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Abstract

Consider lotteries µ and λ with vector outcomes. Let º1 be the
relation that declares µ to be riskier than λ if every risk averse decision-
maker prefers λ to µ. We introduce two other notions of the compar-
ative riskiness of lotteries with vector outcomes. The first compares
µ and λ in terms of the expected utilities generated by a family of
real-outcome lotteries derived from µ and λ and a family of sufficiently
smooth utilities defined over the real line. The second compares the
riskiness of µ and λ in terms of a generalized form of second-order
stochastic dominance. Our main result is that these relations are iden-
tical to º1 for every vector outcome space. This result complements
classical characterizations of º1 in terms of dilatations and martin-
gales, thereby leading to a more complete theory of comparative vector
riskiness. As our result admits outcomes in infinite dimensional vector
spaces, it brings a host of new applications within the ambit of the
theory. We illustrate this with applications to the theories of auctions,
utility regulation, public goods, portfolio selection, multi-party moral
hazard and teams.

JEL classification: C02, D01, D63, D81
Key words: vector outcome, comparative riskiness, generalized

stochastic dominance

1 Introduction

Hadar and Russell [8], Hanoch and Levy [9] and Rothschild and Stiglitz [18]
posed the question: When is one probability measure (henceforth, lottery)
on the real line < riskier than another one? They provided three alternative
formulations of “lottery µ is riskier than lottery λ”: (a) every risk averse
expected utility maximizing decision-maker weakly prefers λ to µ, (b) µ
and λ have the same mean and λ second order stochastically dominates µ,
and (c) there exist random variables f and g with distributions λ and µ
respectively, such that the expectation of g conditional on f is identical to f
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almost surely, i.e., the random process (f, g) is a martingale.1 The principal
result of the real outcomes theory is: if we consider lotteries with supports
in a compact interval O in <, then all three criteria induce the same partial
order on the admissible set of lotteries.

Given that economic problems with random vector outcomes are com-
monplace, it is natural to seek a generalization of the real outcomes theory
to the situation where the set of outcomes O is a subset of a vector space
X. Although it is tempting to finesse the problem by aggregating the vector
outcomes into real outcomes and assuming that the resulting real risks are
comparable, we shall argue in Section 3 that this strategy is unattractive.

The vector riskiness literature

As real outcomes are not intrinsic to criteria (a) and (c), their definitions
readily extend to the vector outcomes setting with only minor modifications.
When O is a subset of a vector space X, it is known that for large classes of
topological vector spaces X and outcome sets O, criterion (a) is equivalent to
the existence of a suitable dilatation on O, and that criterion (a) is equivalent
to criterion (c); see Theorems 4.2 and 4.5 in Appendix B for these results.2

On the other hand, as real outcomes are intrinsic to criterion (b), exten-
sion of this criterion to a vector space setting requires a non-trivial modifica-
tion of its definition. The problem of extending criterion (b) to vector spaces
and connecting it to criterion (a) has attracted some attention (Russell and
Seo [20], Olson [13]).

Both these papers restrict X to be the Euclidean space <n and O to be
a convex compact subset of X. The Russell-Seo definition of the generalized
second order stochastic dominance of a vector outcomes lottery µ by an-
other vector outcomes lottery λ amounts to checking that the distribution
of utility λ ◦ v−1 on < second order stochastically dominates the distribu-
tion of utility µ ◦ v−1 on < for every v ∈ Vc, where Vc is the set of functions
v : O → < that are increasing, concave and upper semicontinuous. The main
Russell-Seo result is that criterion (a) is equivalent to their generalization
of criterion (b) when X = <n (see Remark 1 in Russell and Seo [20]). Ol-
son [13] also contains an equivalence result, but compared to the Russell-Seo
generalization, the Olson generalization of criterion (b) is opaque in terms
of interpretation and difficult to apply because its verification intrinsically
involves properties of certain non-denumerable families of sets.

1Second order stochastic dominance of µ by λ means that, for every real number r, the
area under the distribution function of µ over the interval (−∞, r] exceeds the area under
the distribution function of λ over the same interval.

2Given its evolution, the characterization of criterion (a) in terms of dilatations may
be referred to as the Hardy-Littlewood-Pólya-Blackwell-Stein-Sherman-Cartier-Fell-Meyer
theorem. The equivalence of criteria (a) and (c) may be called the Blackwell-Stein-
Sherman theorem. As is evident from the attributions, these results have a rich genealogy.
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Our contribution

We make two contributions to the literature described above.
First, we generalize the Russell-Seo equivalence result from the setting

X = <n to all vector spaces X. The only requirements on the set of outcomes
are that O be a convex and measurable subset of X. This is the most general
setting in which concave utilities can be specified and integrated to calculate
their expectations. An implication of X not having topological or ordering
structure is that, unlike in the Russell-Seo method, the notion of a utility
v : O → < being increasing and semicontinuous is not meaningful. This
result exceeds, in scope and generality, the classical characterizations of cri-
terion (a) in terms of dilatations and martingales and the Russell-Seo-Olson
characterizations of criterion (a) in terms of generalizations of criterion (b),
thereby substantially completing the extension of the real outcomes theory
to general vector spaces.

Second, we show that the comparative vector riskiness theory enables
the derivation of very general and economically meaningful predictions in
a variety of applications. Although parts of the vector riskiness theory are
quite classical, there is a notable absence of its applications in the literature.
The applications studied in this paper begin to fill this gap.3 As applications,
we analyze and predict the effects of variations in vector riskiness in six
settings: bidding in sealed bid auctions, the size of regulated utilities, the
allocation of public goods, portfolio choice, multi-party moral hazard and
team theory.

Our main theoretical results (Theorems 2.6 and 2.8) are: if O is a convex
and measurable subset of a vector space X, then criterion (a) is equivalent to
two other criteria for the comparison of vector-valued risks (Definitions 2.3
and 2.7). Of these other criteria, the first one is new, while the second is
essentially the Russell-Seo generalization of criterion (b) that is adjusted to
suit our more abstract setting; the modification involves expanding the set
of utilities Vc used in the Russell-Seo theory to V which includes all function
v : O → < that are bounded, concave and measurable. We also derive some
general implications of our results, such as the aggregation properties of
the comparative vector riskiness relation (Corollary 2.11) and weak mean-
preservation (Theorem 2.13).

Choice of techniques

The Russell-Seo method of proving their result does not generalize to our
setting. The reason is that the key step in their method is the construction of
joint distribution functions on <n+1, which intrinsically involves the usual

3However, an alternative interpretation of the comparative riskiness formalism has
served as a starting point for the theory of comparative inequality of empirical distributions
of multiple attributes (e.g., Kolm [10], Atkinson and Bourguignon [1], Tsui [22]).
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ordering of <n and its topological and measure-theoretic properties; the
algebraic restriction in this method is already implicit in the fact that X =
<n is finite dimensional. Obviously, this method is unsuitable when <n is
replaced by an abstract vector space that does not possess the convenient
ordering-algebraic-topological properties of Euclidean spaces.

However, we can work with general vector spaces because, unlike the
Russell-Seo method, our arguments only involve distribution functions on
<. Essentially, the utility functions in V serve as a system of coordinates
and the key observation is that all the necessary arguments to establish
the equivalence result can be done coordinate-by-coordinate. So, instead of
assuming and using the ordering-algebraic-topological properties of X, we
transfer all arguments to < and feed off the ordering-algebraic-topological
properties of <. This approach allows a result that is very general and
technical arguments that are very elementary as they are confined to <.

The rest of this paper is organized as follows. Section 2 contains our
general theoretical results. Section 3 contains applications of these results.
We conclude in Section 4. Proofs of lemmas are collected in Appendix A.
Appendix B contains statements of the classical equivalence results in the
vector outcomes setting.

2 Main results

The following conventions and notation apply throughout this paper. N
is the set of natural numbers. The real line < is given the Euclidean met-
ric topology and a topological space is given the Borel σ-algebra. Given
topological spaces A and B, the set of continuous functions f : A → B is
denoted by C(A, B). A function f is said to be Ck if it is k-times contin-
uously differentiable for k ∈ N ∪ {∞}. Consider u : A → < with A ⊂ <.
u is said to be increasing (resp. decreasing) if x, y ∈ A and x > y implies
u(x) ≥ u(y) (resp. u(x) ≤ u(y)). Dnu(x) (resp. u(x+), u(x−)) denotes the
n-th order derivative (resp. right-hand limit, left-hand limit) of u at x ∈ A.
The symbol ¬P will denote the negation of a sentence P .

The following hypotheses hold throughout the paper.

Assumption 2.1 (O,O) is a measurable space, where O is a nonempty
convex subset of a vector space X and O is a σ-algebra on O. V is the set
of functions v : O → < that are bounded, measurable and concave.

Given v ∈ V, let v0 = inf v(O) and v1 = sup v(O). As v is bounded,
v0, v1 ∈ <. Additional restrictions on O and X will be stated explicitly when
required. O is the set of outcomes and ∆(O) denotes the set of countably
additive lotteries on (O,O). Clearly, every v ∈ V is integrable with respect
to every µ ∈ ∆(O).
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Equivalence results

The first relation on ∆(O) declares a lottery µ to be riskier than a lottery
λ, denoted by µ º1 λ, if every risk averse decision-maker prefers λ to µ.4

Definition 2.2 Given µ, λ ∈ ∆(O), we say that µ º1 λ if
∫
O µ(dx) v(x) ≤∫

O λ(dx) v(x) for every v ∈ V, i.e., λ concave-dominates µ over O.

The hypothesized unanimity of risk averse preferences can be controlled
by expanding or contracting the set of admissible functions V. For instance,
if V is contracted by requiring greater regularity or monotonicity of its ele-
ments, then º1 expands but the stronger requirements on v ∈ V correspond-
ingly contract the set of potential applications of the theory.

Relation º1 is pivotal in the theory of comparative riskiness. One reason
for this is that its definition requires no modification of the corresponding
scalar definition other than the replacement of < by a vector space X. Sec-
ond, it has obvious decision-theoretic and welfare-theoretic interpretations.
Finally, well-known results such as Theorems 4.2 and 4.5 provide character-
izations of º1.

In order to motivate the next definition, first consider the following eas-
ily verifiable characterization: given µ, λ ∈ ∆(O), µ º1 λ if and only if
v ∈ V implies

∫
O µ(dx) u ◦ v(x) ≤ ∫

O λ(dx) u ◦ v(x) for every concave, in-
creasing C2 function u : [v0,∞) → <. Using the change-of-variable formula
(Billingsley [4], Theorem 16.13), we may re-write this characterization as:
for µ, λ ∈ ∆(O), µ º1 λ if and only if v ∈ V implies

∫

v(O)
µ ◦ v−1(dy) u(y) ≤

∫

v(O)
λ ◦ v−1(dy) u(y) (1)

for every concave, increasing C2 function u : [v0,∞) → <. Some interpreta-
tional remarks regarding this characterization are in order.

First, (1) suggests that comparing the riskiness of µ and λ in ∆(O)
amounts to comparing, for every utility v ∈ V, the riskiness of the cor-
responding utility distributions µ ◦ v−1 and λ ◦ v−1 in terms of the class
of preferences over real outcomes lotteries represented by the functions u.
However, also note that, as each admissible u must be increasing and C2, the
set of admissible u is a proper subset of the set of all bounded, measurable
and concave functions on [v0,∞). Therefore, (1) does not mean that λ◦v−1

concave-dominates µ ◦ v−1 over [v0,∞).
Alternatively, in this characterization and Definition 2.3, v may be inter-

preted as a statistic or aggregation function instead of a utility, while u may
be interpreted as a utility; this interpretation is used in all the applications

4In the context of welfare economics, µ º1 λ represents the notion that distribution µ
is more unequal than distribution λ because an egalitarian social planner, i.e., one with a
concave welfare function, would prefer λ to µ.
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in Section 3. The next definition modifies the set of admissible u functions
in this characterization.

Consider v ∈ V. Let U(v) be the set of concave, increasing C2 functions
u : [v0,∞) → < such that Du(v0) < ∞ and Du(v1) = 0. Let U(v) be the
set of functions u : [v0,∞) → <, where u is the uniform limit of a sequence
of functions in U(v).

Definition 2.3 Given µ, λ ∈ ∆(O), we say that µ º2 λ if v ∈ V implies∫
O µ(dx)u ◦ v(x) ≤ ∫

O λ(dx) u ◦ v(x) for every u ∈ U(v).

µ º2 λ requires that (1) holds for every v ∈ V and every u ∈ U(v).
Therefore, the interpretational remarks regarding (1) also apply to this def-
inition. We prepare for our equivalence results with a pair of lemmas. The
first one collects a number of facts regarding u ∈ U(v).

Lemma 2.4 If v ∈ V and u ∈ U(v), then u is concave, increasing, contin-
uous, measurable and bounded, with u(v(O)) ⊂ u([v0,∞)) ⊂ [u(v0), u(v1)]
and u(x) = u(v1) for every x ∈ (v1,∞).

The next lemma shows that mappings such as x 7→ min{x, 0} can be
uniformly approximated by smooth functions with certain useful proper-
ties. The approximating functions are constructed by joining various smooth
functions with care taken to match them smoothly at boundary points.

Lemma 2.5 Let v0, b ∈ < and ε > 0 be such that v0 < b − 2ε. If u :
[v0,∞) → < is given by u(x) = min{x − b, 0}, then there exists a concave,
increasing C∞ function h : [v0,∞) → < such that sup{|h(x) − u(x)| | x ∈
[v0,∞)} ≤ ε, h ≥ u on [v0,∞), Dh = 1 on [v0, b − 2ε], Dh ∈ (0, 1) on
(b− 2ε, b) and h = Dh = 0 on [b,∞).

Lemma 2.5 implies that the function x 7→ min{x− b, 0} belongs to U(v).
This fact is used to prove our equivalence results in this section and to
analyze the size of a regulated utility in Section 3.

The following equivalence result transforms the problem of comparing
the riskiness of lotteries on O ⊂ X to that of comparing specified families
of their image measures on v(O) ⊂ <, i.e., it shifts the comparison problem
from the vector domain to the real domain.

Theorem 2.6 Given Assumption 2.1, º1=º2.

Proof. Fix µ, λ ∈ ∆(O). Suppose ¬µ º2 λ. Then, there exists v ∈ V and
u ∈ U(v) such that

∫
O µ(dx) u ◦ v(x) >

∫
O λ(dx)u ◦ v(x). Using Lemma 2.4,

it follows that u ◦ v ∈ V. Therefore, ¬µ º1 λ.
Conversely, suppose ¬µ º1 λ. Then, there exists v ∈ V such that∫

O µ(dx) v(x) >
∫
O λ(dx) v(x). Define u : [v0,∞) → < by u(y) = min{y −
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v1, 0}. For every n ∈ N , Lemma 2.5 implies the existence of un ∈ U(v)
such that sup{|un(y) − u(y)| | y ∈ [v0,∞)} ≤ 1/n. As (un) converges uni-
formly to u, it follows that u ∈ U(v). Since, v(x) ≤ v1 for every x ∈ O,
u ◦ v(x) = v(x) − v1 for every x ∈ O. Therefore,

∫
O µ(dx) u ◦ v(x) =∫

O µ(dx) v(x)− v1 >
∫
O λ(dx) v(x)− v1 =

∫
O λ(dx) u ◦ v(x). So, ¬µ º2 λ.

Given ν ∈ ∆(<), define the distribution function F (., ν) : < → [0, 1] by
F (x, ν) = ν(−∞, x]. We now define the third relation on ∆(O).

Definition 2.7 Given µ, λ ∈ ∆(O), we say that µ º3 λ if v ∈ V implies∫
(−∞,y] dx [F (x, µ ◦ v−1)− F (x, λ ◦ v−1)] ≥ 0 for every y ∈ <.

µ º3 λ is equivalent to the scalar second order stochastic dominance of
µ ◦ v−1 by λ ◦ v−1 for every v ∈ V. As in Definition 2.3, the functions in V
may be interpreted as a system of coordinates that enable the comparative
riskiness of µ and λ to be evaluated by comparing the distributions of the
real-valued coordinate functions.

Theorem 2.8 Given Assumption 2.1, º2=º3.

Proof. Consider µ, λ ∈ ∆(O) such that µ º2 λ. Fix v ∈ V. Given y ∈ <,
define uy : [v0,∞) → < by uy(x) = min{x− y, 0}.

If y ≤ v0, then uy(.) = 0, and so uy ∈ U(v) ⊂ U(v). Now consider
y ∈ (v0, v1]. Then, there exists N ∈ N such that y − 2/N > v0. Consider
n ∈ N such that n ≥ N . Then, y − 2/n ≥ y − 2/N > v0. By Lemma 2.5,
there exists a concave, increasing C2 function hn : [v0,∞) → < such that
Dhn(v0) < ∞, Dhn(y) = 0 and sup{|hn(x) − uy(x)| | x ∈ [v0,∞)} ≤ 1/n.
As y ≤ v1 and hn is concave, increasing C2, it follows that Dhn(v1) = 0. So,
hn ∈ U(v). For n ∈ N such that n < N , set hn = hN . By construction,
the sequence (hn) is in U(v) and converges uniformly to uy. So, uy ∈ U(v).
Thus, uy ∈ U(v) for every y ∈ (−∞, v1].

Consider y ∈ (−∞, v1]. Then,
∫
(−∞,y](x − y) dF (x, λ ◦ v−1) =

∫
<(x −

y)1(−∞,y](x) dF (x, λ ◦ v−1) =
∫
v(O) λ ◦ v−1(dx) uy(x). Similarly,

∫
(−∞,y](x−

y) dF (x, µ ◦ v−1) =
∫
v(O) µ ◦ v−1(dx)uy(x). As µ º2 λ and uy ∈ U(v),

(1) implies
∫
(−∞,y](x − y) dF (x, µ ◦ v−1) ≤ ∫

(−∞,y](x − y) dF (x, λ ◦ v−1).
Integrating by parts, for every y ∈ (−∞, v1],

∫

(−∞,y]
dx F (x, µ ◦ v−1) ≥

∫

(−∞,y]
dx F (x, λ ◦ v−1) (2)

Now consider y > v1. Note that F (x, µ◦v−1) = 1 = F (x, λ◦v−1) for ev-
ery x ∈ (v1, y]. Therefore,

∫
(−∞,y] dxF (x, µ ◦ v−1) =

∫
(−∞,v1] dxF (x, µ ◦

v−1) + y − v1 and
∫
(−∞,y] dxF (x, λ ◦ v−1) =

∫
(−∞,v1] dxF (x, λ ◦ v−1) +

y − v1. Since (2) holds for y = v1, we have
∫
(−∞,y] dxF (x, µ ◦ v−1) ≥∫

(−∞,y] dxF (x, λ ◦ v−1). Thus, (2) holds for every y > v1. As (2) holds for
every y ∈ <, we have µ º3 λ.
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Conversely, suppose µ º3 λ. Fix v ∈ V and consider u ∈ U(v). In
order to simplify notation, define G : < → < by G(.) = F (., λ ◦ v−1). Using
the integration-by-parts formula for Lebesgue-Stieltjes integrals (Rao [16],
Exercise 11, pg 339), we have

∫
v(O) λ ◦ v−1(dx) u(x) =

∫
v(O) u(x) dG(x) =

u(v1+)G(v1+) − u(v0−)G(v0−) − ∫
v(O) dxDu(x)G(x). As u is continu-

ous, u(v1+) = u(v1). As G is right-continuous and left-limited, we have
G(v1+) = G(v1) = 1 and G(v0−) = 0. Therefore,

∫

v(O)
λ ◦ v−1(dx)u(x) = u(v1)−

∫

v(O)
dxDu(x)G(x) (3)

Define H : < → < by H(x) =
∫
(−∞,x] dy G(y). By Lebesgue’s differentiation

theorem (Rao [16], Section 5.2, Theorem 7), H is differentiable Lebesgue
almost everywhere, with DH = G at differentiability points. Therefore,∫
v(O) Du(x) dH(x) =

∫
v(O) dxDH(x)Du(x) =

∫
v(O) dxDu(x)G(x). Inte-

grating by parts,
∫
v(O) Du(x) dH(x) = Du(v1+)H(v1+)−Du(v0−)H(v0−)−∫

v(O) dxD2u(x)H(x). As Du is continuous at v1 and u ∈ U(v), we have
Du(v1+) = Du(v1) = 0. As G(y) = 0 for every y < v0, we have H(y) = 0 for
every y < v0. Therefore, H(v0−) = 0. As u ∈ U(v), we have Du(v0−) < ∞.
Consequently,

∫

v(O)
dxDu(x)G(x) = −

∫

v(O)
dxD2u(x)H(x) (4)

Combining (3) and (4), we have
∫

v(O)
λ ◦ v−1(dx) u(x) = u(v1) +

∫

v(O)
dxD2u(x)

∫

(−∞,x]
dy F (y, λ ◦ v−1)

Similarly,
∫
v(O) µ◦v−1(dx) u(x) = u(v1)+

∫
v(O) dxD2u(x)

∫
(−∞,x] dy F (y, µ◦

v−1). As µ º3 λ and D2u ≤ 0, we have
∫
v(O) λ ◦ v−1(dx) u(x) ≥ ∫

v(O) µ ◦
v−1(dx) u(x).

Now consider u ∈ U(v). Then, there exists a sequence (un) ⊂ U(v)
converging uniformly to u. By Lemma 2.4, u is bounded. As (un) converges
uniformly to u, the un are uniformly bounded. As

∫
v(O) λ ◦ v−1(dx) un(x) ≥∫

v(O) µ◦v−1(dx) un(x) for every n, we have
∫
v(O) λ◦v−1(dx) u(x) ≥ ∫

v(O) µ◦
v−1(dx) u(x) by applying the bounded convergence theorem (Billingsley [4],
Theorem 16.5). Thus, by (1), µ º2 λ.

Combining Theorem 2 in Rothschild and Stiglitz [18] with Theorems 2.6
and 2.8, we have the following result.

Corollary 2.9 If Assumption 2.1 is specialized by setting X = < and as-
suming O is compact, then ºI=º1=º2=º3, where ºI is given by: µ ºI

λ if and only if
∫
(−∞,y] dx [F (x, µ) − F (x, λ)] ≥ 0 for every y ∈ < and∫

O µ(dx)x =
∫
O λ(dx) x.

The compactness of O ensures that µ and λ have finite means.
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Aggregation and mean-preservation

We address two inter-related questions in this section.
First, what is the relationship between the comparative riskiness of

vector-outcome lotteries µ, λ ∈ ∆(O) and the comparative riskiness of real-
outcome lotteries µ ◦ v−1, λ ◦ v−1 ∈ ∆(v(O)) for v ∈ V? The answer to this
question will settle an issue raised in Section 1, namely: is it possible to
aggregate vector risks into scalar risks without loss of generality?

Second, given the resemblance between º3 and ºI , do the relations
comparing vector risks have a mean-preservation property analogous to that
of the Rothschild-Stiglitz relations comparing scalar risks?

The next result helps to address the first question.

Theorem 2.10 Given Assumption 2.1, consider µ, λ ∈ ∆(O).
(A) µ ◦ v−1 and λ ◦ v−1 have the same mean for every v ∈ V if and only

if µ º1 λ and λ º1 µ. This result also holds if º1 is replaced by º2 or º3.
(B) µ ◦ v−1 = λ ◦ v−1 for every v ∈ V if and only if µ º3 λ and λ º3 µ.

This result also holds if º3 is replaced by º1 or º2.

Proof. Fix µ, λ ∈ ∆(O).
(A) µ º1 λ and λ º1 µ if and only if

∫
v(O) µ◦v−1(dx) x =

∫
O µ(dx) v(x) =∫

O λ(dx) v(x) =
∫
v(O) λ ◦ v−1(dx) x for every v ∈ V. Theorems 2.6 and 2.8

imply the other cases.
(B) If µ ◦ v−1 = λ ◦ v−1 for every v ∈ V, then they have the same mean

for every v ∈ V. The result follows from (A).
Conversely, suppose µ º3 λ, λ º3 µ and v ∈ V. For every y ∈ <,

c(y) ≡ ∫
(−∞,y] dx [F (x, µ ◦ v−1) − F (x, λ ◦ v−1)] = 0. Therefore, Dc(y) = 0

for every y ∈ <. If y is a continuity point of F (., µ ◦ v−1) − F (., λ ◦ v−1),
then 0 = Dc(y) = F (y, µ ◦ v−1)− F (y, λ ◦ v−1) (Bartle [2], Theorem 31.8).
Consider y that is a discontinuity point of F (., µ ◦ v−1)− F (., λ ◦ v−1). The
set of such discontinuity points is countable (Billingsley [4], Theorem 10.2).
Consequently, there exists a sequence of continuity points (yn) ⊂ (y,∞)
converging to y. As F (yn, µ ◦ v−1) − F (yn, λ ◦ v−1) = 0 for every n and
distribution functions are right-continuous, we have F (y, µ ◦ v−1)−F (y, λ ◦
v−1) = 0. It follows that F (., µ ◦ v−1) = F (., λ ◦ v−1).

Let P = {(−∞, y] | y ∈ <}. P is a π-system (Billingsley [4], Page
41). Let L = {E ∈ B(<) | µ ◦ v−1(E) = λ ◦ v−1(E)}, where B(<) is the
Borel σ-algebra on <. L is a λ-system (Billingsley [4], Page 41). By the
above argument, P ⊂ L. By Dynkin’s theorem (Billingsley [4], Theorem
3.2), B(<) = σ(P) ⊂ L, i.e., µ ◦ v−1(E) = λ ◦ v−1(E) for every E ∈ B(<).
Theorems 2.6 and 2.8 imply the other cases.

So, the distributions µ◦v−1 and λ◦v−1 have the same mean for every v ∈
V, i.e., coordinate-wise mean-preservation holds, if and only if the riskiness
of µ and λ is indistinguishable. The following is a consequence of this result.
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Corollary 2.11 Given Assumption 2.1, consider µ, λ ∈ ∆(O). If, for every
v ∈ V, either µ ◦ v−1 ºI λ ◦ v−1 or λ ◦ v−1 ºI µ ◦ v−1, then µ º1 λ, λ º1 µ
and µ ◦ v−1 = λ ◦ v−1 for every v ∈ V.

Proof. Suppose µ and λ are as hypothesized. By the definition ofºI , we have∫
v(O) µ ◦ v−1(dx) x =

∫
v(O) λ ◦ v−1(dx) x for every v ∈ V. Theorem 2.10(A)

implies µ º1 λ and λ º1 µ. Theorem 2.10(B) implies µ ◦ v−1 = λ ◦ v−1 for
every v ∈ V.

Suppose µ and λ are lotteries with vector outcomes and v0 ∈ V is an
aggregator function. The aggregation question is whether there is a rela-
tionship between the comparability of riskiness of µ and λ on the one hand
and of µ ◦ v−1

0 and λ ◦ v−1
0 on the other hand?

Clearly, if µ ◦ v−1
0 ºI λ ◦ v−1

0 or λ ◦ v−1
0 ºI µ ◦ v−1

0 , then no unambiguous
conclusion can be drawn regarding the comparative riskiness of µ and λ.
Conversely, if µ º1 λ and ¬λ º1 µ, then Corollary 2.11 implies the existence
of some v ∈ V such that ¬µ◦v−1 ºI λ◦v−1 and ¬λ◦v−1 ºI µ◦v−1, i.e., the
riskiness of the real-outcome lotteries µ ◦ v−1 and λ ◦ v−1 is not comparable.
As there is no a priori guarantee that v 6= v0, nothing definite can be
concluded about the comparative riskiness of the real-outcome lotteries µ ◦
v−1
0 and λ◦v−1

0 and any assumption in this respect entails loss of generality.
Thus, comparability of the riskiness of the aggregate real-outcome lotteries
µ ◦ v−1

0 and λ ◦ v−1
0 is neither necessary nor sufficient for the comparability

of the riskiness of the vector-outcome lotteries µ and λ. In other words, one
cannot finesse the comparative vector risk problem via aggregation without
loss of generality.

Now consider our second question regarding mean-preservation. Given
µ, λ ∈ ∆(O), Theorem 2.10 asserts that coordinate-wise mean-preservation
holds if and only if µ and λ are indistinguishable in terms of their riskiness.
In order to consider another form of mean-preservation that holds more
generally, we require X to be a topological vector space. Let X∗ be the
topological dual of X, i.e., the set of all continuous linear functionals h : X →
<. Then, the weak mean mµ ∈ X of µ ∈ ∆(O) is defined to be the Pettis
integral (see Pettis [15]), i.e., mµ solves the equation h(mµ) =

∫
O µ(dx) h(x)

for every h ∈ X∗.5 We now state conditions that ensure the existence and
uniqueness of mµ.

Lemma 2.12 Given Assumption 2.1, if X is a locally convex topological
vector space, O is compact and metrizable, and µ ∈ ∆(O), then mµ exists,
is unique and mµ ∈ O.

Finally, we show that weak mean-preservation is generally necessary for
the comparability of riskiness of lotteries with vector outcomes.

5For special classes of vector spaces, this notion coincides with other standard integrals
of vector-valued functions such as the Bochner integral. In the case of <n-valued functions,
the Pettis integral is nothing but the familiar coordinate-by-coordinate integral.
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Theorem 2.13 Given Assumption 2.1, if X is a locally convex topological
vector space, O is compact and metrizable, and µ º1 λ (resp. µ º2 λ,
µ º3 λ) for µ, λ ∈ ∆(O), then mµ = mλ and mµ ∈ O.

Proof. For every h ∈ X∗, the restrictions of h and −h to O belong to
V. So, µ º1 λ implies

∫
O µ(dx) h(x) =

∫
O λ(dx) h(x) for every h ∈ X∗.

By Lemma 2.12, there exists a unique vector mµ ∈ O such that h(mµ) =∫
O µ(dx)h(x) for every h ∈ X∗ and a unique vector mλ ∈ O such that

h(mλ) =
∫
O λ(dx) h(x) for every h ∈ X∗. Thus, h(mµ) =

∫
O µ(dx) h(x) =∫

O λ(dx)h(x) = h(mλ) for every h ∈ X∗. Consequently, h(mµ − mλ) =
h(mµ)−h(mλ) = 0 for every h ∈ X∗. Local convexity of X implies mµ = mλ

(Dunford and Schwartz [7], Corollary V.2.13). Theorems 2.6 and 2.8 imply
the other cases.

3 Applications

In applications with random vector outcomes, one might attempt to finesse
the problem of modeling comparative vector riskiness by aggregating vector
outcomes into real outcomes and using the real outcomes theory to model the
comparative riskiness of the aggregate outcomes. This tack is problematic
for the following reasons.

First, at the conceptual level, an economically meaningful and fully ade-
quate aggregator might not exist. For instance, consider the social planner’s
public good provision problem studied below. Any reduction of vector out-
comes in this problem to scalar outcomes would involve a representative
agent and a composite good, thereby suppressing substantive features of
the stated problem, e.g., the manner in which an agent aggregates alloca-
tion vectors into utilities and the manner in which the planner aggregates
individual utilities and allocations into a social utility.

Second, at the formal level, it is evident from Theorem 2.10 and Corol-
lary 2.11 that the comparability of vector risks cannot be transformed into
the comparability of aggregated scalar risks without loss of generality be-
cause the former does not imply the latter and vice versa.

Third, given the wide range of economic applications we study in this
section, aggregation may simply be unnecessary because the vector outcomes
theory appears to be as tractable as the real outcomes theory.

The common element of all the applications we study in this section is
Theorem 3.1, which uses the results of Section 2 to generalize the analo-
gous comparative statics result in Diamond and Stiglitz [5] from the real
to the vector outcomes case. This result predicts the direction of variation
in a decision-maker’s optimal behavior in a situation with random vector
outcomes when the riskiness of the outcomes varies.

Let X and O be as in Section 2 and let v ∈ V with v0 < v1. Consider a
family of lotteries {µ(r) ∈ ∆(O) | r ∈ <} where riskiness increasing with r ∈
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[0, 1], i.e., r1, r2 ∈ [0, 1] and r2 > r1 implies µ(r2) º3 µ(r1). Let H : <2 → <
and h : <2 → <+ be such that F (x, µ(r)◦v−1) = H(x, r) =

∫
(−∞,x] dy h(y, r)

for (x, r) ∈ <2, i.e., H(., r) and h(., r) are the distribution function and
density function, respectively, corresponding to lottery µ(r)◦v−1 ∈ ∆(v(O)).

Let C = [a, b] ⊂ <, with a < b, be the decision-maker’s choice space
and let u : <2 → < be the decision-maker’s utility function. If x ∈ O
is the random outcome and the decision-maker chooses c ∈ C, then the
resulting utility is u(v(x), c). Formally define U : <2 → < by U(r, c) =∫
O µ(r)(dx) u(v(x), c). If µ(r) is the lottery generating the random outcome

and the decision-maker chooses c ∈ C, then U(r, c) is the expected utility.

Theorem 3.1 Suppose X, O, v, {µ(r) ∈ ∆(O) | r ∈ <}, H, h, C, u and
U are as given above. If

(a) H is C1, H(v0, .) = 0 and h is C2,
(b) u is C2; D22u < 0 on v(O)× (a, b); D21u(., c) is C1 for every c ∈ C;

and D1u(v1, .) = 0, and
(c) c : [0, 1] → (a, b) satisfies U(r, c(r)) ≥ U(r, c) for every (r, c) ∈

[0, 1]× C,
then c is differentiable and D211u ≥ 0 (resp. ≤ 0) implies Dc ≥ 0 (resp.

≤ 0).

Proof. Define φ : < × <2 → < by φ(x, (r, c)) = h(x, r)u(x, c). Using Theo-
rem XIII.7.1 in Lang [11], as h and u are C2, so is φ. As v(O) is bounded,
φ(., (r, c)) is bounded on v(O). Consequently,

∫
v(O) dxφ(x, (r, c)) exists and

U(r, c) =
∫
v(O) dxφ(x, (r, c)). As φ and D2φ = (uD2h, hD2u) : <×<2 → <2

are continuous, Theorem XIII.8.1 in Lang [11] implies that U is differen-
tiable and DU(r, c) =

∫
v(O) dxD2φ(x, (r, c)). Analogous arguments applied

to the component functions of DU imply that DU is differentiable and
D2U(r, c) =

∫
v(O) dxD22φ(x, (r, c)), i.e., U is twice differentiable. Since

D22φ is continuous on the compact set v(O) × [0, 1] × C, it is bounded on
this set. Consequently, D2U is continuous on [0, 1]×C (Lang [11], Exercise
VI.10.13). Therefore, U is C2 on [0, 1]× C.

Define Φ : v(O) × < → < by Φ(x, r) =
∫
[v0,x] dy H(y, r); note that

Φ(x, r) =
∫
(−∞,x] dy H(y, r) as H(y, .) = 0 for y ≤ v0. Using Assumption (a)

and Theorem XIII.8.1 in Lang [11], Φ(x, .) is differentiable and D2Φ(x, .) =∫
[v0,x] dy D2H(y, .) for every x ∈ v(O). As r1, r2 ∈ [0, 1] and r2 > r1 implies

µ(r2) º3 µ(r1), Φ(x, .) is increasing on [0, 1] for every x ∈ v(O). Thus,
D2Φ ≥ 0 on v(O)× [0, 1].

Consider r ∈ [0, 1]. As U is C2 on [0, 1]×C, Assumptions (b) and (c) im-
ply D2U(r, c(r)) = 0 and D22U(r, c(r)) =

∫
v(O) dxh(x, r)D22u(x, c(r)) < 0.

As D2U is C1, the implicit function theorem implies that c is C1 in a neighbor-
hood of r and the chain rule yields D21U(r, c(r)) + D22U(r, c(r))Dc(r) = 0.
As D22U(r, c(r)) < 0, Dc(r) and D21U(r, c(r)) have the same sign.
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Consider (r, c) ∈ [0, 1]×C. Then, D2U(r, c) =
∫
v(O) dxh(x, r)D2u(x, c) =

D2u(v1, c) −
∫
v(O) dxD21u(x, c)H(x, r). It follows from Assumptions (a)

and (b), and Theorem XIII.8.1 in Lang [11], that
∫
v(O) dxD21u(x, c)H(x, .)

is differentiable and its derivative is
∫
v(O) dxD21u(x, c)D2H(x, .). Thus,

D21U(r, c) = − ∫
v(O) dxD21u(x, c)D2H(x, r). As Assumption (b) implies

D21u(v1, .) = D12u(v1, .) = 0, integrating by parts yields

D21U(r, c) =
∫

v(O)
dxD211u(x, c)

∫

[v0,x]
dy D2H(y, r)

=
∫

v(O)
dxD211u(x, c)D2Φ(x, r)

As D2Φ ≥ 0 on v(O)×[0, 1], D211u ≥ 0 (resp. ≤ 0) implies D21U(r, c(r)) ≥ 0
(resp. ≤ 0), and consequently, Dc(r) ≥ 0 (resp. ≤ 0).

While the above argument requires u to be C2, we note that in the
following special case this requirement can be relaxed somewhat.

Remark 3.2 Suppose D2U(r, c) =
∫
v(O) dx h(x, r)f(x) − De(c) for func-

tions f and e such that f is C2 and e is twice differentiable, with D2f ≤ 0
and D2e > 0. In order to simplify notation, set α(r) ≡ ∫

v(O) dxh(x, r)f(x)
and β(c) ≡ De(c). It is straightforward to check that D2U is differentiable.
Moreover, β has a function inverse β−1 and elementary arguments show
that β−1 is differentiable, with Dβ−1 = [Dβ]−1 = −[D22U ]−1. Conse-
quently, the first order condition D2U(r, c(r)) = 0 implies c(r) = β−1 ◦
α(r) and Dc(r) = Dβ−1(α(r))Dα(r) = −D21U(r, c(r))[D22U(r, c(r))]−1, as
in the proof of Theorem 3.1. Note that D22U(r, c) = −D2e(c) < 0 and
D21U(r, c) =

∫
v(O) dxD2h(x, r)f(x). Copying the arguments in the proof of

Theorem 3.1, D21U(r, c) =
∫
v(O) dxD2f(x)D2Φ(x, r) ≤ 0. Thus, Dc(r) ≤ 0.

Thus, if D2U is additively separable as in this case, then the formula for
Dc(r) is valid even if e is twice differentiable without being C2.

For some u, the smoothness requirements can be substantially relaxed.

Remark 3.3 In special cases, such as the application involving utility regu-
lation, the problem allows approximation of a non-differentiable u by smooth
functions. As we show below, in such cases, it may be possible to analyze
the approximate problems and take limits to solve the original problem.

Each of the following applications provides an economic interpretation
of the formalism used in Theorem 3.1. We avoid needless repetition of
hypotheses by stating a portmanteau convention: In every application, each
hypothesis underlying Theorem 3.1 will hold. A given hypothesis will be
either an explicit consequence of the relevant economic model, or if the
model is silent with regard to that hypothesis, then it is assumed to hold
implicitly at the level of generality of Theorem 3.1. Assumptions in addition
to those of Theorem 3.1 will be stated explicitly.
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Sealed bid auctions with valuation risk

Consider the problem of bidding in a sealed bid auction when the bidder’s
valuation is determined by a vector-valued random variable whose outcome
is unknown at the time of bidding.6 In the cases of first-price and second-
price auctions, we show that greater riskiness of the value-determining vector
of variables leads to a lower bid.

We study the bidding strategy of bidder n+1 (henceforth, “the buyer”)
in an auction of a single indivisible prize with n + 1 bidders. All bidders
simultaneously submit sealed bids. If (y1, . . . , yn) is the profile of bids by
the other bidders, then the buyer wins the prize by bidding b if and only if
y∗ ≡ max{y1, . . . , yn} ≤ b; for simplicity, we break ties in favor of the buyer.
If the buyer wins, then he pays b in a first-price auction and y∗ in a second
price auction; otherwise, the buyer pays nothing in both auctions.

A random outcome x ∈ O may be a vector of opinions of appraisers
and future buyers regarding the value of the prize. If the prize is a mining
or oil exploration concession, a plot of land, a patent, or a financial asset
(e.g., stock of a firm being privatized or taken over), x may be a vector of
future revenues or prices that affects the current valuation of the prize. If
the future evolution of the relevant variable is modeled by a random process,
then x would be interpreted as a sample path of the process.

Suppose v ∈ V is the statistic that aggregates the random vector x into
the external valuation of the prize v(x). Let µ(r) ∈ ∆(O), r ∈ [0, 1], be
the buyer’s belief about x. Let f : v(O) → <+ determine the buyer’s value
of the prize as a function of the external valuation. Assume that f is C2,
increasing and concave, with Df(v1) = 0. Let e(c) be the minimum expected
payment by the buyer for ensuring the winning probability c ∈ C = [0, 1].
Define u : v(O) × C → < by u(v, c) = f(v)c − e(c), which is the buyer’s
expected surplus when he chooses the winning probability c and the external
valuation is v. The buyer chooses c ∈ C to maximize

∫
O µ(r)(dx) u(v(x), c).

We use “winning probability c” as shorthand for “probability of winning
that is at least c”; this is sensible because f(v) ≥ 0 implies that, given an
expected payment e, the buyer’s payoff is increasing in c. While f is given
exogenously, e is derived from the data as follows.

Since we are studying the buyer’s decision problem, we take as given
the distribution function G of y∗. For simplicity, let suppG = [0, 1]. Given
either auction form, if the buyer bids b, then he wins with probability G(b).7

6This set-up is inspired by the general model of Milgrom and Weber [12].
7A Bayesian game model of the auction generates G as follows. Let Q ∈ ∆(O) be the

common prior belief of the bidders. Let σi : O → Ti generate bidder i’s private signal
and let si : Ti → <+ be bidder i’s bidding strategy. So, the maximum bid by the other
bidders is generated by the random variable x 7→ max{si ◦ σi(x) | i = 1, . . . , n}. G is the
distribution function of this random variable. Given this set-up, µ(r) is to be interpreted
as the buyer’s posterior belief conditional on his signal σn+1(x).
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Define b : C → < by

b(c) =
{

0, if c = 0
inf G−1([c, 1]), if c ∈ (0, 1]

Consider c ∈ (0, 1]. G−1([c, 1]) is bounded below by 0. As G is right-
continuous, G−1([c, 1]) is closed in <. Therefore, b(c) ∈ G−1([c, 1]), i.e.,
G(b(c)) ≥ c. If b < b(c), then G(b) < c. Thus, b(c) is the lowest bid by
the buyer that yields the winning probability c. It is easy to verify that b is
nonnegative, increasing and bounded.

Consider α ∈ <. If c ∈ b−1((α,∞)), then c ∈ C and G(α) < c by the
definition of b. Conversely, suppose c ∈ C and G(α) < c. As G(b(c)) ≥ c,
we have G(α) < G(b(c)). As G is increasing, α < b(c). Thus, b−1((α,∞)) =
(G(α),∞) ∩ C. As this holds for every α ∈ <, b is left-continuous.

It is evident from inspection that a jump in the graph of b (resp. G)
corresponds to a flat portion of the graph of G (resp. b). More precisely, G
and b are dual in the following sense:

Lemma 3.4 If G and b are as defined above, then b (resp. G) is continuous
if and only if G (resp. b) is strictly increasing on [0, 1].

Define g : C → < by

g(c) =

{
b(c)G(b(c)), for the first-price auction∫
[0,b(c)] y

∗dG(y∗), for the second price auction

In both cases, g(c) is the buyer’s expected payment if he bids efficiently to
ensure the winning probability c. Clearly, g is nonnegative and bounded.
As g is increasing, it is Borel measurable. Therefore, it is integrable. How-
ever, in general, g is not continuous and not a convex function. Therefore,
given g, an optimal winning probability will generally be generated as the
expectation of a random choice of winning probabilities. This possibility is
formalized as follows.

For this application, let ∆(C) denote the set of finitely additive lotteries
on (C, C), where C is the Borel σ-algebra on C.8 Define L : ∆(C) → < by
L(λ) =

∫
C λ(dx) g(x). If the buyer chooses his winning probability randomly

using λ ∈ ∆(C), then his expected payment is L(λ). Given c ∈ C, ∆(C, c) =
{λ ∈ ∆(C) | ∫

C λ(dx) x ≥ c} is the set of probability measures on C that
yield an expected winning probability greater than c. For c ∈ C, let

e(c) = inf{L(λ) | λ ∈ ∆(C, c)}
As g is nonnegative, e(c) ≥ 0. If c1, c2 ∈ [0, 1] and c1 ≥ c2, then ∆(C, c1) ⊂
∆(C, c2); consequently, e is increasing. In order to show that e(.) is real-
valued and convex, we use the following result.

8The motivation for this expansion is Lemma 3.5. The more commonly used weak∗

topology would yield the same consequences with countably additive lotteries if g is con-
tinuous; unfortunately it is not generally so.
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Lemma 3.5 If ∆(C) is given the B(C, C) topology, then L is continuous,
∆(C, c) is compact, and for every c ∈ C, there exists λ ∈ ∆(C, c) such that
e(c) = L(λ).

Thus, e(.) defines a function e : C → <. Consider c1, c2 ∈ C, t ∈ [0, 1]
and c = tc1 + (1− t)c2. By Lemma 3.5, there exists λ1 ∈ ∆(C, c1) and λ2 ∈
∆(C, c2) such that e(c1) = L(λ1) and e(c2) = L(λ2). Set λ = tλ1 +(1− t)λ2.
Since

∫
C λ(dx) x = t

∫
C λ1(dx) x + (1 − t)

∫
C λ2(dx) x ≥ tc1 + (1 − t)c2 = c,

we have λ ∈ ∆(C, c). It follows that e(c) ≤ L(λ) = tL(λ1) + (1− t)L(λ2) =
te(c1) + (1 − t)e(c2). Thus, e is a convex function. This implies that e is
continuous, indeed locally Lipschitz, on (0, 1). Moreover, the Busemann-
Feller-Alexandrov theorem implies that e is twice differentiable Lebesgue
almost everywhere.

We now apply Theorem 3.1 to the buyer’s problem. In addition to the
portmanteau convention, suppose f is C2 and e is twice differentiable, with
D2f ≤ 0 and D2e > 0; clearly, the regularity requirements on e are some-
what more than what can be deduced from the economic model itself. Then,
D2U(r, c) =

∫
v(O) dxh(x, r)f(x)−De(c) and the requirements of Remark 3.2

are satisfied. It follows that Dc(r) ≤ 0, i.e., greater riskiness of his valuation
will induce the buyer to bid more conservatively.

Size of regulated utility

Consider a firm that supplies electricity to a grid and is required by the reg-
ulator to match the random demand flow over the period T = [0, 1]. Failure
to do so attracts a penalty. While the firm bears the fixed cost (e.g., capac-
ity outlays), the firm’s revenue from the sale of electricity and its variable
cost (e.g., fuel) are monitored and fully internalized by the regulator via re-
imbursement of the net amount. In addition, the firm receives a lump-sum
return for its participation in this arrangement. The firm chooses capacity
to minimize the sum of the fixed cost and the expected penalty. We show
that the chosen capacity is an increasing function of the riskiness of the
demand process.

We formalize the firm’s problem as follows. Let X = C(T,<), which is
given the compact-open topology. As T is compact, this topology coincides
with the topology of uniform convergence generated by the supremum norm
(Dugundji [6], Theorem XII.8.2). Let O be a convex subset of C(T, [0, γ]) ⊂
X for some γ > 0, such that x ≡ 0 ∈ O. The firm’s demand flow is generated
by the random process δ : O × T → < where δ(x, t) = x(t) is the demand
at time t generated by the sample path x. Applying Theorem XII.2.4 in
Dugundji [6], δ is continuous. Let µ(r) ∈ ∆(O) be the firm’s belief about
the demand trajectory, with the interpretation that the perceived riskiness
of the demand path increases with parameter r ∈ [0, 1].
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Given a demand trajectory x ∈ O, let w(x) = supx(T ) be the largest in-
stantaneous demand over T . Clearly, w : O → [0, γ] is convex and bounded.
For every α ∈ <, w−1((α,∞)) = ∪t∈T {x ∈ O | x(t) > α} = ∪t∈T {x ∈ O |
δ(x, t) > α} = ∪t∈T δ(., t)−1((α,∞)) is open in O as δ is continuous. Thus,
w is lower semicontinuous.9 Therefore, w is Borel measurable.

Suppose the firm has to pay a penalty based on the largest deficit over T .
Let C = [a, b] be the set of capacity choices, with 0 < a < b and a < γ. Given
a demand trajectory x ∈ O and capacity c ∈ C, the largest deficit over T is
supt∈T max{x(t)− c, 0} = max{supx(T )− c, 0} = max{w(x)− c, 0} ∈ [0, γ]
and the resulting penalty is P (max{w(x) − c, 0}). Let S(c) be the cost of
setting-up capacity c ∈ C. We assume that S is C3, with D2S > 0, and
the penalty function P : [−b, γ] → < is C3, with P (x) = 0 for x ≤ 0 and
DP,D2P,D3P ≥ 0. While excess supply is not rewarded, penalties increase
in severity with the maximum supply shortfall.

Suppose, given r ∈ [0, 1], capacity c = c(r) ∈ (a, b) minimizes over C
the firm’s decision criterion, namely, the expected penalty plus the capacity
building cost:

∫
O µ(r)(dx) P (max{w(x) − c, 0}) + S(c). We show that, if

r1, r2 ∈ [0, 1] and r1 > r2, then c(r1) ≥ c(r2), i.e., greater riskiness of the
demand trajectory induces the firm to choose a larger capacity.

We begin by transforming the firm’s problem to the format of the prob-
lem in Theorem 3.1. It follows from the properties of w that v = −w ∈ V
and v(O) ⊂ [−γ, 0]. Define g : [−b, γ] → [−b, 0] by g(x) = min{x, 0}. Then,
for r ∈ [0, 1], c = c(r) ∈ (a, b) maximizes

U(r, c) =
∫

O
µ(r)(dx) u(v(x), c)

over C, where u : [−γ, 0] × C → < is given by u(v, c) = −S(c) − P ◦ (I −
g)(−v − c) and I is the identity mapping. Although this problem formally
resembles the problem of Theorem 3.1, we cannot use this theorem to analyze
c(.) directly as u is not sufficiently regular. Before plunging into the details
of our indirect method of analyzing c(.), we outline the broad steps.

First, we uniformly approximate g by a sequence (gn) of smooth func-
tions. Each gn generates a uniform approximation un of u, which generates
an approximate version of the firm’s problem and a solution c(.; n) of this
approximate problem.

Second, applying Theorem 3.1, we find that Dc(r;n) ≥ 0 for all r ∈ [0, 1]
and n ∈ N . So, for r1 > r2, we have c(r1; n) ≥ c(r2; n) for every n ∈ N .

Finally, we generate cluster points c∗(r1) and c∗(r2) of the sequences
(c(r1; n)) and (c(r2; n)) respectively, and show that c(r1) = c∗(r1) ≥ c∗(r2) =
c(r2), thus answering our basic question.

We now implement this plan.
Step 1. Fix N ∈ N such that 2/N < a and consider n ≥ N . Lemma 2.5

implies that there exists a concave, increasing C∞ function gn : [−b, γ] →
9In this non-Euclidean setting, convexity of w is not a sufficient condition for continuity.
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[−b, 0] such that sup{|gn(x) − g(x)| | x ∈ [−b, γ]} ≤ 1/n, gn ≥ g on [−b, γ],
Dgn = 1 on [−b,−2/n], Dgn ∈ (0, 1) on (−2/n, 0) and gn = Dgn = 0 on
[0, γ]. Set g1 = . . . = gN−1 = gN . Given n ∈ N , define un : [−γ, 0]×C → <
by un(v, c) = −S(c)− P ◦ (I − gn)(−v − c). Clearly, un is C3.

Lemma 3.6 The sequence (un) converges uniformly to u.

Let c = c(r; n) ∈ (a, b) solve the approximate problem of maximizing

U(r, c; n) =
∫

O
µ(r)(dx) un(v(x), c)

Step 2. We now analyze c(.; n). The portmanteau convention and the
above structural model ensure that the conditions of Theorem 3.1 are met
by the approximate version of the firm’s problem.

Consider n ≥ N . It is easily confirmed that D22un < 0. As 2/n < a
and Dgn(x) = 1 for every x ∈ [−b,−2/n], we have Dgn(x) = 1 for every
x ∈ [−b,−a]. Since 0 ∈ O, v1 = sup v(O) = 0. Consequently, for every
c ∈ C, D1un(v1, c) = D1un(0, c) = DP ((I − gn)(−c))[1 − Dgn(−c)] = 0.
It is straightforward to calculate that D211un = −DPD3gn − 3D2P (1 −
Dgn)D2gn + (1 − Dgn)3D3P , where the derivatives of P are evaluated at
(I−gn)(w−c) and the derivatives of gn are evaluated at w−c. If w−c < 0,
then (I − gn)(w − c) = w − c − gn(w − c) < w − c − min{w − c, 0} = 0.
Consequently, DP ◦ (I − gn)(w − c) = 0 as P (x) = 0 for x ≤ 0. On the
other hand, if w − c ≥ 0, then D3gn(w − c) = 0 as gn(x) = 0 for x ≥ 0.
Given our hypotheses regarding P and the facts that gn is concave and
Dgn ≤ 1, we have D211un = −3D2P (1−Dgn)D2gn + (1−Dgn)3D3P ≥ 0.
By Theorem 3.1, Dc(r;n) ≥ 0 for n ≥ N .

So, for n ≥ N and r1, r2 ∈ < with r1 > r2, we have c(r1; n) ≥ c(r2; n).
Step 3. As C is compact, the Bolzano-Weierstrass property implies the

existence of a subsequence (c(r1, k))k∈N of (c(r1, n))n∈N , converging to some
c∗(r1) ∈ C. For the same reason, there exists a subsequence (c(r2, j))j∈N
of (c(r2, k))k∈N , converging to some c∗(r2) ∈ C. Since every subsequence
of a convergent sequence converges to the limit point of the sequence, the
subsequence (c(r1, j))j∈N of (c(r1, k))k∈N also converges to c∗(r1).

By Step 2, c(r1; j) ≥ c(r2; j) for all but a finite set of j ∈ N . Taking
limits as j ↑ ∞, we have c∗(r1) ≥ c∗(r2).

Lemma 3.7 For r ∈ {r1, r2}, c∗(r) maximizes U(r, .) over C.

As U(r, .) is strictly concave, its maximum over C is unique. Therefore,
Lemma 3.7 implies c(r1) = c∗(r1) ≥ c∗(r2) = c(r2), as claimed.
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Allocation of a public good

In this application we study the planner’s problem of using a given resource
to provide public goods for two periods, say 1 and 2. These goods are
assumed to be excludable across periods but non-excludable and non-rival
within a period. Alternatively, jurisdictions may be defined by a character-
istic other than time, say by location or some socio-economic criterion.

Let I be a finite set of agents. An agent’s allocation in a period consists of
the public good provided by the planner in that period and a vector of other
goods, which may be private or public. The planner’s resource constraint
is modeled by interpreting φ(c) as the maximum amount of public good
that the planner can provide in period 1 if c is to be supplied in period
2. While the allocation of other goods in period 1 is known to the planner,
the allocation of other goods in period 2 depends on a vector-valued random
variable. We consider various specifications of this scenario and analyze how
the provision of the planner’s public good varies with the riskiness of the
random outcome in period 2.

Example 3.8 Let agent i’s period 2 allocation (xi, c) ∈ <n
+×<+ consist of

the planner’s public good c and a vector xi of private goods. Agent i’s utility
from this allocation is gi(fi(xi), c), where fi : <n

+ → < is continuous and
concave. Suppose the allocation of private goods in period 2 is random. This
is formalized by setting X = (<n)|I| and O ⊂ (<n

+)|I|. Given x = (xi)i∈I ∈
O, let v(x) = min{fi(xi) | i ∈ I}. The public good c in period 2 is chosen
by the planner from C ⊂ <+. Given an allocation (z, c) ∈ O × C in some
period, let the social welfare in that period be w(v(z), c). If y ∈ O is the
known allocation of private goods in period 1, then the aggregate two-period
social welfare is w(v(y), φ(c)) + w(v(x), c). Since y is known and plays no
role in the analysis, we suppress it and interpret ψ(c) = −w(v(y), φ(c)) as
the social cost of supplying c in period 2. So, the planner’s objective function
is u(v(x), c) = w(v(x), c)− ψ(c), given c and the random allocation x.

In this example, v generates the value of a private goods allocation using
the Rawlsian criterion. Given the product topology on (<n

+)|I|, the i-th
projection mapping πi : (<n

+)|I| → <n
+ is continuous. Consequently, fi ◦πi is

continuous. Thus, v is continuous (Berge [3], Theorems IV.8.3 and IV.8.4).

Example 3.9 Suppose the aggregate endowment of private goods in period
2 is random. Once the random endowment is realized, the planner chooses
its allocation. Accordingly, let X = <n and O ⊂ <n

+. Given an endowment
of private goods x ∈ O, the set of possible allocations is S(x) = {(xi)i∈I ∈
(<n

+)I | ∑
i∈I xi = x}. Set v(x) = sup{min{fi(xi) | i ∈ I} | (xi)i∈I ∈ S(x)}

and define w, φ, ψ and u as in Example 3.8.

In this example, v generates the value of a social endowment of private
goods from the optimal allocation of that endowment using the Rawlsian
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criterion. We have shown above that the mapping (xi)i∈I 7→ min{fi(xi) |
i ∈ I} is continuous. It is easily shown that the set-valued mapping S is
continuous. Therefore, v is continuous (Berge [3], Theorem VI.3).

In the next example, private goods are excluded for the sake of simplicity
as we consider various situations in which agent i’s allocation (x, c) ∈ <n

+ ×
<+ consists only of the planner’s public good c and a vector x of other public
goods. Unlike in Examples 3.8 and 3.9, fi is now interpreted as agent i’s
utility over the other public goods.

Example 3.10 Suppose the allocation of other public goods is random. Ac-
cordingly, let X = <n, O ⊂ <n

+ and ∆ = {λ ∈ <|I|+ | ∑
i∈I λi = 1}.

Given an allocation of other public goods x ∈ O, define v : O → < by
any of the following formulae: (a) v(x) =

∑
i∈I λifi(x) for some λ ∈ ∆, (b)

v(x) = sup{∑i∈I λifi(x) | λ ∈ ∆}, (c) v(x) = min{λifi(x) | i ∈ I} for some
λ ∈ ∆, or (d) v(x) = sup{min{λifi(x) | i ∈ I} | λ ∈ ∆}. Define w, φ, ψ
and u as in Example 3.8.

In case (a) (resp. (c)), v generates the value of an allocation of public
goods using the weighted Benthamite (resp. Rawlsian) criterion. In case
(b) (resp. (d)), v generates the value of an allocation of public goods using
the valuation of agents who value it the most (resp. least). Continuity of
v in case (a) follows from Theorem IV.8.5 in Berge [3]. Continuity of v in
case (c) follows from Theorems IV.8.3 and IV.8.4 in Berge [3]. Continuity
of v in cases (b) and (d) follows from Theorem VI.3 in Berge [3].

In all the above examples, the concavity of v follows from Theorem
5.8 in Rockafellar [17]. In every case, the continuity of v implies its Borel
measurability. Assume that O is compact and convex. Then, v is bounded in
every case. Consequently, v ∈ V in each case. In addition to the portmanteau
convention, suppose w and φ are C2, D2w > 0, D2φ < 0, D22w < 0,
D1w(v1, .) = 0 and D21w(., c) is C1 for every c ∈ C. Then, u satisfies the
requirements of Theorem 3.1.

If D211w ≥ 0, then Theorem 3.1 implies that, in all the above examples,
the planner’s optimal response to an increase in riskiness of the random
outcome x ∈ O is to increase the second period public good allocation c.

Portfolio choice

This application extends the analysis of the static portfolio problem from
the scalar risk (e.g., in Rothschild and Stiglitz [19]) to the vector risk case.

Consider an investor who has to choose a portfolio of two financial assets,
a stock and a bond. The returns per share and per bond are defined over
the time horizon T ⊂ <+; e.g., T = N or T = <+. The dividend per share
fluctuates randomly over T . Suppose the random process generating the
stock dividends has sample paths that belong to O ⊂ X, where X is a space
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of functions defined on T . Suppose O and X are as in Section 2; see Dunford
and Schwartz [7] for numerous examples of appropriate function spaces X.
Let d : O × T → < generate the dividends per share, with d(x, t) ≡ x(t) as
the dividend at time t ∈ T , contingent on sample path x ∈ O. Consider
a family of stock dividend processes represented by an indexed family of
probability measures {µ(r) ∈ ∆(O) | r ∈ <}, such that the riskiness of these
measures increases with r. Unlike the stock, the stream of returns per bond,
say y ∈ O, is known when the portfolio is chosen.

Consider v ∈ V and a function f : v(O) → <. If the stream of returns
from a unit of an asset is x ∈ O, then the investor’s valuation of that unit
is v(x) and the resulting utility is f ◦ v(x). We assume that f is C2, with
Df > 0, D2f < 0 and Df(v1) = 0.

Provided T and O are appropriately specified, linear examples of v in-
clude the projection mapping v(x) = x(τ) for τ ∈ T and the discounted
sum-of-returns functionals v(x) =

∫
T dt e−δtx(t) and v(x) =

∑
t∈T δtx(t).

Non-linear examples include the supremum and infimum mappings v(x) =
− supx(T ) and v(x) = inf x(T ), the norm mapping v(x) = −‖x‖ where ‖.‖ is
a norm on X and discounted non-linear functionals v(x) =

∫
T dt e−δtψ ◦x(t)

and v(x) =
∑

t∈T δtψ ◦ x(t) where ψ is concave and continuous.
Normalize the share price to unity and suppose the investor has no initial

wealth. Consequently, the investor’s portfolio (c,Q(c)) satisfies the identity
c+Q(c)P (c) = 0, where c ∈ C = [0, 1] is the share holding, Q(c) is the bond
holding and P (c) is the bond price. As the available stock is normalized to
1, c may be interpreted as a proportion of the available stock. In order to
study the investor’s choice of c, we need to know the behavior of Q : C → <
and P : C → < separately because bond returns are specified per bond in
Q(c) rather than per dollar in Q(c)P (c). We do this as follows.

For some P0, P1 > 0 with P0 < P1, let G : (P0, P1) → < be a C2 function
such that G > 0, DG < 0, D2G < 0, G(P0) + P0DG(P0) < 0, and for
every c ∈ C, there exists p ∈ (P0, P1) such that c = G(p)p. We interpret
G(p) as the demand for bonds when the investor announces a bond price
p. Then, there exists a unique C2 function P : C → (P0, P1) such that
c = G(P (c))P (c) for every c ∈ C. It is easily verified that P > 0, DP < 0
and D2P < 0. Moreover, DP (c) < 0 < P (c)/c for every c ∈ C. Since
Q(c) = −c/P (c), it is easily verified that Q is C2, Q < 0, DQ < 0 and
D2Q < 0. Q < 0 means that the investor sells bonds in order to finance his
stock holding.

Define u : v(O) × C → < by u(v, c) = cf(v) + Q(c)α, where α > 0.
Suppose x ∈ O is the stream of dividends per share, y ∈ O is the stream of
returns per bond and α ≡ f ◦ v(y) > 0. Then, the investor’s utility from
portfolio (c,Q(c)) is cf ◦v(x)+Q(c)f ◦v(y) = cf ◦v(x)+Q(c)α = u(v(x), c).
We have already assumed that X, O, v and C are as per the requirements of
Theorem 3.1. Suppose {µ(r) ∈ ∆(O) | r ∈ <}, H, h and c(.) also satisfy the
requirements of this theorem. Since D211u = D2f < 0, Theorem 3.1 implies
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that Dc(r) ≤ 0, i.e., an increase in the riskiness of the stock dividend process
implies a smaller stock holding in the portfolio.

Multi-party moral hazard

Consider a decision-maker who might suffer a loss a > 0 on account of
a transmittable disease. The probability of loss is Q(v(x), c), where c ∈
C = [a, b] is the care taken by the decision-maker, x = (x1, . . . , xn) is
the profile of care taken by other persons and v(x) = min{x1, . . . , xn} is
the effective care exercised by them. Suppose care c implies cost c to
the decision-maker. Thus, the decision-maker selects c ∈ C to minimize
c + a

∫
O µ(r)(dx) Q(v(x), c), where µ(r) is the decision-maker’s belief about

the care levels chosen by other persons. Equivalently, c is chosen to maxi-
mize

∫
O µ(r)(dx) u(v(x), c), where u(v, c) = −c− aQ(v, c).

Suppose Q : v(O) × C → [0, 1] is C2 and decreasing, D22Q > 0 on
v(O) × (a, b), D21Q(., c) is C1 for every c ∈ C and D1Q(v1, .) = 0. Set
X = <n and let O ⊂ X be convex and compact. If c : [0, 1] → (a, b) is as in
Theorem 3.1, then the sign of Dc(r) is the opposite of the sign of D211Q.

Team theory

A slight variation on the last application is as follows. Consider a team con-
sisting of a principal and n agents. Let O ⊂ <n

+ be the set of possible effort
levels of the agents. Define v ∈ V by v(x) = min{x1, . . . , xn}. Suppose the
team’s output is generated by the function u : v(O) × C → <. If x ∈ O is
the profile of agents’ efforts and the principal’s management contribution is
c ∈ C, then the effective effort input by the agents is v(x) and the result-
ing team output is u(v(x), c). Suppose the principal does not know x when
choosing c. Let µ(r) ∈ ∆(O) be the principal’s belief about x. Suppose
O, C and u satisfy the assumptions of Theorem 3.1 and c = c(r) maxi-
mizes expected team output

∫
O µ(r)(dx) u(v(x), c). Using Theorem 3.1, if

an increase in the principal’s contribution c reduces the concavity of u(., c),
then greater uncertainty regarding the agents’ effort levels will induce the
principal to increase his own contribution.

4 Conclusions

Given an outcome set O that is a nonempty, convex and measurable subset
of a vector space X, we have defined relations º1, º2 and º3 over the set
of probability measures ∆(O). º1 is defined in terms of concave-dominance
over O, º2 is defined in terms of a family of concave-dominance relations
over various subsets of < and º3 is defined in terms of a generalized form
of second-order stochastic dominance. Our main results, Theorems 2.6 and
2.8, show that these relations are identical.
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Our result showing the identity of º1 and º3 significantly generalizes
the corresponding Russell-Seo result, which was established in the Euclidean
setting. In the special case when X = <, these relations coincide with the
Rothschild-Stiglitz relation based on mean-preserving second order stochas-
tic dominance. In Appendix B we recall, for the sake of completeness, two
classical equivalence results that characterize comparative riskiness in terms
of dilatations and martingale dominance.

In addition, we show two other results. First, Theorem 2.13 shows that
if two measures are ordered by any of the above-mentioned relations, then
their weak means must coincide. Second, we show via Theorem 2.10 and
Corollary 2.11 that the comparison of riskiness of vector-valued random
variables cannot be reduced to the comparison of riskiness of real-valued
random variables without loss of generality.

Our main results are used to study six economic applications. We iden-
tify conditions under which

(1) a bidder in a sealed-bid (first-price or second-price) auction will bid
more conservatively with increased riskiness of the vector-valued random
variable determining his valuation of the prize;

(2) a regulated firm (e.g., an electricity generator) that is required to
meet a random demand over a period will choose a higher capacity in re-
sponse to greater uncertainty regarding the random demand process;

(3) a social planner would increase the supply of a public good in response
to greater uncertainty regarding the consumption allocations of the citizens;

(4) a risk averse investor will increase the riskless component of her
portfolio in response to increased riskiness of the stream of returns generated
by the risky asset;

(5) the effort level chosen by a decision-maker in a multi-party moral
hazard situation will increase or decrease as uncertainty regarding the effort
levels chosen by the other decision-makers increases; and

(6) the principal in a team would increase her contribution of managerial
input in response to increased uncertainty regarding the efforts contributed
by the agents in the team.

These applications amply demonstrate the usefulness of the compara-
tive vector riskiness theory. More specifically, our generalizations allow the
tractable modeling of comparative riskiness even when the risk is embodied
in an infinity of random variables, e.g., in the evolution of a continuous time
random process.

Appendix A: Proofs

Proof of Lemma 2.4 As u ∈ U(v), there is a sequence (un) ⊂ U(v)
converging uniformly to u. Since every un is concave and increasing, so is u.
As each un is continuous, so is u (Bartle [2], Theorem 24.1). Therefore, u is
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measurable. As v is bounded and u is increasing and continuous, u(v(O)) ⊂
[u(v0), u(v1)]. As u is increasing, u(v1) ≤ u(x) for every x ∈ (v1,∞). We
show that u(v1) ≥ u(x) for every x ∈ (v1,∞). So, u([v0,∞)) ⊂ [u(v0), u(v1)].

Suppose u(x) − u(v1) = ε > 0 for some x ∈ (v1,∞). As each un is
concave, it attains a global maximum at v1. Since un is increasing, un(x) =
un(v1) for every n ∈ N . As (un) converges uniformly to u, there exists
N ∈ N such that n ≥ N implies |u(x)−un(x)| < ε/2 and |u(v1)−un(v1)| <
ε/2. Thus, for n ≥ N , |u(v1) − u(x)| ≤ |u(v1) − un(x)| + |u(x) − un(x)| =
|u(v1)− un(v1)|+ |u(x)− un(x)| < ε, a contradiction.

Proof of Lemma 2.5 The proof is by construction. Let a = b− 2ε.
Define ξ : < → < by ξ(x) = (2x− b− a)/(b− a). Then, ξ(a) = −1 and

ξ(b) = 1. Define ψ : < → < by

ψ(x) =
{

exp{−(1− x2)−1}, if |x| < 1
0, if |x| ≥ 1

Define f : [v0,∞) → < by f(x) = −ψ ◦ ξ(x)/
∫
< dxψ ◦ ξ(x). Clearly, f ≤ 0,

f = 0 on < − (a, b), f is symmetric around (a + b)/2 and
∫
< dx f(x) =∫

[a,b] dx f(x) = −1. As −f is a probability density function on < that is
symmetric around (a + b)/2, it follows that

∫
< dxxf(x) =

∫
[a,b] dxxf(x) =

−(a + b)/2. As we shall verify that ψ is C∞, so is f .
Define g : [v0,∞) → < by g(x) = 1+

∫
[v0,x] dy f(y). It follows that g ≥ 0,

g is C∞ and Dg = f .
Define h : [v0,∞) → < by h(x) = v0 − b + ε +

∫
[v0,x] dy g(y). Then, h is

C∞, Dh = g ≥ 0 and D2h = f ≤ 0. Thus, h is increasing and concave. The
claims regarding the values of Dh are easily verified using the properties of
g and f .

We now compare h and u.
Consider x ∈ [v0, a). Clearly, f = 0 and g = 1 on [v0, x]. Therefore,

h(x) = v0 − b + ε +
∫
[v0,x] dy = x− b + ε = u(x) + ε.

Consider x ∈ (b,∞). Since g = 0 on (b,∞), we have h(x) = v0 − b +
ε +

∫
[v0,b] dy g(y). Now,

∫
[v0,b] dy g(y) =

∫
[v0,a) dy g(y) +

∫
[a,b] dy g(y) = a −

v0 +
∫
[a,b] dy [1+

∫
[a,y] dz f(z)] = b−v0 +

∫
[a,b] dy

∫
[a,y] dz f(z). Integrating by

parts,
∫
[a,b] dy

∫
[a,y] dz f(z) = b

∫
[a,b] dz f(z)− ∫

[a,b] dy yf(y) = −b+(a+ b)/2.
Combining these calculations, we have h(x) = v0−b+ε+b−v0+(a−b)/2 =
0 = u(x) for x ∈ (b,∞).

Consider x ∈ [a, b]. Observe that
∫
[v0,x] dy g(y) = a − v0 +

∫
[a,x] dy [1 +∫

[a,y] dz f(z)] = x− v0 +
∫
[a,x] dy

∫
[a,y] dz f(z). Therefore, h(x) = v0− b+ ε+

x − v0 +
∫
[a,x] dy

∫
[a,y] dz f(z) = x − b + ε +

∫
[a,x] dy

∫
[a,y] dz f(z) = u(x) +

ε +
∫
[a,x] dy

∫
[a,y] dz f(z). Integrating by parts, 0 ≥ ∫

[a,x] dy
∫
[a,y] dz f(z) =∫

[a,x] dz (x− z)f(z) ≥ ∫
[a,b] dz (b− z)f(z) = (a + b)/2− b = (a− b)/2 = −ε.

Since
∫
[a,x] dy

∫
[a,y] dz f(z) ∈ [−ε, 0], we have h(x)− u(x) ∈ [0, ε].
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Combining the above arguments, it follows that h ≥ u on [v0,∞) and
sup{|h(x)− u(x)| | x ∈ [v0,∞)} ≤ ε.

It only remains to confirm that ψ is C∞. Observe that ψ = φ ◦ η, where
φ : < → < is given by

φ(y) =
{

e−1/y, if y > 0
0, if y ≤ 0

(5)

and η is given by η(x) = 1− x2. Using the chain-rule, as η is C∞, it suffices
to show that φ is C∞. As preparation, we note two facts.

First, for n ∈ N , it is easily verified that

Dnφ(y) =
{

pn(y)φ(y)y−2n, if y > 0
0, if y < 0

(6)

where pn(y) is the polynomial of degree n − 1 generated by the recursive
rule: p1(y) = 1 and pk+1(y) = y2Dpk(y)− (2ky − 1)pk(y) for k ∈ N .

Second, consider y > 0 and n ∈ N ∪ {0}. Using the power series repre-
sentation of e1/y, we have the estimate 0 ≤ y−n = yy−(n+1) ≤ y(n + 1)!e1/y.
Thus, 0 ≤ limy↓0 e−1/yy−n ≤ limy↓0 y(n + 1)! = 0, i.e., limy↓0 φ(y)y−n = 0.

Setting n = 0 implies that limy↓0 φ(y) = 0. Using (5), φ is continuous.
Using (5), the left-hand derivative of φ at 0 is D1−φ(0) = limy↑0[φ(y) −

φ(0)]/y = 0 and the right-hand derivative of φ at 0 is D1
+φ(0) = limy↓0[φ(y)−

φ(0)]/y = limy↓0 φ(y)y−1 = 0. Thus, D1φ(0) = 0. Using (6), D1φ exists on
< and is continuous.

Now we do the inductive step. Suppose Dnφ exists on < for n ∈ N
and Dnφ(0) = 0. Using (6), Dn+1

− φ(0) = D1−Dnφ(0) = limy↑0[Dnφ(y) −
Dnφ(0)]/y = 0 and Dn+1

+ φ(0) = D1
+Dnφ(0) = limy↓0[Dnφ(y)−Dnφ(0)]/y =

limy↓0 pn(y)φ(y)y−(2n+1) = pn(0) limy↓0 φ(y)y−(2n+1) = 0. It follows that
Dn+1φ(0) = 0. Using (6), Dn+1φ exists on < and is continuous.

It follows that φ is C∞.

Proof of Lemma 2.12 Let X∗ be the set of all continuous linear func-
tionals h : X → <. Local convexity of X ensures that, if x ∈ X is such
that h(x) = 0 for every h ∈ X∗, then x = 0 (Dunford and Schwartz [7],
Corollary V.2.13). Define H : X → <X∗

by H(x) = (h(x))h∈X∗ . Give <X∗

the product topology. Consequently, H is continuous as every component
function Hh = h is continuous. Moreover, H is injective; if H(x) = H(y)
for some x, y ∈ X, then h(x− y) = h(x)− h(y) = 0 for every h ∈ X∗, which
implies x − y = 0. As O is compact and <X∗

is Hausdorff, H imbeds O in
<X∗

. This implies H(O) is closed in <X∗
and metrizable.

Consider µ ∈ ∆(O) with |suppµ| < ∞. The linearity of h ∈ X∗ implies

∫

O
µ(dz) h(z) =

∑
z∈supp µ

µ({z})h(z) = h


 ∑

z∈supp µ

µ({z})z

 (A.1)
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Setting mµ =
∑

z∈supp µ µ({z})z, we have mµ ∈ O as O is convex and
suppµ ⊂ O. Thus, H(mµ) ∈ H(O) for every µ ∈ ∆(O) with |suppµ| < ∞.

Consider µ ∈ ∆(O). As O is compact and metric, it is separable. Conse-
quently, there exists a sequence (µn) ⊂ ∆(O) converging to µ in the C(O,<)
topology such that |suppµn| < ∞ for every n ∈ N (Parthasarathy [14], The-
orem II.6.3). By the above argument, mµn exists, mµn ∈ O and H(mµn) ∈
H(O) for every n ∈ N . Using (A.1) and the definition of convergence in the
C(O,<) topology, we have

lim
n↑∞

h(mµn) = lim
n↑∞

∫

O
µn(dz) h(z) =

∫

O
µ(dz) h(z)

for every h ∈ X∗. Thus, limn↑∞H(mµn) = (
∫
O µ(dz) h(z))h∈X∗ . As the

sequence (H(mµn)) ⊂ H(O) and H(O) is closed in <X∗
and metrizable, we

have (
∫
O µ(dz) h(z))h∈X∗ ∈ H(O). As H imbeds O in <X∗

, there exists a
unique x ∈ O such that H(x) = (

∫
O µ(dz) h(z))h∈X∗ . By the definition of

H, we have h(x) =
∫
O µ(dz) h(z) for every h ∈ X∗. Set mµ = x.

Proof of Lemma 3.4 Suppose G is not strictly increasing on [0, 1]. Then,
there exist b1, b2 ∈ [0, 1] such that b1 < b2 and G(b1) = G(b2) = c. As
suppG = [0, 1], we have c ∈ (0, 1). So, there exists N ∈ N such that
c + 1/N < 1. For every n ≥ N , we have b(c + 1/n) > b2 > b1 ≥ b(c). Thus,
b(c+) ≥ b2 > b(c), i.e., b is not continuous.

Conversely, suppose G is strictly increasing on [0, 1]. We already know
that b is left-continuous. To show that b is right-continuous, fix α ∈ <.
If α > 1, then b−1((−∞, α)) = C, which is open in C. If α ≤ 0, then
b−1((−∞, α)) = ∅, which is open in C.

Finally, let α ∈ (0, 1]. Consider c ∈ b−1((−∞, α)). Then, c ∈ C and 0 ≤
b(c) < α ≤ 1. It follows that c ≤ G(b(c)) < G(α−) as G is strictly increasing
on [0, 1]. So, b−1((−∞, α)) ⊂ (−∞, G(α−))∩C. Conversely, suppose c ∈ C
and c < G(α−). As α > 0, there exists ε > 0 such that α − ε ∈ [0, 1] and
c < G(α−ε). It follows that b(c) ≤ α−ε < α. Consequently, b−1((−∞, α)) ⊃
(−∞, G(α−))∩C. Thus, b−1((−∞, α)) = (−∞, G(α−))∩C, which is open
in C. We conclude that b is right-continuous.

Suppose b is not strictly increasing. Then, there exist c1, c2 ∈ C such
that c1 < c2 and b(c1) = b(c2). For every n ∈ N , G(b(c1)) = G(b(c2)) ≥
c2 > c1 > G(b(c1) − 1/n). Therefore, G(b(c1)) > c1 ≥ G(b(c1)−), i.e., G is
not continuous.

Conversely, suppose G is not continuous. As G is right-continuous and
increasing, there exists α ∈ < such that G(α) > G(α−). Let c1, c2 ∈
(G(α−), G(α)) such that c1 < c2. As G(α) > c1 and G is increasing,
[α,∞) ⊂ G−1([c1,∞)). If β < α, then G(β) ≤ G(α−) < c1, which means
β 6∈ G−1([c1,∞)). So, [α,∞) ⊃ G−1([c1,∞)). Thus, G−1([c1,∞)) = [α,∞).
Similarly, G−1([c2,∞)) = [α,∞). Therefore, b(c1) = b(c2), i.e., b is not
strictly increasing.
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Proof of Lemma 3.5 Let ba(C, C) be the set of bounded, finitely ad-
ditive real-valued functions defined on C. With the total variation norm,
ba(C, C) is a Banach space (Dunford and Schwartz [7], Sections III.7 and
IV.9). Let B(C, C) be the set of real-valued functions on C that are uniform
limits of simple measurable functions on (C, C), i.e., functions that are finite
linear combinations of characteristic functions of sets in C. With the supre-
mum norm, B(C, C) is a Banach space (Dunford and Schwartz [7], Section
IV.5). By a Riesz-type representation theorem (Dunford and Schwartz [7],
Theorem IV.5.1), ba(C, C) may be identified with B(C, C)∗, i.e., the conju-
gate of B(C, C). The B(C, C) topology is the weakest topology on ba(C, C)
that makes the linear functional µ 7→ ∫

C µ(dx) h(x) continuous for every
h ∈ B(C, C). As g is bounded and measurable, g ∈ B(C, C). Thus, L is
continuous.

By Alaoglu’s theorem (Dunford and Schwartz [7], Theorem V.4.2), the
closed unit sphere of ba(C, C) is compact. As ∆(C) is a subset of the closed
unit sphere of ba(C, C), ∆(C) is compact if it is closed. Consider λ ∈
ba(C, C) that is an accumulation point of ∆(C). Then, there exists a net
(λn) ⊂ ∆(C) converging to λ. By the definition of the B(C, C) topology,
limn λn(E) = limn

∫
C λn(dx) 1E(x) =

∫
C λ(dx) 1E(x) = λ(E) for every E ∈

C. Consequently, λ(∅) = 0, λ(C) = 1 and λ ≥ 0. Consider sets E1, . . . , Ek ∈
C that are pairwise disjoint and E = ∪k

i=1Ei. Then, E ∈ C. As each
λn is finitely additive, we have λ(E) = limn λn(E) = limn

∑k
i=1 λn(Ei) =∑k

i=1 limn λn(Ei) =
∑k

i=1 λ(Ei), i.e., λ is finitely additive. Thus, λ ∈ ∆(C),
and consequently, ∆(C) is closed in the B(C, C) topology.

Consider a net (λn) ⊂ ∆(C, c) converging to λ in the B(C, C) topology.
As ∆(C, c) ⊂ ∆(C) and ∆(C) is closed, λ ∈ ∆(C). The identity map I
on C is bounded and measurable. Therefore, I ∈ B(C, C). Consequently,
c ≤ limn

∫
C λn(dx)x =

∫
C λ(dx) x. Thus, λ ∈ ∆(C, c). As ∆(C, c) is a

closed subset of ∆(C), ∆(C, c) is compact.

Proof of Lemma 3.6 Note that I − gn, I − g ∈ C([−b, γ], [−b, γ]) and
P ∈ C([−b, γ],<). Consequently, P ◦ (I − gn), P ◦ (I − g) ∈ C([−b, γ],<).
Endow C([−b, γ], [−b, γ]) and C([−b, γ],<) with their compact-open topolo-
gies. Given P , the composition mapping f 7→ P ◦ f , from C([−b, γ], [−b, γ])
to C([−b, γ],<), is continuous (Dugundji [6], Theorem XII.2.1).

Since (gn) converges uniformly to g, (I − gn) converges uniformly to
I − g. By Theorem XII.8.2 in Dugundji [6], the compact-open topologies on
C([−b, γ], [−b, γ]) and C([−b, γ],<) coincide with the respective topologies of
uniform convergence. Thus, (I − gn) converges to I − g in the compact-
open topology of C([−b, γ], [−b, γ]). It follows from the continuity of the
composition mapping that P ◦ (I − gn) converges to P ◦ (I − g) in the
compact-open topology of C([−b, γ],<). Therefore, P ◦ (I − gn) converges
uniformly to P ◦ (I − g). It follows that (un) converges uniformly to u.
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Proof of Lemma 3.7 Fix r ∈ {r1, r2} and the subsequence (c(r, nj)) of
(c(r, n)), converging to c∗(r). For m, j ∈ N , let F (m, j) = U(r, c(r, nm);nj),
f(m) = U(r, c(r, nm)) and φ(j) = U(r, c∗(r);nj). For (m1, j1), (m2, j2) ∈
N 2, we say that (m1, j1) º (m2, j2) if m1 ≥ m2 and j1 ≥ j2. Then, (N 2,º)
is a directed set and {F (m, j) | (m, j) ∈ N 2;º} is a net in <.

Fix ε > 0. As (un) converges uniformly to u by Lemma 3.6, the subse-
quence (unj ) converges uniformly to u, i.e., there exists J ∈ N such that
j ≥ J implies ‖unj − u‖ < ε/8, where ‖.‖ is the supremum norm. So, j ≥ J
implies the inequality |U(r, c; nj) − U(r, c)| ≤ ∫

O µ(r)(dx) |unj (v(x), c) −
u(v(x), c)| ≤ ‖unj−u‖ < ε/8 for every c ∈ C, i.e., limj↑∞ U(r, c; nj) = U(r, c)
for every c ∈ C.

If we set c = c∗(r) in the above inequality, then j ≥ J implies |φ(j) −
U(r, c∗(r))| = |U(r, c∗(r);nj) − U(r, c∗(r))| < ε/8. Thus, limj↑∞ φ(j) =
U(r, c∗(r)).

If we set c = c(r, nm) in the above inequality, then m ∈ N and j ≥
J implies |F (m, j) − f(m)| = |U(r, c(r, nm);nj) − U(r, c(r, nm))| < ε/8.
Consequently, m ∈ N and j ≥ J implies |F (m, j) − F (m,J)| ≤ |F (m, j) −
f(m)|+ |F (m, J)− f(m)| < ε/4.

The continuity of unj and the bounded convergence theorem (Billings-
ley [4], Theorem 16.5) imply that φ(j) = limm↑∞ F (m, j) for every j ∈ N .
So, given J , there exists M ∈ N such that m ≥ M implies |F (m, J)−φ(J)| <
ε/8. Consequently, m ≥ M implies |F (m,J)−F (M,J)| ≤ |F (m,J)−φ(J)|+
|F (M, J)− φ(J)| < ε/4.

It follows that j ≥ J and m ≥ M implies |F (m, j) − F (M, J)| ≤
|F (m, j) − F (m,J)| + |F (m, J) − F (M, J)| < ε/2. Therefore, if (m1, j1) º
(M,J) and (m2, j2) º (M,J), then |F (m1, j1) − F (m2, j2)| ≤ |F (m1, j1) −
F (M, J)|+ |F (m2, j2)−F (M, J)| < ε. Thus, {F (m, j) | (m, j) ∈ N 2;º} is a
Cauchy net with respect to the Euclidean space <. As the Euclidean space
< is complete, this net converges to some p ∈ < (Dugundji [6], Theorem
XIV.3.2). Consequently, there exists (M,J) ∈ N 2 such that (m, j) º (M, J)
implies |F (m, j)− p| < ε.

Without loss of generality, let J ≥ M . So, j ≥ J implies (j, j) º (J, J) º
(M,J), which implies |F (j, j)− p| < ε. So, limj↑∞ F (j, j) = p.

Moreover, |p− φ(j)| = |p− limm↑∞ F (m, j)| = limm↑∞ |p− F (m, j)| ≤ ε
for every j ≥ J . Thus, limj↑∞ φ(j) = p.

By definition, U(r, c(r, nj);nj) ≥ U(r, c; nj) for all j ∈ N and c ∈
C. Therefore, we have U(r, c∗(r)) = limj↑∞ φ(j) = p = limj↑∞ F (j, j) =
limj↑∞ U(r, c(r, nj);nj) ≥ limj↑∞ U(r, c; nj) = U(r, c) for every c ∈ C.

Appendix B: Classical results

For the sake of completeness, we recall two classical results that complement
our results by showing the equivalence between a variation of º1, denoted
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º∗1, and relations º4 and º5 based on the notions of dilatations and mar-
tingale dominance respectively.

Specialize Assumption 2.1 by requiring X to be a topological vector
space and O to be compact. For µ, λ ∈ ∆(O), we say that µ º∗1 λ if∫
O µ(dx) v(x) ≤ ∫

O λ(dx) v(x) for every continuous v ∈ V. Clearly, º∗1 is an
extension of º1, i.e., º1⊂º∗1, since µ º1 λ implies µ º∗1 λ.

A Markov kernel on (O,O) is a function P : O × O → < such that
P (x, .) ∈ ∆(O) for every x ∈ O and P (., E) is measurable for every E ∈ O.
A dilatation on (O,O) is a Markov kernel P on (O,O) such that f(.) =∫
O P (., dx) f(x) for every continuous affine function f : O → <.

Definition 4.1 Given µ, λ ∈ ∆(O), we say that µ º4 λ if there is a dilata-
tion P on (O,O) such that µ(.) =

∫
O λ(dx) P (x, .).

The following result is Theorem 2 in Strassen [21].

Theorem 4.2 Given Assumption 2.1, if X is a locally convex topological
vector space and O is compact and metrizable, then º∗1=º4.

In order to state the other well-known equivalence result, we first define
a martingale.

Definition 4.3 Let X be a separable Banach space. An ordered pair (f, g)
is an X-valued martingale if there is a probability space (Ω,F , Q) such that

(a) f, g ∈ L1(Ω,F , Q; X)
(b) σ(f) ≡ {f−1(B) | B ∈ B(X)} ⊂ {g−1(B) | B ∈ B(X)} ≡ σ(g), and
(c)

∫
E Q(dx) f(x) =

∫
E Q(dx) g(x) for every E ∈ σ(f).

Condition (a) means that f and g are Bochner integrable random vari-
ables with values in X. Condition (b) means that (σ(f), σ(g)) is a filtration,
i.e., the σ-algebra σ(g) contains finer information about the state than the
σ-algebra σ(f). By definition, (f, g) is adapted to this filtration, i.e., f
is σ(f)/B(X) measurable and g is σ(g)/B(X) measurable. Condition (c)
means that f is (a version of) the expectation of g conditional on f , i.e.,
f = Eσ(f)g. Setting h = g−f , we have Eσ(f)h = Eσ(f)g−f = 0. Therefore,
we have the representation g = f + h, where Eσ(f)h = 0, i.e., g is f plus
noise. This interpretation motivates the following definition.

Definition 4.4 Let X be a separable Banach space. Given µ, λ ∈ ∆(O), we
say that µ º5 λ if there exists an X-valued martingale (f, g) with Q◦f−1 = λ
and Q ◦ g−1 = µ.

The following result is a consequence of Theorem 8 in Strassen [21].

Theorem 4.5 In addition to the assumptions of Theorem 4.2, if X is a
separable Banach space, then º∗1=º5.
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This result is useful because it characterizes a convenient source of lot-
teries that are ordered by the various riskiness relations: a set of lotteries
on O is ordered by º∗1 if and only if the lotteries are distributions of random
variables that constitute an X-valued martingale.
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