓtB involves showing

that there exists u0 ∈ R and p ∈]0; 1[, such that p ≥ Fℓ
tA
(u) ≥ Fℓ

tB
(u) for u < u0 and

p ≤ Fℓ
tA
(u) ≤ Fℓ

tB
(u) for u ≥ u0.

We define ξ− as the subset of R, where the cdf of ℓtB is larger than that of ℓtA . Conversely,

ξ+ is the subset, where the cdf of ℓtA is larger than that of ℓtB .

ξ− =
{
u ∈ R, Fℓ

tB
(u) ≥ Fℓ

tA
(u)
}

and ξ+ =
{
u ∈ R, Fℓ

tA
(u) ≥ Fℓ

tB
(u)
}

First, note that each u ∈ R belongs either to ξ+ or ξ−: ξ+∪ ξ− = R. We then distinguish

four cases, depending on whether the sets ξ+ and ξ− are included in each other or not.

1. Suppose that ξ+ = ξ− = R. This means that for all u ∈ R, Fℓ
tA
(u) = Fℓ

tB
(u), which

implies that lotteries pay off the same outcomes in all states of the world. Assumption

2 implies that tA = tB, which contradicts the assumption that tB < tA.

2. Suppose that ξ+ ( ξ− (this means that ξ+ is either empty or contains only elements u

such that Fℓ
tA
(u) = Fℓ

tB
(u)). The cdf of lottery ℓtB is always larger than that of ℓtA ,

and is strictly larger at least once: ℓtA strictly first-order dominates the lottery ℓtB .

Since preferences satisfy ordinal dominance (Property 3), agent B strictly prefers ℓtA

to ℓtB , which contradicts the optimality of tB.

3. Suppose that ξ− ( ξ+. It analogously contradicts the optimality of tA for agent A.
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4. We now necessarily have ξ− 6⊂ ξ+ and ξ+ 6⊂ ξ−. There exists at least one element in

each set, not belonging to the other one, which we denote u+ ∈ ξ+ (and u+ /∈ ξ−) and

u− ∈ ξ− (and u− /∈ ξ+).

We first focus on u−. By definition, 1 − Fℓ
tB
(u−) < 1 − Fℓ

tA
(u−), or equivalently

{ω ∈ Ω|U(ℓtB(ω)) ≥ u−} ( {ω ∈ Ω|U(ℓtA(ω)) ≥ u−}. There exists ω1 ∈ Ω in the

second set but not in the first: U(ℓtB(ω1)) ≤ u− ≤ U(ℓtA(ω1)). Single-peakedness

(Assumption 3) implies that there exists tω1
such that: tω1

≥ tA ≥ tB.

We consider u ≥ u− and want to show that {ω ∈ Ω|U(ℓtB(ω)) ≥ u} ⊆ {ω ∈

Ω|U(ℓtA(ω)) ≥ u}. Let ωu ∈ {ω ∈ Ω|U(ℓtB(ω)) ≥ u}. Since U(ℓtB(ω
u)) ≥ u ≥

u− ≥ U(ℓtB(ω1)), we deduce, from Assumption 4 of comonotonicity, that ωu ≥ ω1.

From Assumption 5, we deduce that tωu ≥ tω1
≥ tA > tB. Single-peakedness allows us

to conclude that U(ℓtA(ω
u)) ≥ U(ℓtB(ω

u)) ≥ u and ωu ∈ {ω ∈ Ω|U(ℓtA(ω)) ≥ u}.

We have therefore proved that [u−,+∞[⊆ ξ−. We can show analogously that ] −

∞, u+] ⊆ ξ+. u+ (resp. u−) is a lower (resp. upper) bound for ξ− (resp. ξ+) (otherwise

u+ ∈ ξ−, which is contradictory). We thus define u = inf ξ− and u = sup ξ+, which

satisfy u ≤ u (otherwise ξ+ ∪ ξ− 6= R). We define u0 as an element of the non-empty

segment [u; u] and p as an element of
[
limu→u,u<u Fℓ

tA
(u); limu→u,u>u Fℓ

tA
(u)
]

(cdf are

right-continuous and have left limits, both everywhere, and the last segment collapses

to a singleton when Fℓ
tA

is continuous or when u < u). The cdf Fℓ
tA

and Fℓ
tB

satisfy:

∀u < u0, Fℓ
tB
(u) ≤ Fℓ

tA
(u) ≤ p and ∀u ≥ u0, Fℓ

tB
(u) ≥ Fℓ

tA
(u) ≥ p

According to Definition 7, this therefore shows that lottery ℓtA is a p−spread of ℓtB ,

which terminates the proof.

This model-free result shows that, under some mild assumptions, the more risk-averse

is the agent, the smaller is his optimal action. We can summarize the intuition as follows.

Consider the optimal action tB. We can group the states of the worlds into two subsets. The

first consists of the states ω for which the optimal actions tω are smaller than tB, while the

second consists of the states for which the optimal actions are larger than tB. Since without

uncertainty optimal actions are assumed to be larger when the state of the world is better,

we can qualify the former as “bad” states of the world and the latter as “good” states. Due

to single-peakedness, choosing an action t smaller than tB involves increasing the agent’s

welfare in bad states and reducing it in good states. Opting for a smaller action is thus one

way of redistributing welfare from good to bad states, and a way of reducing risk regarding

agent welfare. Such a strategy is preferred by more risk-averse agents.
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4. Applications

We use Proposition 2 to analyze in a very simple two-period framework the savings

behavior of an agent facing uncertainty. We consider in turns three types of uncertainty: (i)

second-period income is random; (ii) the savings interest rate is uncertain; and (iii) the agent

faces a mortality risk, i.e. a risk of dying at the end of the first period. For simplicity, we

simply write in this section “agent A is more risk averse than B” to actually mean that “A

is more risk-averse than agent B with respect to the p−spread relation for every p ∈]0, 1[”.

4.1. Application to precautionary savings

We consider the case of agents who live for two periods, have random second-period

incomes, and have to decide how much to save. This very simple problem has been the

object of number of inspirational contributions, including Leland [20], Sandmo [25], Drèze

and Modigliani [8], Caperaa and Eeckhoudt [5], Kimball [16], and Kimball and Weil [17].

These led to the development of the notion of prudence, whose link to risk aversion has not

been clarified despite some impressive efforts (Kimball and Weil, [17]). We will see, however,

that our general approach does lead to clear and simple conclusions.

To apply our general result, we specify the setting as in Section 3.2.3. The set X = (R+)
2

is endowed with an ordinal preference relationship � represented by a utility function u. The

set of lotteries with outcomes in X is denoted L(X), and Y ⊆ L(X) is the set of lotteries with

deterministic first-period consumption. We consider two agents A and B with preferences

�i (i = A,B) defined over Y . We assume that these preferences satisfy the consistency

assumption and ordinal dominance.

We now introduce two assumptions regarding ordinal preferences.

Assumption 6 (Convexity of ordinal preferences). For all (c1, c2), (c
′

1, c
′

2), and (c′′1, c
′′

2)

in X, and all λ ∈ [0, 1]:

(c′1, c
′

2) � (c1, c2) and (c′′1, c
′′

2) � (c1, c2) =⇒ (λc′1 + (1− λ)c′′1, λc
′

2 + (1− λ)c′′2) � (c1, c2)

Assumption 7 (Normality of first-period consumption). Consider the agent’s opti-

mization problem maxc1,c2 u(c1, c2) subject to the budget constraint c1 +
1

(1+R)
c2 = I, where

I ≥ 0 is the discounted total certain income and R > −1 the gross certain interest rate. The

ordinal preference relationship � is such that this problem has a unique solution denoted

(c1(I, R), c2(I, R)), where, additionally, first-period consumption c1(I, R) increases with to-

tal income I.
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The assumption of preference convexity is fairly standard in the analysis of consumer

behavior.8 This implies Assumption 3 of single-peakedness which is required for our model-

free result.9 Assumption 7 of good normality is also very standard. In cases where the

preference relation � can be represented by a differentiable utility function u(c1, c2) over

first-period c1 and second-period c2 consumptions, this assumption concerns the derivative

of the marginal rate of substitution between consumption in both periods relative to second-

period consumption (namely ∂
∂c2

(
∂u
∂c1
∂u
∂c2

)
> 0). However, we believe that greater insight is

gained by emphasizing that the requirement is good normality.

We can now express our finding with respect to precautionary savings:

Proposition 3 (Precautionary savings). Consider two agents A and B, who choose first-

period consumption c1 providing them with a certain× uncertain income profile denoted

(c1, ỹ2 + (1 +R)(y1 − c1)), where y1 > 0 is certain first-period income, ỹ2 random second-

period income, and R > −1 the certain interest rate. If:

1. The ordinal preference relationship � satisfies Assumptions 6 and 7.

2. Risk preferences �A and �B satisfy ordinal dominance and define optimal first-period

consumption levels of cA1 and cB1 .

Then, the following implication holds:

Agent A is more risk-averse than agent B =⇒ cA1 ≤ cB1

Proof. This proposition comes via an application of the model-free result formulated in

Proposition 2. We simply need to check that the required assumptions hold in this setting,

when the action chosen by the agent is the first-period consumption c1.

• Assumptions 2 and 4 hold by construction.

• The normality of first-period consumption (Assumption 7) ensures that Assumption 5

regarding optimal-action ordering holds. Indeed, the better the state of the world (i.e.,

the larger is second-period income), the greater is optimal first-period consumption.

8See for example the discussion in Mas-Colell, Whinston and Green [21], page 44.
9This is formally shown below, in the proof of Proposition 3. In fact, single-peakedness and convexity are

equivalent in the case of continuous preferences that we do not assume here.
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• The convexity of the relation � implies the single peakedness of preferences. Let

s⋆ be the solution of maxs u (y1 − s, y2 + (1 +R)s) and consider, for example, s′ <

s′′ < s⋆. By the definition of s⋆, we have first that (y1 − s⋆, y2 + (1 +R)s⋆) �

(y1 − s′, y2 + (1 +R)s′) and also (y1 − s′, y2 + (1 +R)s′) � (y1 − s′, y2 + (1 +R)s′).

Convexity then implies that for all λ ∈ [0, 1] we can deduce (y1 − (λ s⋆ + (1− λ) s′),

y2 + (1 +R)(λ s⋆ + (1− λ) s′)) � (y1 − s′, y2 + (1 +R)s′). As s′ < s′′ < s⋆, we can

choose λ ∈ [0, 1], such that s′′ = λ s⋆ + (1− λ) s′, which proves single-peakedness.

This proposition makes it clear that the greater is risk aversion, the more the agent

saves. The intuition behind this result is very simple. Take an agent who decides to save

s(ỹ2) anticipating a random second-period income of ỹ2. For simplicity, we assume that this

random income can take two values, y2 and y2. The amount s(ỹ2) is an intermediate value

between what he would have saved knowing that he would receive y2 and what he would

have saved knowing that he would earn y2: s(y2) < s(ỹ2) < s (y2). By saving more than

s(ỹ2) he increases his welfare in the bad state of the world, but reduces it in the good state.

As this diminishes the degree of risk regarding his welfare, larger savings will therefore be

preferred by more risk-averse agents.

This result clarifies the link between prudence and risk aversion. Agents may be prudent

or imprudent in the sense that they may react positively or negatively to an increase in income

uncertainty. Drèze and Modigliani [8] and Kimball [16] have established the conditions for

prudence to occur in the expected utility framework. Our results complement their findings

by showing that, for a given level of income uncertainty, increasing risk aversion leads to

increased savings.

4.2. Application to optimal savings with interest-rate uncertainty

We now raise the question of the relationship between optimal savings and risk aversion,

not in the face of income uncertainty, but rather interest-rate uncertainty. This question was

addressed by Kihlstrom and Mirman [15] in the expected-utility framework, and Langlais

[19] for Selden utility functions, with diverging conclusions.

The formal setting of this question (the structure of X, etc.) is exactly the same as in

the previous section. However, the ordinal properties that are required to obtain results

regarding risk aversion are different.

In a deterministic setting, increasing the interest rate is equivalent to changing the price

of second-period consumption, generating both income and substitution effects. A higher

interest rate means a lower price for second-period consumption, with a positive income

effect yielding higher first-period consumption and lower savings. The substitution effect
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reduces first-period consumption, and therefore increases savings. The income and substi-

tution effects thus have opposing effects on optimal savings, and the overall effect may be

either positive or negative. For the sake of clarity, we define the optimal savings function

s(y1, y2, R) = argmaxs (y1 − s, y2 + (1 +R)s). This function may either rise or fall with

respect to R, depending on ordinal preferences. This sign is key for the determination of the

effect of risk aversion on savings when interest rates are non-deterministic.

Proposition 4 (Savings with an uncertain interest rate). Consider two agents A and

B, who choose first-period consumption c1 providing them with a certain× uncertain income

profile
(
c1, y2 + (1 + R̃)(y1 − c1)

)
, where y1 > 0 (y2 > 0) is certain first- (second-) period

income, and R̃ is the random interest rate. If:

1. The ordinal preference relationship � satisfies Assumption 6.

2. Risk preferences �A and �B satisfy the ordinal dominance and define optimal first-

period consumptions cA1 and cB1 .

Then, the following implication holds:

Agent A is more risk-averse than agent B =⇒





cA1 ≤ cB1 if R 7→ s(y1, y2, R) is decreasing

or

cB1 ≤ cA1 if R 7→ s(y1, y2, R) is increasing

Proof. The proof is straightforward and is very similar to that in Proposition 3. When the

substitution effect dominates, in order to directly use the result of Proposition 2, we may

consider that the action is not c1, but rather s = y1 − c1.

Our findings extend those in Kihlstrom and Mirman [15]. In an expected-utility frame-

work, with differentiable utility functions, they derive a similar result as in Proposition 4.

They express that the derivative ∂s
∂R

is positive (negative) if the intertemporal elasticity of

substitution is greater (less) than one. The preceding proposition could then be expressed

by referring to the value of the intertemporal elasticity of substitution, although this would

be slightly less general (as differentiability would then be required). Our results however

contradict those in Langlais [19], who considers Selden utility functions. Our explanation is

that these latter utility functions are not well-ordered in terms of risk aversion.

4.3. Application to optimal savings with lifetime uncertainty

In our last application, we consider the effect of an uncertain lifetime on optimal savings.

The traditional view in Economics is that risk aversion and time preference are orthogonal
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aspects of preferences. However, Bommier [4] has underlined that as soon as we take lifetime

uncertainty into account, there is a strong direct relationship between risk aversion and

time discounting, with significant implications for savings behavior.10 Bommier’s results

were however derived in an expected-utility framework, omitting some aspects of preferences

such as bequests. Here we show how the impact of risk aversion on savings with lifetime

uncertainty can be addressed without assuming expected utility but allowing for bequests.

We consider an agent who has an initial endowment W and who may live for one or

two time periods. This agent chooses his consumption c1 in the first period. In the second

period, either he survives and consumes his wealth, or dies, and his wealth is transmitted

to his heirs, for whom he may care. To account for the potential existence of annuities, we

assume that the return to saving may depend on whether the agent survives or not. More

precisely, if we denote by ca2 the second-period consumption in the case where the agent is

alive, and by cd2 the amount transmitted to his heirs if he dies, we have: ca2 = (1+Ra)(W−c1)

and cd2 = (1 +Rd)(W − c1), where Ra and Rd are the savings returns in the case of survival

and death respectively. We assume that Ra > −1 and Rd ≥ −1, but make no assumptions

about the relative values of Ra and Rd. When there are no annuities or taxes on bequests

we have Ra = Rd, while with perfect annuities we have Ra > Rd = −1. There are also many

intermediary situations (e.g. when there are taxes on bequests) or contracts (life insurance)

with Rd greater than Ra.

We now apply our model-free result to show that risk aversion generates an unambiguous

result. Formally, the set X has to be defined to reflect the specificity of the context. The

second-period outcome can no longer be described by a scalar variable c2, but by a pair

(c2, σ) of a scalar c2 and a binary variable σ ∈ {a, d} indicating whether the individual is

dead or alive. This means that X = (R+)
2
× {a, d}. The notation (c1, c2)a and (c1, c2)d will

however be used instead of the cumbersome (c1, c2, a) and (c1, c2, d). The index a or d thus

indicates whether the individual is alive or not in the second period.

We make three assumptions regarding ordinal preferences. First, we suppose that the

agent always prefers to live in the second period and to consume, rather than to die and

bequeath his wealth. Second, we suppose that optimal saving conditional on living for two

periods is greater than optimal saving conditional on living one period. In other words, in a

deterministic setting, the propensity to consume falls with life duration. This seems a very

natural assumption in this setting, where agents have no second-period income. Last, we

introduce a convexity assumption similar to Assumption 6, but taking into account that X

10See also Bommier’s working paper “Rational Impatience?”, downloadable at http://hal.archives-
ouvertes.fr/hal-00441880/fr/ where the relation between risk aversion and time discounting is formalized
in Proposition 4.
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is convex, and not even connected.

Assumption 8. Ordinal preferences satisfy the following properties:

• The agent is always better off when alive: ∀c1, (c1, (1 + Ra)(W − c1))a � (c1, (1 +

Rd)(W − c1))d

• For i = a, d, all W > 0 and Ra, Rd ≥ −1, the problem maxs u(W − s, (1 + Ri)s)i has

a unique solution si.

• Optimal saving when surviving is always greater than that when dying: sa > sd.

• Ordinal preferences are convex over both (R+)
2
× {a} and (R+)

2
× {d}.

Given Assumption 8, Proposition 2 allows us to determine how the savings of an agent

facing an uncertain lifetime depend on risk aversion.

Proposition 5 (Saving when lifetime is uncertain). We consider two agents A and B,

who face an (identical) exogenous risk of dying after the first period. They have to choose

a saving level of s providing them with a consumption profile of (W − s, (1 +Ra)s)a if they

survive and a consumption-bequest profile of (W − s, (1 +Rd)s)d if they die. If:

1. The ordinal preference relationship � satisfies Assumption 8.

2. Risk preferences �A and �B satisfy the ordinal dominance and define optimal savings

sA and sB.

Then the following implication holds:

Agent A is more risk-averse than agent B =⇒ sA ≤ sB

Proof. Assumptions 2 and 3 hold by construction of the consumption profile and the

convexity of preferences. Assumptions 4 and 5 directly stem from Assumption 8. The result

is then straightforward from Proposition 2.

The more risk-averse agent saves less. In other words, when mortality is taken into

account, there is a positive relationship between risk aversion and impatience. We shall

however emphasize that Proposition 5 assumes that agents A and B have the same prob-

ability of dying. The relation between risk aversion and impatience holds when comparing
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agents with identical mortality, but can not be applied to any correlations obtained from

individuals with different mortality risks.11

5. Conclusion

The most common approach to quantifying (and comparing) agents’ risk aversion involves

focusing on how individuals compare lotteries with certain outcomes. In this paper we argue

that this is not sufficient, as risk aversion also reflects agents’ willingness to marginally

reduce risks. We therefore consider a formal procedure to compare agents’ aversion to

(marginal) increases in risk. This procedure can be applied to many settings, since it does

not presuppose any kind of structure for the set of consequences. Moreover, it makes it

possible to derive general predictions about the impact of risk aversion in a wide variety of

problems, as illustrated with our “model free” result.

To demonstrate the interest of our general approach we apply it to three intertemporal

problems, where the role of risk aversion is not well understood. We first identify what are

the relevant classes of utility functions to study the role of risk aversion in intertemporal

settings. Interestingly enough, we find that relying on Epstein and Zin utility functions is

inadequate, since these functions are not well ordered in terms of risk aversion. Kihlstrom

and Mirman preferences, or those arising from Quiggin’s anticipated utility theory are better

alternatives. Though, in a number of cases, predictions on the role of risk aversion are easier

to obtain through our general approach than when relying on specific models of preferences.

In particular we clarify the link between risk aversion and prudence, showing that precau-

tionary savings increase with risk aversion. We also prove that when considering lifetime

uncertainty, greater risk aversion should lead to lower savings.

Our approach could also be relevant for a number of problems that we could not consider

in a single paper. An interesting possibility, which we leave for further contributions, is to

consider X as being a set of lotteries and discuss preferences over two-stage lotteries as it

is done in many applied papers on ambiguity aversion. We would then obtain model-free

results on the impact of ambiguity aversion.

Appendix A. Proofs

Appendix A.1. Proof of Result 2

We consider each utility class in turn.

11In particular, the fact that women might seem to be more patient and more risk-averse than men should
not be interpreted as contradicting this proposition. This could in fact follow from gender differences in
mortality.
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1. Kihlstrom and Mirman utility functions.

We define kA = k ◦ kB where k is increasing and continuous. The utility associated to a

gamble (xl; xh) for agent A is: UKM
kA

(xl; xh) = k−1
A

(
kA(xl)+kA(xh)

2

)
= k−1

A

(
k(kB(xl))+k(kB(xh))

2

)
.

• We assume that k is concave. Let (xl; xh) and (yl; yh) be two gambles. By definition:

(xl; xh) �A (yl; yh) iff:
k (kB(xl)) + k (kB(xh))

2
≥
k (kB(yl)) + k (kB(yh))

2
(A.1)

Since xl < yl ≤ yh < xh and kB is increasing, the inequality in (A.1) becomes:

k (kB(xh))− k (kB(yh))

kB(xh)− kB(yh)
≥
k (kB(yl))− k (kB(xl))

kB(yl)− kB(xl)

kB(yl)− kB(xl)

kB(xh)− kB(yh)

(if kB(xh) = kB(yh) or kB(xl) = kB(yl), the result is straightforward)

k is concave, which implies that 0 ≤ k(kB(xh))−k(kB(yh))
kB(xh)−kB(yh)

≤ k(kB(yl))−k(kB(xl))
kB(yl)−kB(xl)

. We deduce

from both previous inequalities that:

1 ≥
kB(yl)− kB(xl)

kB(xh)− kB(yh)
or

kB(xl) + kB(xh)

2
≥
kB(yl) + kB(yh)

2
(A.2)

which implies that by similarity with (A.1) that B prefers (xl; xh) to (yl; yh).

• We now assume that A is more risk-averse than B, and that the inequality in (A.1) and

(xl; xh) ⊢ (yl; yh) imply the inequality in (A.2). We choose a level of income y = yl = yh

such that the inequality in (A.1) holds with equality for a given pair (xl, xh). The

inequality in (A.2) then implies that k(kB(xl)+kB(xh)
2

) ≥ k(kB(y)) = k(kB(xl))+k(kB(xh))
2

,

or that k is concave.12

2. Quiggin anticipated utility function.

We consider two gambles (xl; xh) ⊢ (yl; yh) (xl < yl ≤ yh < xh; the result is straightfor-

ward if there is equality), such that agent A prefers (xl; xh) to (yl; yh). It means UQ

φA
(xl; xh) ≥

UQ

φA
(yl; yh) or φA(1

2
) ≥ yl−xl

xh−yh+yl−xl
, since the utility associated with the gamble (xl; xh) for

A is UQ

φA
(xl; xh) = xl + (xh − xl)φ

A(1/2).

It is then straightforward that agent B prefers (xl; xh) to (yl; yh) iff φB(1
2
) ≥ φA(1

2
).

Appendix A.2. Proof of Result 3

We prove the result for each utility class.

12A continuous function f is concave iff for all x1, x2, f
(
x1+x2

2

)
≥ f(x1)+f(x2)

2 .
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1. Kihlstrom and Mirman utility functions.

1. a. The first implication directly stems from our previous Result 2.

1. b. Suppose now that kA is more concave than kB, i.e. that kA = k ◦ kB, with k

continuous, increasing, and concave. We consider two lotteries ℓ1 and ℓ2, such that: ℓ1 ⊢p ℓ2

for some p ∈]0, 1[ and ℓ1 �
A ℓ2. As agent A prefers ℓ1 to ℓ2, we have:

∫
∞

−∞

k
(
kB(u)

)
dFℓ1(u) ≥

∫
∞

−∞

k
(
kB(u)

)
dFℓ2(u) (A.3)

Since ℓ1 ⊢p ℓ2 there exists u0 ∈ R, such that p ≥ Fℓ1(u) ≥ Fℓ2(u) for u < u0 and

p ≤ Fℓ1(u) ≤ Fℓ2(u) for u ≥ u0. Any concave function defined over an open set admits

left and right derivatives everywhere. Both are equal to each other and the function is

differentiable, except on a countable set.13 In consequence, we deduce that there exists a

(countable) partition {sj, j ∈ Z} of R, such that k and kB are differentiable on every interval

]sj, sj+1[ and that s0 ≡ u0 (for sake of simplicity). We deduce:

∫
∞

−∞

k
(
kB(u)

)
dFℓ1(u)−

∫
∞

−∞

k
(
kB(u)

)
dFℓ2(u) =

∞∑

j=−∞

∫ sj+1

sj

k
(
kB(u)

)
(dFℓ1(u)− dFℓ2(u))

=
∞∑

j=−∞

(
k
(
kB(sj+1)

)
(Fℓ1(sj+1)− Fℓ2(sj+1))− k

(
kB(sj)

)
(Fℓ1(sj)− Fℓ2(sj))

)
(A.4)

−
∞∑

j=−∞

∫ sj+1

sj

kB′(u) k′
(
kB(u)

)
(Fℓ1(u)− Fℓ2(u))du

Since we both have Fℓ1(−∞) − Fℓ2(−∞) = Fℓ1(∞) − Fℓ2(∞) = 0, the inequality (A.3)

simplifies using (A.4) into:

∞∑

j=0

∫ sj+1

sj

kB′(u) k′
(
kB(u)

)
(Fℓ2(u)− Fℓ1(u))du ≥

0∑

j=−∞

∫ sj+1

sj

kB′(u) k′
(
kB(u)

)
(Fℓ1(u)− Fℓ2(u))

or:

∫
∞

u0

kB′(u)k′
(
kB(u)

)
(Fℓ2(u)− Fℓ1(u))du ≥

∫ u0

−∞

kB′(u)k′
(
kB(u)

)
(Fℓ1(u)− Fℓ2(u)) (A.5)

Since k is increasing, concave and admits left and right derivatives everywhere, we also

have for u ≥ u0 = s0, 0 ≤ k′
(
kB(u)

)
≤ k′,r

(
kB(u0)

)
and for u ≤ u0 = s0, 0 ≤ k′,l

(
kB(u0)

)
≤

k′
(
kB(u)

)
, where k′,r (resp. k′,l) is the right (resp. left) derivative of k. Because Fℓ1(u) −

13This result stems for example from Theorem 1.3.7 p. 23 in Nicolescu and Persson [22]
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Fℓ2(u) ≥ 0 for u < u0 and Fℓ2(u)− Fℓ1(u) ≥ 0 for u ≥ u0, we obtain after simplification:

k′,r
(
kB(u0)

) ∫ ∞

u0

kB′(u)(Fℓ2(u)− Fℓ1(u))du ≥ k′,l
(
kB(u0)

) ∫ u0

−∞

kB′(u)(Fℓ1(u)− Fℓ2(u))

and:

∫
∞

u0

kB′(u)(Fℓ2(u)− Fℓ1(u))du ≥

∫ u0

−∞

kB′(u)(Fℓ1(u)− Fℓ2(u)),

since k′,l(kB(u0)) ≥ k′,r(kB(u0)) ≥ 0 and both integrals are positive. This inequality is

similar to (A.5) and states that agent B prefers ℓ1 to ℓ2, proving the result.

2. Quiggin anticipated utility functions. We use a proof strategy which is similar to

Chateauneuf, Cohen and Meilijson [6].

2.a. First implication. Assume that agent A is more risk-averse than agent B. We

consider lotteries with four possible outcomes. ℓ1 pays x1 < x2 < x3 < x4 with respective

probabilities p1, p2, p3, and p4 = 1 − p1 − p2 − p3. ℓ2 pays x1, x2 − ε2, x3 + ε3, x4 with the

same probabilities, and with ε2, ε3 > 0 small enough to respect the initial outcome ranking.

ℓ2 is a (p1 + p2)−spread of ℓ1. The utility of A associated with ℓ1 expresses as:

UQ

φA
(ℓ1) = −x1(φ

A(1− p1)− φA(1))− x2(φ
A(1− p1 − p2)− φA(1− p1))

− x3(φ
A(1− p1 − p2 − p3)− φA(1− p1 − p2))− x4(φ

A(0)− φA(1− p1 − p2 − p3))

= x1 + (x2 − x1)φ
A(q2) + (x3 − x2)φ

A(q3) + (x4 − x3)φ
A(q4)

where: pj = qj − qj+1 with 1 = q1 ≥ q2 ≥ q3 ≥ q4 ≥ q5 = 0

We choose ε3 such that agent A is indifferent between ℓ2 and ℓ1. Agent A being more

risk-averse than B, B prefers ℓ2 to ℓ1. Noting φA = φ◦φB (which implies that φ is increasing

and continuous), we have the following two relationships:

ε3
(
φ ◦ φB(q3)− φ ◦ φB(q4)

)
= ε2

(
φ ◦ φB(q2)− φ ◦ φB(q3)

)

ε3
(
φB(q3)− φB(q4)

)
≥ ε2

(
φB(q2)− φB(q3)

)

Substituting the first equality (φB(q2) ≥ φB(q3) ≥ φB(q4) since φB is increasing) yields:

φ ◦ φB(q2)

φB(q2)− φB(q3)
+

φ ◦ φB(q4)

φB(q3)− φB(q4)
≥ φ ◦ φB(q3)

φB(q2)− φB(q4)

(φB(q3)− φB(q4))(φ
B(q2)− φB(q3))

and:
φB(q3)− φB(q4)

φB(q2)− φB(q4)
φ ◦ φB(q2) +

φB(q2)− φB(q3)

φB(q2)− φB(q4)
φ ◦ φB(q4) ≥ φ ◦ φB(q3)

Since φB(q3)−φ
B(q4)

φB(q2)−φ
B(q4)

> 0 and φB(q2)−φ
B(q3)

φB(q2)−φ
B(q4)

> 0, the last inequality states that φ is convex.

2.b. Second implication. We suppose that φA is more convex than φB, i.e. that φA =

31



φ ◦ φB, with φ continuous, increasing, convex and φ(0) = φ(1) = 0. ℓ1 and ℓ2 are two

lotteries, such that: ℓ1 ⊢p ℓ2 for some p ∈]0, 1[ and ℓ1 �
A ℓ2, which implies:

−

∫
∞

−∞

u d
(
φ
(
φB(1− Fℓ1(u))

)
− φ

(
φB(1− Fℓ2(u))

))
≥ 0

or:

∫
∞

−∞

(
φ
(
φB(1− Fℓ1(u))

)
− φ

(
φB(1− Fℓ2(u))

))
≥ 0 because F1(±∞) = F2(±∞)

Since ℓ1 ⊢p ℓ2 there exists u0 ∈ R, 1 − Fℓ2(u) ≥ 1 − Fℓ1(u) ≥ 1 − p for u ≤ u0 and

1− Fℓ2(u) ≤ 1− Fℓ1(u) ≤ 1− p for u ≥ u0. We obtain:

∫ u0

−∞

[
φ
(
φB(1− Fℓ2(u))

)
− φ

(
φB(1− Fℓ1(u))

)]
du ≤

∫
∞

u0

[
φ
(
φB(1− Fℓ1(u))

)
− φ

(
φB(1− Fℓ2(u))

)]
du

(A.6)
Focusing on the left-hand side, we deduce:

∫ u0

−∞

[
φ
(
φB(1− Fℓ2(u))

)
− φ

(
φB(1− Fℓ1(u))

)]
du =

∫ u0

−∞

(
φB(1− Fℓ2(u))− φB(1− Fℓ1(u))

) φ
(
φB(1− Fℓ2(u))

)
− φ

(
φB(1− Fℓ1(u))

)

φB(1− Fℓ2(u))− φB(1− Fℓ1(u))
du

We use a similar argument as in the Kihlstrom and Mirman case. We denote φB(1 −

Fℓi(u)) = 1− ti (for i = 1, 2). Since φB is increasing, 0 ≤ t2 ≤ t1 ≤ 1−φB(1− p) for u ≤ u0.

We then focus on ψ(t1)−ψ(t2)
t1−t2

, where ψ(t) = −φ(1 − t) is increasing and concave. We can

find a lower bound for this expression, which is ψ′,l(1− φB(1− p)) = φ′,r(φB(1− p)). Since

φB(1− Fℓ2(u)) ≥ φB(1− Fℓ1(u)) for u ≤ u0, we deduce:

∫ u0

−∞

[
φ
(
φB(1− Fℓ2(u))

)
− φ

(
φB(1− Fℓ1(u))

)]
du ≥

φ′,r(φB(1− p))

∫ u0

−∞

[
φB(1− Fℓ2(u))− φB(1− Fℓ1(u))

]
du

Focusing on the right-hand side of (A.6), we similarly obtain:

∫
∞

u0

[
φ
(
φB(1− Fℓ1(u))

)
− φ

(
φB(1− Fℓ2(u))

)]
du ≤

φ′,l(φB(1− p))

∫
∞

u0

(
φB(1− Fℓ1(u))− φB(1− Fℓ2(u))

)
du
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The inequality (A.6) becomes:

φ′,r(φ(1− p))

∫ u0

−∞

[
φB(1− Fℓ2(u))− φB(1− Fℓ1(u))

]
du ≤

φ′,l(φB(1− p))

∫
∞

u0

(
φB(1− Fℓ1(u))− φB(1− Fℓ2(u))

)
du

or:

∫ u0

−∞

[
φB(1− Fℓ2(u))− φB(1− Fℓ1(u))

]
du ≤

∫
∞

u0

(
φB(1− Fℓ1(u))− φB(1− Fℓ2(u))

)
du

since 0 ≤ φ′,l(1− φB(p)) ≤ φ′,r(1− φB(p)) and both integrals are positive. Carrying out the

same manipulations in reverse order yields:

−

∫
∞

−∞

u d
(
φB (1− Fℓ1(u))

)
≥ −

∫
∞

−∞

u d
(
φB (1− Fℓ2(u))

)

Agent B therefore prefers lottery ℓ1 to ℓ2, which completes the proof.
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