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RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated

protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein

sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral

double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1)

(IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral

infection.While RIG-I andMDA5 sharemany genetic, structural and functional similarities,

there is increasing evidence that they can have significantly different strategies to

recognize different pathogens, PAMPs, and in different host species. This review article

discusses the similarities and differences between RIG-I and MDA5 from multiple

perspectives, including their structures, evolution and functional relationships with other

cellular proteins, their differential mechanisms of distinguishing between host and viral

dsRNAs and interactions with host and viral protein factors, and their immunogenic

signaling. A comprehensive comparative analysis can help inform future studies of RIG-I

and MDA5 in order to fully understand their functions in order to optimize potential

therapeutic approaches targeting them.
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INTRODUCTION

RIG-I (Retinoic acid-inducible gene I) encoded by the DDX58 gene in the human genome (1, 2)
and MDA5 (Melanoma Differentiation-Associated protein 5) encoded by the IFIH1 gene (3, 4) are
known as important protein initiators of earliest immune responses to viral infection. A relatively
large body of work has focused on understanding their roles in triggering the same innate immune
pathway as they indeed share many similarities at a structural and functional level. However, it
is becoming increasingly clear that there are unique differences between RIG-I and MDA5, such
as their activation mechanisms and contextual functionalities, that need to be considered in order
to fully appreciate their individual function. A comprehensive analysis of multiple aspects of RIG-I
andMDA5 from their evolutionary origins and behavior among different species to their structures
and molecular signaling will allow for a more nuanced understanding of their functional purposes.
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FUNCTIONAL SIMILARITIES AND
DIFFERENCES BETWEEN RIG-I AND MDA5

The innate immune response is a combination of non-specific
defense mechanisms by the host that are critical for early
detection and inhibition of pathogen growth before the adaptive
immune response has time to produce proper cell-mediated
immunity, such as the development of antibodies and cytotoxic
T-lymphocyte responses (CTL) against the invading pathogen
and/or the pathogen-infected cells (5). Cells of the innate
immune arm, such as leukocytes and epithelial cells, are able
recognize general components of the microbes (e.g., viruses) that
are shared among related microbes. These microbial structures
are called pathogen-associated molecular patterns (PAMPs) (e.g.,
viral dsRNA) that are specifically recognized by the cellular
pattern recognition receptors (PRRs) (e.g., RIG-I,MDA5, or Toll-
like receptors TLRs) which are then activated (Figure 1). The
specific signalingmechanisms of RIG-I andMDA5 activation will
be discussed in detail below. Here, the cascade of event leading to
IFN1 production is briefly summarized. Upon binding to PAMP
(e.g., dsRNA), the activated RIG-I and MDA5 interact with the
mitochondrial antiviral signaling proteins (MAVS), which forms
a multilayered protein complex contain several different proteins
(6–9). The MAVS complex then catalyzes the interaction of
inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε)
and the serine/threonine-protein kinase 1 (TBK1) (10–12), which
phosphorylate the transcription factors interferon regulatory
factors 3 and 7 (IRF3 and IRF7) (13). Phosphorylated p-IRF7
(14) and -pIRF3 (15) factors then dimerize and translocate into
the nucleus, where they activate the expression of the type 1
interferon genes (IFN1: IFNα and IFNβ). IFN1 proteins are
then exported out of the cell to activate IFN1 signaling cascade
by binding to their receptor (the IFNα/β receptor or IFNAR)
either on the same cells or neighboring cells in an autocrine or
paracrine fashion. This results in the production ofmore IFN1 (in
a positive feedback loop) and a variety of interferon-stimulated
genes (ISGs), which mediate vasodilation near the site of the
pathogen infection and uptake of fluid, recruitment of innate
immune cells, such as macrophages, neutrophils, and dendritic
cells to the site of the infection that is aided by chemokine
gradients to mediate innate immune cell-mediated killing of the
infected cells (16).

RIG-I and MDA5 appear to differentially induce IFN1 in
response to different viral pathogens (17), with RIG-I generally
responding most potently to negative-strand RNA viruses, such
as influenza viruses (18, 19), bunyaviruses (20, 21), filoviruses
(22), and rhabdoviruses (18, 23) as well as the positive-stranded
Japanese encephalitis virus (18), while MDA5 is activated during
infection by positive-strand picornaviruses (18, 24, 25) and
arteriviruses (26, 27) as well as by hepatitis D virus (28), Kaposi’s
sarcoma-associated herpesvirus (KSHV) (29). RIG-I and MDA5
may also play a role in recognizing non-viral pathogens, asMDA5
has been found to respond to malaria (30) (Figure 2). Neither
are individually critical in reovirus (24) and in dengue virus
infection (24, 31) but the presence of either in combination with
Toll-like receptor 3 (TLR3) is critical to have effective anti-viral
repsonses (32). Each serves an additive role during West Nile

virus infection (33), which is likely mediated by the production
of multiple PAMP species in the infected cells (34). Indeed, RIG-I
and MDA5 have also been shown to recognize different sections
of the same viral genome due to their differing preferences for
RNA binding (35), illustrating how RIG-I and MDA5 can act
both independently and synergistically. This has also been shown
functionally in viruses where both RIG-I and MDA5 have been
found to be essential to induce the necessary levels of IFNβ

signaling for antiviral control against paramyxovirus (18, 36–38)
and rotavirus infections (39).

While RIG-I and MDA5 participate in the IFN1 signaling
pathway (40), it is clear from animal modeling that they might
be functionally distinct. While C57BL/6 MDA5 KO mice exhibit
no obvious phenotypes (18), C57BL/6 RIG-I KO have high
embryonic lethality as they don’t live past 3 weeks of birth
and experience growth retardation and liver degeneration (18,
41). Furthermore, when RIG-I KO mice are back crossed onto
the more genetically flexible 129S1 strain (18), these mice can
spontaneously develop colitis symptoms (42). Clinical cases
with mutations in RIG-I and MDA5 have distinct autoimmune
presentations, with RIG-I mutations being associated with
atypical Singleton-Merten Syndrome, while MDA5 mutations
have been linked to classical Singleton-Merten Syndrome,
Aicardi-Goutières syndrome, Systemic Lupus Erythematosus,
Type 1 Diabetes and Graves disease (43, 44) (Figure 2). There is
growing evidence that overt innate-immune interferon signaling
plays a critical role in the development of other forms of
autoimmune conditions (45). Taken together, this suggests that
RIG-I and MDA5 may differ significantly in their roles during
development as well as in responding to different types of viral
infection that is partially dependent on the PAMPs that are
available in any given context.

There is also increasing evidence that RIG-I and MDA5
have additional distinct molecular functionalities in immune
signaling (43). It is well-established that the interferon regulatory
factor (IRF) and innate immune NFκB cytokine signaling
pathways have many areas of cross-regulation and expression
(46). Accordingly, both RIG-I and MDA5 have been shown
to activate NFκB signaling during RSV infection, but only
RIG-I appears to act upstream of the canonical IκBα-NFκB
pathway (47, 48) (Figure 1). While both are known to activate
NFκB mediated expression of IL-6 and pro-IL-1β through the
interaction of CARD9 with BCL10 (49, 50), the independence
of MDA5 from the IκBα pathway suggests that it influences
NFκB signaling in other as yet uncharacterized ways (43).
A possible explanation for MDA5’s independence from the
IκBα pathway may be that MDA5-mediated NFκB (but not
IRF) signaling requires TRIM25, which activates RIG-I by
ubiquitination (to be discussed in detail below). This potentially
implicates TRIM25 in other mechanisms besides activating RIG-
I (51, 52). RIG-I (but not MDA5) also induces inflammasome
assembly-mediated cleavage and maturation of pro- IL-1β by
caspase 1 (24, 34, 53). Finally, RIG-I has been shown to
inhibit RNAi complexes mediated by the endoribonuclease Dicer,
which is encoded by the DICER1 gene and cleaves dsRNA
and pre-micro RNA into short single-stranded RNA fragments
known as small interfering RNA (siRNA) and microRNA
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FIGURE 1 | RIG-I/MDA5 signaling pathway RIG-I and MDA5 are first activated by recognition of PAMP dsRNA, which causes them to interact with MAVS. Following

the activation of MAVS by RIG-I/MDA5, a molecular cascade involves the interaction of IKKε and TBK1, which is followed by phosphorylation of the transcription

factors IRF3 and IRF7, ensure to translocate the phosphorylated p-IRF3 and p-IRF7 into the nucleus, where they dimerize and bind to transcription factor binding sites

of the IFNα and IFNβ genes to activate their transcriptions. Expression and exportation of these genes into the cellular milieu trigger the IFN1 signaling cascade in an

autocrine or paracrine fashion to induce expression of hundreds of interferon stimulated genes (ISGs) and inflammatory genes to confer antiviral resistance. RIG-I and

MDA5 also activate the NF-κB pathway. RIG-I appears to act upstream of the canonical pathway, which results in the translocation of the two functional NF-κB units

(p50 and p65) into the nucleus, while MDA5 appears to affect NF-κB expression independently from this pathway. Figure created using BioRender software.

(54), by interacting with the probable ATP-dependent RNA
helicase DHX58 (also known as the Laboratory of Genetics and
Physiology 2 LGP2 protein), which inhibits Dicer (55) as well as
the Dicer-complex protein TRBP (56). LGP2 has been shown to
exhibit conflicting effects on RIG-I and MDA5 signaling (57–
59), and future studies are needed in order to clarify these
regulatory mechanisms.

STRUCTURES OF RIG-I AND MDA5

RIG-I and MDA5 are expressed in all cell types (60), but are
most well-known for their functions inside innate immune cells,
such as macrophages, neutrophils, and dendritic cells, as well
as in other cells like mucosal epithelial cells. They are classified
as ATP-dependent DExD/H box RNA helicases. Their structure
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FIGURE 2 | Venn diagram comparing the signaling and functional similarities and differences between RIG-I and MDA5.

is highly helical and consists of two caspase activating and
recruiting domains (CARD) at the N terminus of ∼85 amino
acids each, followed by a flexible hinge region and the helicase
domain that consists of the RecA-like Hel1 and Hel2 domains
with an ATP binding and hydrolyzing domain at their interface
(Figures 3A,B). In particular, the structure of the ATP binding
site distinguishes RIG-I and MDA5 from other helicase proteins,
such as Dicer. Unlike other DExD/H box helicases where RNA
binding catalyzes the ATP binding site to become structurally
organized, the ATP binding site in RIG-I and MDA5 remains
comparatively open and structurally dynamic following RNA
binding. This is aided by the ATP binding site being formed by
an interface between the two Hel domains, which are relatively
far apart (64).

These structural features are connected by another flexible
hinge region to the unique and predominantly β-sheet C terminal
domain (CTD), which recognizes and binds to RNA (65). The
CTD in RIG-I and MDA5 contains a zinc binding domain that
is related to those of the GDP/GTP exchange factors (66). Each
protein also contains a positively charged groove within this
domain that recognizes dsRNA and this groove is structurally
unique in each protein, potentially explaining their different

RNA binding preferences (66). RIG-I primarily recognizes short
double-stranded RNAwith 5′ triphosphate groups (67–75), while
MDA5 primarily recognizes long double-stranded RNA (76–79)
(to be discussed in detail below.) It is notable in this regard
that the Hel-CTD motifs adopt different orientations relative to
dsRNA in RIG-I and MDA5. Specifically, the RIG-I Hel-CTD
domain is tilted relative to dsRNA with the CTD interacting with
the 5′ and 3′ ends of the dsRNA (61), whereas the MDA5 Hel-
CTD domain runs parallel to the RNA strand (Figures 3C,D).

ACTIVATION OF RIG-I AND MDA5 BY
POST-TRANSLATIONAL MODIFICATIONS

The series of steps required for RIG-I and MDA5 activation have
been described in depth elsewhere (80–84). Briefly summarized,
these proteins endogenously exist in the cytoplasm of the cell
in a phosphorylated and inactivated conformation when they
are not activated by PAMP (dsRNA) (85–87) (Figures 4A,F).
Phosphorylation is mediated at the N terminal CARD domains
(S8 and T170) of RIG-I by PKC-α/β (88, 89) and at the C
terminal RNA interaction domain (S854, S855, and T770) by
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FIGURE 3 | Organization and known structures of RIG-I and MDA5. (A,B) Graphic representing the domain organization of RIG-I (A) and MDA5 (B). (C–E) Known

structures of human RIG-I and MDA5, with X-ray crystallography structures of RIG-I Hel-CTD (C) and MDA5-Hel-CTD (D) interacting with dsRNA, and CARD1/2 of

RIG-I interacting with the MAVS CARD domain (E). In (C–E), the helicase domains are shown in red, the CTD in purple, RNA in green, the CARD1 domain in blue, the

CARD2 domain in aquamarine and the MAVS CARD domain in orange (C) was adapted from reference (61), (D) from reference (62), and (E) from reference (63).

CKβ (90). On the other hand, MDA5 is phosphorylated at S828
by RIOK3 (91) as well as by other yet unknown kinases (92,
93). RIG-I is also acetylated at K909 in its C terminal domain
that requires deacetylation by HDAC6 to be able to recognize
RNA in its activated form (94). Upon recognition of PAMP
(dsRNA), RIG-I unfolds into an open and activated state that
is mediated by the flexible hinge regions between the CARD
domains and the helicase domain, and between the helicase
and the C terminal domain (64, 87, 95–98) (Figure 4B). On
the contrary, there is evidence to suggest that MDA5 has a
more dynamic structure (99). Unlike a model of RIG-I activation
described above, MDA5 exists in a conformational equilibrium
between close and open forms, with close forms favored in the
dsRNA unliganded state. While not yet formally demonstrated,
it is possible that MDA5 may be inhibited in the absence of the
dsRNA ligand by its structural dynamics, which may prevent
strong protein-protein interactions (Figure 4F). However, upon
binding to dsRNA ligand, MDA5 adopts an open and activated
form, which is perhaps more conducive for protein-protein
interactions (Figures 4G,H).

Once the C terminal domains have been de-phosphorylated,
the E3 ubiquitin ligase Riplet attaches ubiquitin peptides onto
the C terminal domain of RIG-I at residues K849 and K851

(100, 101). It was previously shown that ubiquitination by Riplet
was necessary for opening RIG-I and for ubiquitination of the
CARD domain (102). However, in-situ studies found that dsRNA
was sufficient to weaken the interaction between purified RIG-
I C terminal domain and RIG-I CARD domains (86) and that
dsRNA was necessary for Riplet ubiquitination (103), calling into
question the sequential order for RIG-I activation (Figure 4C).
Following de-phosphorylation of the CARD domain by the
phosphatase PP1-α/γ (92), this domain is polyubiquinated at
K172 by the E3 TRIM25 ubiquitin ligase (104), which itself is
activated by Caspase 12 (105) (Figure 4D). TRIM25 interacting
with RIG-I may also be mediated by their mutual interactions
with certain host long non-coding RNA (lncRNA), which occurs
outside of the dsRNA recognizing domain in the CTD of
RIG-I (106).

A recent study showed that Riplet rather than TRIM25
was primarily responsible for ubiquitinating and activating
RIG-I (103). However, there are several factors to take into
consideration with this study. These recent results were obtained
using KO 293T and mouse embryonic fibroblast (MEF)
cells and that it was not clear whether K63 ubiquitination
occurred at other known lysine sites in RIG-I. The question
remains whether Riplet can ubiquitinate other lysine residues
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FIGURE 4 | Activation mechanisms of RIG-I and MDA5. RIG-I and MDA5 are activated by interacting with viral dsRNA at the C terminal domain. In their endogenous

and inactivated state, RIG-I and MDA5 are phosphorylated at their N and C terminal domains (A,F). MDA5 may exist between open and close forms in its inactivated

state (F). Upon recognizing PAMP dsRNA, the C terminal domain becomes dephosphorylated and ubiquitinated for RIG-I and dephosphorylated for MDA5 (B,G).

RIG-I also dimerizes (B). Next, RIG-I oligomerizes (D) and MDA5 forms longer filaments on dsRNA (H), and the N terminal CARD domains of RIG-I becomes

dephosphorylated (C) then ubiquitinated (D). Finally, the CARD domain of the RIG-I oligomers interacts with the mitochondrial protein MAVS (E), and the MDA5

dsRNA filaments also activate MDA5 (though it has a weaker CARD-CARD interaction with MAVS) (I). Figure created using BioRender software.

in the absence of TRIM25. Additionally, in-situ experiments
comparing RIG-I ubiquitination by Riplet and TRIM25
utilized an E2 enzyme (103) that had been found to be
specific for Riplet (107). While the E2 that utilizes TRIM25
has not yet been identified, TRIM25 has been shown to
ubiquitinate RIG-I in-situ when a general mixture of E2
proteins was used (108). The protein levels of TRIM25
may also have to be at a certain level in order for it to
productively ubiquitinate RIG-I, as the ubiquitin protease
USP15 deubiquitinates TRIM25 at later time points in viral
infection (109).

Finally, TRIM25 has been found to be essential for RIG-
I activation and IFN signaling in-vitro and in-vivo. For the
former, siRNA-mediated knock-down (110, 111), cellular knock-
out (112) and inhibition by viral protein (109, 113–116)
conditions for TRIM25 in multiple cell types have been shown
to change RIG-I cellular localization (110) and to negatively
affect RIG-I K63 ubiquitination, association with MAVS and IFN
signaling [when the constitutively active RIG-I CARD domain
was overexpressed (109, 112–116) or during viral infection (109,
111, 114)]. Viral inhibition of TRIM25 may even be a source
of a positive selection during the evolution of certain viruses,
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as NS1 IAV proteins have been found to interact with species
specific TRIM25 (114). For the latter, MEFs from TRIM25 KO
mice have significantly downregulated IFN1 production upon
viral infection (113) and KO mice for NLRP12, which is a
competitive interactor with TRIM25 to RIG-I, show increased
interferon production and more resistance to viral infection
(117). The known contributions of TRIM25 to innate immunity
have recently been summarized elsewhere (52).

It is clear that both Riplet and TRIM25 can mediate K63-
linked polyubiquitination. However, it has also been found
that in-situ incubation of purified RIG-I CARD domains
with ubiquitin can be activated by free and unlinked K63
polyubiquitin chains (118), calling into question whether
TRIM25 only attaches K63-linked ubiquitin motifs to RIG-I-
CARD or if it also catalyzes the formation of unlinked K63
polyubiquitination chains (119). A possible explanation for
these differing results is that RIG-I has been shown to be
covalently K63 ubiquitinated by TRIM25 when analyzed by
mass spectrometry from cells (104), while experiments that
demonstrate non-covalent K63 ubiquitination are those involve
primarily interactions with purified proteins.

It has also been recently found that RIG-I is K63 ubiquitinated
at K164 and that it may be functionally redundant to K172
(120, 121), with their ubiquitination possibly upregulating the
K63 ubiquitination of the other 6 lysine residues in RIG-I (121).
However, it is unknown whether TRIM25 ubiquitinates K164 or
any of the other RIG-I lysine residues. Notably, these additional
lysine residues in the CARD and C terminal domains of RIG-I
and MDA5 are known to be K27 and K48 ubiquitinated [which
are associated with degradation of RIG-I (122, 123) and MDA5
(123)], but the four listed above appear to be the essential residues
for activation of RIG-I (122, 124).

The presence of K63 ubiquitin modifications on MDA5 is
more controversial. Independent studies have found that MDA5
is (125, 126) or is not (126) K63 polyubiquitinated. It has
also been independently found that TRIM25 does not affect
ubiquitination of MDA5 (without distinguishing between K63
and K48 polyubiquitination) (104) and for TRIM25 to increase
K63 ubiquitination (125), the only apparent difference in the
experimental models being the usage of HEK293T (104, 126) vs.
HEK293 (125) cells. TRIM65 has also been recently found to be
essential for MDA5 activation by K63 polyubiquitination at K743
(127). It is clear that additional studies are needed in order to
clarify the ubiquitination mechanisms of MDA5.

OLIGOMERIZATION AND FILAMENTATION
TO ACTIVATE RIG-I AND MDA5
FUNCTIONS

Upon binding to PAMP (dsRNA), RIG-I oligomerizes with other
RIG-I/dsRNA complexes to form helical oligomers (128) in
a 2:2 complex using the purified RIG-I protein (87), where
the activating ubiquitin motifs serve as a scaffold to link the
oligomers together (118). These oligomers have been found to be
necessary under normal conditions to activate RIG-I. This may
be due to the helical structure of the RIG-I oligomers closely

matching those formed by MAVS (63), which is known to form
filaments in-vitro (129, 130) mediated by its own CARD domains
(131, 132). A structural model of MAVS activation by RIG-I has
been proposed of stackingMAVSCARDdomains on top of RIG-I
CARD domains to extend the RIG-I helix (133).

The minimum length of dsRNA found to activate RIG-I is 13
base pairs, which is equivalent to theminimum length to facilitate
the formation of a 2-RIG-I/dsRNA dimer (75). That being said,
shorter (∼10 bp) 5′ppp stem loop dsRNA complexes that have
previously been used to obtain X-ray crystallographic structures
of RIG-I interacting with dsRNA (61, 134, 135) (Figure 3C)
can also activate IFNβ signaling in cells (135, 136) and in mice
(136). Furthermore, A549 cells that were transfected with RIG-I
plasmid 6 h prior to RNA transfection had a minimum dsRNA
length of only 8–10 bp required for activation (75). This indicates
that RIG-I oligomerization may not be necessary for activation
of the IFNβ pathway under some experimental conditions, which
need to be further investigated.

MDA5 has also been shown to oligomerize to form long RNA-
associated filaments in vitro (62, 137, 138) (Figures 3D, 4H),
which may be aided by chaperone proteins (139). Given that the
K743 residue found to have been ubiquitinated by TRIM65 (127)
is located on the surface of Hel2, it is possible that K63 ubiquitin
residues may also help stabilize MDA5-dsRNA filaments (140).
However, MDA5 also spontaneously forms filaments and induce
MAVS to form filaments independently of ubiquitin in-situ. It
is also thought that the formation of longer filaments by MDA5
may be mediated by a longer linkage region between CARD2 and
Hel1 than in RIG-I by 50 amino acids (the length of which is well-
conserved across species), allowing for the association of more
CARD domains in an oligomer (133).

The formation of longer filaments by RIG-I has been
more controversial, giving rise to two alternate models of
RIG-I activation: formation of individual single unit of RIG-
I with short dsRNA monomers (leaving a free dsRNA end,
such as a hairpin loop), which then oligomerizes via CARD
tetramerization that is linked by their ubiquitin chains, or
filamentation on longer dsRNA. Like MDA5, RIG-I can form
filaments in-situ independent of ubiquitin (141, 142) and induces
MAVS to also form filaments (142), and MAVS is known to
form filaments in-vitro (129, 130) mediated by its own CARD
domains (131, 132). However, RIG-I filamentation on an RNA
template (forming “beads on a string”) as opposed to smaller-
scale oligomerization hasn’t yet been shown to occur in-vitro.
Part of the reasons for the suggestion that RIG-I was strongly
activated by shorter dsRNA was based the comparison on mass
equivalents of RNA species as there were less 5′ triphosphorylated
ends for longer dsRNAs with greater mass than shorter dsRNAs
with more 5′ triphosphorylated ends (76). However, when RNA
species were normalized by molar equivalence, dsRNA length
appeared to be positively correlated with RIG-I signaling (141–
143), which became insignificant at around 500 bp (141, 143). It
is significantly shorter than the length of dsRNA that activates
MDA5, which forms filaments on 2,000 bp dsRNA (137). The
kinetics of RIG-I and MDA5 interacting with dsRNA (which will
be discussed in detail below) might possibly explain the decrease
in dsRNA length efficiency to activate RIG-I as compared to
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MDA5, as RIG-I seems to first recognize the 5′ppp end before
sliding down the length of the dsRNA (144), whereas MDA5
dynamically associates and disassociates along the length of long
dsRNA (137). Meanwhile, it is still unclear whether RIG-I can
preferentially be activated by longer dsRNA independently of its
unknown ability to form filaments in-vitro (145).

MODES OF RLR-MAVS INTERACTION AND
RLR DOWNSTREAM SIGNALING

Once fully activated and oligomerized, the RIG-I CARD domain
can then interact with MAVS (146–149) (Figures 4E,I), which
is part of a protein complex containing a variety of other
cellular proteins (6–9). While the MDA5 CARD domain has
much weaker direct association with MAVS than the RIG-I
CARD domain, it is sufficient to lead to its activation and
potentiates activation of MAVS by RIG-I (146), the mechanisms
of which have yet to be determined. The activatedMAVS complex
then initiates a molecular cascade which eventually results in
expression of IFN1 (150) (Figure 2).

Interestingly, full length RIG-I, when overexpressed, has been
found to associate withMAVS in the absence of activating dsRNA
and the interaction can be ablated by phosphorylation at S8
and T170 (87), suggesting that the CARD phosphorylation sites
function at least in part to prevent association of the inactive
form of RIG-I with MAVS. Furthermore, the crystal structure
of the interaction between the RIG-I CARD and MAVS CARD
domains shows the RIG-I CARD2 domain (92–173) interacting
with MAVS CARD domains on the outside of the tetramer
and the RIG-I CARD1 (1–87) domain facing toward the center
of the tetramer (63) (Figure 3E). NMR solution structures of
RIG-I CARD2 also shows that T170 (which is required for
dephosphorylation by PP1-α/γ) is largely buried within the
CARD2 domain in a section that would be in closer contact
with the helicase domains, suggesting that dephosphorylation of
T170 affects an interaction domain between CARD2 and the C
terminus (151). Furthermore, NMR of a C terminal construct
of RIG-I with the CARD2 domain shows stable interactions of
CARD2 and the C terminal domain (151). What all this may
mean is that, while the CARD1 domain of RIG-I is somewhat
exposed in its inactivated form and therefore can be shown to
interact with MAVS, full exposure and engagement of both RIG-I
CARD domains (CARD1 and CARD2) with the CARD domain
of MAVS is necessary in order to induce IFN1 signaling. The
CARD domains of RIG-I also appear to be generally structurally
stable, as electron microscopic structures have been obtained
of the full length RIG-I bound to blunt-ended dsRNA showing
both CARD domains exposed (87). On the contrary, the CARD
domains of MDA5 may be comparatively more flexible than
those of RIG-I in order to mediate long MDA5-dsRNA filament
formation (99).

The activated MAVS complex induces association of the
inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε)
and the serine/threonine-protein kinase 1 (TBK1) (10–12), which
collectively phosphorylate the interferon regulatory factors 3 and
7 (IRF3 and IRF7) (13) (Figure 1). IKKε and TBK1 also interact

with a number of other co-factors (152, 153), such as the DEAD-
box helicase 3 (DDX3) (154). The activated p-IRF3 (15) and
p-IRF7 (14) then translocate into the nucleus and dimerize,
where they then act as the primary transcription factors for IFNα

and IFNβ, respectively. Existing evidence suggests that IFNα is
more primarily produced in the earliest time points following
RIG-I/MDA5 activation, while IFNβ is produced later and is
responsible for more robust anti-viral control throughout the
innate immune response period (155). There is also a distinction
between innate immune cell types for IFN1 production, as cells
like fibroblasts and conventional dendritic cells produce IFNα

and IFNβ (41, 156), while neutrophils only produce IFNβ (157)
and plasmacytoid dendritic cells only produce IFNα primarily
through the TLR signaling pathways (41, 158). Signaling through
RIG-I is also known to be essential for the process of TLR-
mediated phagocytosis by macrophages (159).

Interferons are then secreted out of the cell, where they bind to
their own receptor (IFNAR) and activate the Janus kinase/Signal
Transducer and Activator of Transcription proteins (JAK/STAT)
signaling pathways, which result in a positive feedback signaling
loop to further increase RIG-I/MDA5 expression and activation
(160) and IFN1 production (161, 162). Expression levels of RIG-
I and MDA5 have consistently been found to be upregulated
downstream of type I (163, 164) and type II (165, 166) IFN
signals. MDA5 upregulation has additionally been found to occur
independently of cytokine expression at least during picornavirus
infection (167).

SPECIFIC RNA FEATURES RECOGNIZED
BY RIG-I AND MDA5

One of the most obvious distinctions between RIG-I and
MDA5 is in the RNA species to which they bind for activation
(Figures 1, 5). RIG-I has the highest affinity for short dsRNA
that is tri-phosphorylated at the 5′ end (67–75), with RIG-I
having been found to directly interact with the 5′ tri-phosphate
group of the dsRNA (71, 73). While RIG-I can bind to ss-5′

tri-phosphorylated RNA (69), RIG-I cannot be activated by it
(69, 168, 169), likely due to a conformational need to recognize
double-stranded RNA. As a result, RIG-I is greatly attenuated
by a 5′ overhang as well as those with a 3′ overhanging the
5′ tri-phosphate end (170). In fact, a single unpaired 5′ tri-
phosphorylated nucleotide is sufficient to competitively inhibit
RIG-I, which has been exploited by RNA viruses to evade RIG-
I recognition and IFN1 signaling (171). The unique preference
of RIG-I for 5′ tri-phosphorylated RNA can be explained by
the specific orientation that the RIG-I C terminus adopts
when directly interacting with the 5′ tri-phosphate group of
the 5′ tri-phosphorylated dsRNA (71, 73) as compared to
unphosphorylated blunt-ended dsRNA (172).

The minimally required and exclusionary features of the 5′

and 3′ dsRNA ends for RIG-I activation have proven to be
complex. Certain studies suggest that a 5′ diphosphate group is
the minimum feature required for RIG-I binding and activation,
with 5′ monophosphate dsRNA failing to productively activate
RIG-I as compared to 5′ di and tri-phosphate dsRNA (173).
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FIGURE 5 | RNA species that interact with RIG-I and MDA5. Table summarizes the general structural features of RNA species, their source during experimental

studies and their ability to activate the ATPase functions of RIG-I and MDA5. RNA constructs are shown in green, and DNA constructs in purple.
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Additionally, RIG-I poorly distinguishes between dsRNAs with
either 5′ tri-phosphate and 5′ diphosphate group. When the
free energies of each interaction are calculated, the affinity for
5′ triphosphate being lowered by disassociation of magnesium
from the RIG-I/dsRNA complex. Both are significantly more
favorable for binding RIG-I monophosphate dsRNA (174). This
similarity in affinity appears to be important in the context
of infection with viruses that produce 5′ diphosphate RNAs,
such as reoviruses (173). Likewise, the difference of energic
binding between monophosphate dsRNA and bi- and tri-
phosphate dsRNAs is likely important for distinction between
self (host) and non-self (foreign) RNA, the mechanisms of
which will be discussed in detail below. The ATP hydrolysis
functions of RIG-I have been shown to drive rapid disassociation
from certain RNA features, such as 5′ monophosphate dsRNA
(174, 175) and 5′OH RNA (144, 176), which is particularly
important for 5′ monophosphate dsRNA because it is found
in mRNA after decapping during the mRNA degradation
process (177).

On the other hand, other studies have shown that RIG-I can
interact with monophosphate dsRNA to a certain degree, as has
been found to be the case for short synthetic dsRNA with a 5′

and 3′ monophosphate group (69), poly(I:C) digested with RNase
III (76) [which generates 5′ mono-phosphate/3′-OH dsRNA
(178)] and HCV RNA (179) and mitochondrial RNA [in the p53
deficient mice (180)] digested with RNase L [which produces
5′ OH and 3′ mono-phosphate dsRNA at subnanomolar levels
(181), as has been found to be the case for HCV RNA (179).]
It appears that the 5′ monophosphate is the determinate feature
for RIG-I activation independently of the 5′ or 3′ OH group
in all these cases. A possible explanation for the discrepancy
between the studies was that higher order RNA structures might
compensate for the less optimal 5′ and 3′ ends, asmonophosphate
dsRNA that did not contain stem-loop structures did not activate
RIG-I and RNA regions repetitive in certain nucleotides had been
found to be critical for RIG-I activation (179). Future studies are
required to further characterize the behavior of RIG-I with these
RNA species.

As previously mentioned, MDA5 preferentially associates
with long dsRNA (76–79). The crystal structure and molecular
modeling ofMDA5/dsRNA complex suggest that it can recognize
the entire first turn of the blunt-ended dsRNA (182) in a similar
way as LGP2 can (183). Like RIG-I and MDA5, LGP2 belongs
to the ATP-dependent DExD/H box RNA helicases (184), which
is structurally similar to RIG-I and MDA5 but lacks the CARD
domains at the N terminus (185). MDA5 has also been found to
be activated by the digested products of RNase L specifically from
parainfluenza virus (186).

The presence of certain repetitive RNA elements appears
to be another contributing factor in determining interaction
of RNA with RIG-I and MDA5, which has recently been
described in detail elsewhere (187). While RIG-I and MDA5
are mostly implicated in the immune response to RNA viruses,
it has also been found to be activated by 5′ tri-phosphorylated
dsRNA intermediates generated by cellular RNA polymerase III
from AT-rich DNA sequences (188) and during infection with
Epstein-Barr virus (a DNA virus) (189). RIG-I has additional

binding preferences for certain nucleotide motifs, such as
uridine-rich 5′ tri-phosphorylated hairpin RNA (190), synthetic
AU- rich hairpins (191) and those naturally found in the
genomes of Sendai virus defective-interfering (DI) particles
(192), measles (193), Influenza A virus (IAV) (194) and in
KSHV RNA transcripts (195), and poly (U/UC) regions (196)
and poly (A/AG) regions (197) in the antisense Hepatitis C
virus (HCV) genome. It is of particular interest that the poly
(A/AG) HCV regions are located significantly downstream of
the 5′triphosphate group (197), thus potentially implicating
other parts of RIG-I (e.g., helicase domain) as potential RNA
interacting domains. Repetitive RNA elements may also be
important in allowing for interaction of inhibitory RNAs that do
not have 5′ or 3′ features needed for full activation of RIG-I, as has
been shown to be the case with GA-rich regions in circular long-
non-coding RNA lnc-Lsm3b (198). These specific interactions
explain their primary role as anti-viral receptors, as these viral
motifs are mostly not found in cellular RNAs (199).

RIG-I and MDA5 have been particularly implicated in their
response to RNA genomes of viral defective interfering (DI)
particles, as these defective viral genomes (DVGs) have originally
been found to induce interferon signaling (150). DI particles
are produced by many viruses during infection, and while they
are similar in many regards to standard viral particles, such as
in appearance and composition, they cannot productively infect
cells (200). This is largely thought to be due to the presence of
large and deleterious deletions in the DVG of DI particles (201).
Some DVG RNAs have also been noted to have “copy-back”
motifs in which one end of the genome can base pair with an
inverted copy at the opposite end of the genome, which may be
due to stalled and aberrant replication (202, 203).

Copy-back RNA motifs specifically seem to be important for
RLR activation in that they tend to contain hairpin motifs and
5′ tri-phosphate groups, as has been found for Sendai (204–
206), measles (35, 207), and chikungunya (35) DVG RNAs in
activating RIG-I. In the case of IAV, DVG RNAs might even
be more potent activators of RIG-I than the full-length viral
genome. Cells that were blocked from viral protein synthesis
experienced RIG-I mediated IFN1 expression when infected
with IAV stocks grown in chicken embryonic eggs (which
produced higher relative quantities of DI particles with DVG
RNAs) but not with IAV grown in cell culture, indicating
that RIG-I activation by the genomes from primarily non-DI
IAV particles may require active viral RNA synthesis (208). A
potential explanation to this observation is that RIG-I appears to
be activated by the full viral genome via its panhandle structure,
the affinity of which is lowered by the presence of mismatched
and unpaired nucleotides in this region of the viral genome that
is conserved across influenza virus strains (209). However, the
overall panhandle structure is conserved between DVGs (205)
and the full length viral genome (209), and deletions within
DVGs are monogenic and internal (210). The specific molecular
mechanisms of enhanced RIG-I signaling by IAV DVGs have yet
to be elucidated, although the level of exposure of the panhandle
may play a role. While the full extent of MDA5 interacting
with DI RNA is currently unknown, MDA5 appears to be more
predominantly activated by DVG RNA than RIG-I specifically
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in dendritic cells early in the viral infection cycle (211), which
may be a contributor toward the phenomenon of DI particles
enhancing dendritic cell maturation (212).

The comparative abilities for DI particles vs. infectious virions
to activate RIG-I and MDA5 have important implications for
understanding viral pathogenesis and for vaccine development.
There is a burgeoning interest in this regard, especially in
populations which are typically more challenging to achieve
successful preventative vaccination, such as elderly populations
with IAV vaccination (213). Elderly populations in general
do not develop as strong of memory immune responses to
vaccines as their younger counterparts (214–217) and have
been found to have decreased RIG-I mediated IFN1 signaling
(218). Correspondingly, the influenza vaccine has been shown
to decrease in effectiveness in older populations as the influenza
season progresses (219). A DI-vaccine that strongly activates
innate immune cells and increases the adaptive immune response
could therefore potentially boost the immune responses to
vaccines in more vulnerable populations. Additionally, DI
particles have shown to be an important contributor of viral
persistence (200, 220, 221). This raises the question of whether
a viral infection may alternate between producing primarily
infectious virions which eventually activates the innate immune
response and producing primarily DI particles which requires
less cellular activity but may initiate an even stronger innate
immune response (222–224). Taken altogether, DI particles
provide yet another layer of distinction between RIG-I and
MDA5 in terms of how each recognizes different species
of dsRNA.

DISTINCTION OF SELF (HOST) AND
NON-SELF (FOREIGN) RNAs BY RIG-I AND
MDA5

The preference for specific RNA species by RIG-I and MDA5
allow for them to distinguish between viral RNA and host RNA
in most circumstances (225), although the specific mechanisms
of distinction are not as clear for MDA5 as for RIG-I. Studies
from clinical cases of MDA5 mutations provide contradictory
models, with certain mutations found in Aicardi-Goutières
syndrome (AGS) increasing MDA5 avidity for self RNA (226)
with Alu retroelements found to be significantly enriched for
interaction with AGS MDA5 mutations (227). The modification
of dsRNA by host cells may be a primary inhibitor of MDA5
activation by host RNA as knockout of adenosine deaminase
(ADAR1), which weakens dsRNA structures, allows wild-type
MDA5 to be activated by Alu retroelements (227). However,
other MDA5 mutations decrease affinity for known MDA5
ligands and ATPase activity, yet still demonstrate increased IFNβ

expression (228, 229).
For RIG-I, a highly conserved residue in the C-terminal

RNA binding pocket (H830) has been found to sterically
exclude canonical self-RNA by the means of the N1-2′O-methyl
self-RNA motif, also known as Cap1 RNA (61, 230). This
results in a low binding affinity of RIG-I to cellular Cap1
RNA and decreased ATPase activity as compared to PAMP

(dsRNA) (61, 231). Flaviviruses take advantage of this precise
discrimination by encoding a viral 2′-O-methyltransferase
capable of N1-2′O-methylating its positive-strand RNA genome
in order to evade RIG-I recognition and IFN1 activation (230).
Conversely, the mutations E373A and C268F found in the
RIG-I protein in patients with auto-immune disorder Singleton-
Merten syndrome confer the ability of the protein to recognize
Cap1 RNA and become activated by ATP dependent and
independent mechanisms, respectively (232). Furthermore, the
E373Q mutation of RIG-I, which was designed to constitutively
bind ATP, was found to increase the affinity of RIG-I with
ribosomal RNA (233). It is noteworthy that host RNA contains
additional internal RNA modifications and non-Watson-Crick
base pairing which can inhibit activation of the other known
dsRNA-sensing protein, the interferon-induced double-stranded
RNA-activated protein kinase (PKR) (234), and it is known that
synthetic 5′ triphosphorylated RNA containing pseudouridine,
2-thiouridine or 2′-O-methylated uridine has significantly
decreased ability to activate RIG-I (67), which has been
demonstrated to occur by preventing RIG-I filament formation
in-situ (142). N-6-methyladenosine (m6A) nucleotides, which
are well-known nucleotide modifications among viruses
(235), have also been found to ablate dsRNA binding to
RIG-I (236).

It has been demonstrated that certain RNA-DNA hybrid
constructs with ribonucleotides at positions 2 and 5 of the DNA
strand can bind to RIG-I and activate its ATPase activity (75).
ATPase activity is necessary for full activation of RIG-I and
expression of IFNβ (75, 237), so the minimum requirement
of a motif not found in host RNA for ATPase activity has
significant implications for the distinction between self and
non-self RNAs. Expanding on this observation, exogenous
ATPase activity may also be sufficient to potentiate RIG-I
and MDA5, as LGP2 ATPase mutant mice are significantly
more susceptible to viral infection even in the presence of
functional RIG-I and MDA5 (238). However, this model is
further complicated by certain RNA-DNA hybrids that are able
to bind RIG-I and activate ATPase activity, but don’t induce
IFNβ expression (75). It is currently undetermined whether
such hybrids can sterically inhibit RIG-I due to the presence
of mostly dNTPs or whether they inhibit RIG-I in a yet
undescribed way.

Recent kinetic studies of RIG-I and MDA5 activation by
PAMP (dsRNA) help illustrate how ATPase activity is critical for
their function and distinction between host (self) and foreign
(non-self) RNA. RIG-I binding to ATP is sufficient for interaction
with dsRNA (144, 176). RIG-I ATPase activity is inhibited in
the absence of PAMP (dsRNA) by a helical arm that blocks the
ATPase site (239). Upon interaction with PAMP (dsRNA), the
helical arm shifts and the two helicase domains are brought
together to form an active ATPase site (239). RIG-I then catalyzes
ATP to break the 5′ppp dsRNA interactions within seconds. ATP
is then rapidly hydrolyzed to facilitate translocation of RIG-I
to the opposite dsRNA end, after which the RIG-I oligomers
can form (144). On the other hand, ATP hydrolysis drives rapid
disassociation of RIG-I from host RNA features. These features
include dsRNA with a 5′ monophosphate group (174, 175) that is
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found in mRNA after decapping during the mRNA degradation
process (177) and 3′ overhang RNA (144, 170) found in miRNA
(240) as well as other RNA motifs, such as 5′OH RNA (144,
176) found in bacteria (241). Furthermore, an impaired ATPase
functionality increases the promiscuity of RIG-I binding these
host RNA motifs (144, 176, 242).

Similar ATPase functions have been found during MDA5
filamentous formation. The C terminus of MDA5 is critical
to form organized helical filaments (138) and ATP binding
drives association and hydrolysis and disassociation from
foreign dsRNA [with little coordination being observed between
neighboring MDA5 proteins (137)] in a manner that involves
MDA5 twisting along its flexible and hydrophobic interface
domains (243). Taken together, ATPase activity may be directed
toward rapid disassociation from host dsRNA and degradation
of RNA-DNA hybrids, but primarily act on the translocation
pathway upon interaction with PAMP (dsRNA). It is also
possible that host and hybrid dsRNAs could inactivate RIG-I
independently of their ability to bind the C-terminus and activate
ATPase activity. This has been shown, for example, for a hybrid
RNA that has one strand consists mostly of DNA except at
positions 2 and 5, which appears to bind RIG-I and activate
its ATPase activity but doesn’t activate IFN1 signaling (75).
Future studies are needed in order to determine these differential
interaction mechanisms.

NOVEL MECHANISMS OF INHIBITION OR
ACTIVATION OF RIG-I AND MDA5 BY
CELLULAR RNAs

Contrary to the traditional paradigm, there is increasing evidence
to suggest that RIG-I and MDA5 interact with certain host
RNA motifs, resulting in auto-activation or auto-inhibition of
the IRF pathway (Figure 5). One of the most strongly supported
models is activation by host and viral circular RNAs (circRNA).
Originally found in a variety of pathogen genomes, circRNAs in
eukaryotic cells were first thought to be byproducts of the pre-
mRNA splicing process. However, they have later been found
to be produced by a non-canonical “backsplicing” process and
there is increasing evidence to suggest that they play some
important regulatory roles (244), suggesting that they may have
specifically evolved for this purpose. RIG-I was first found to
interact with circRNA produced in situ (245). Interestingly, the
minimum component required for RIG-I activation is an intron
of pathogenic origin to be spliced out during the circularization
process. As human introns have been found to be associated
with many RNA binding proteins, it is speculated that these
proteins may have prevented circularization of this particular
synthetic circRNA used in this study (245) and that host RNA
binding proteins normally prevent endogenous circRNAs from
being detected by the innate immune system. Nevertheless,
some viral infections can potentially expose these endogenous
circRNAs for immune detection, as has recently been found to
be the case for a novel host-derived circRNA (lnc-Lsm3b) that
is IFN-inducible and shows a down-regulation of its binding
to host proteins during viral infection and therefore appears

to compete with viral dsRNA as an inhibitor of the RIG-I
signaling feedback loop (198). Similar inhibitory mechanisms
have also been noted for RNA products of the exonuclease
SKIV2L (246). Finally, recent studies have found that hepatitis
C virus (HCV) infection increases the expression of certain
cellular RNAs that can inhibit RIG-I function. HCV infection
increased the mRNA levels of hepatic selenoprotein, which was
able to bind to RIG-I through a hairpin structure and inactivated
it during viral infection (247). Infection by HCV, vesicular
stomatitis virus (VSV), or Sendai virus, or direct exposure of
cells to type 1 and 3 interferons increases expression of the
cellular long non-coding RNA (lncRNA), namely lncATV, which
similarly inhibits RIG-I function by directly interacting with it
in order to promote virus replication (248). In addition to the
greatly increased implications of RIG-I and MDA5 modulation,
these findings also have significant implications in characterizing
new biomarkers of disease, as increased serum selenoprotein
level has been found to significantly associate with treatment
failure of anti-viral drugs in HCV patients, and can possibly
explain the increased prevalence of type 2 diabetes in HCV
patients (247).

Cellular RNA has also been found to activate RLR signaling
during viral infection. Vault RNAs, which are transcribed from
four genes and are normally found in large ribonucleoprotein
complexes in cytoplasmic “vaults,” are significantly enriched
for binding to RIG-I during infection with KSHV (29). This
may be due partly to viral infection-induced reduction in the
level of cellular triphosphatase DUSP11, which dephosphorylates
the 5′ppp group on the vault RNAs, as they could only
be immunogenic (in the absence of viral infection) by the
addition of the 5′ppp group. RIG-I and MDA5 have also been
found to be activated by RNA microparticles produced in
situ by rolling circle transcription, generating tandem repeat
RNA strands (249). Retrotransposons may also be able to
activate both RIG-I and MDA5, as both can be activated by
LINE1 RNA independently of DNA sensing mechanisms and
retrotransposition (250).

Viral infections can also induce recognition of host RNAs.
Herpes Simplex Virus 1 (HSV1) infection, for example, has
been shown to induce translocation of the host pseudogene
RNA5SP141 ribosomal RNA into the cytosol to bind to RIG-
I. Knockdown of RNA5SP141 decreased cytokine signaling
during infection with HSV and EBV as well as influenza A
virus (IAV) (251). RIG-I has also been found to be activated
by hairpin RNA structures generated by cleavage of RNA by
RNase L, which has been demonstrated to occur during HCV
infection (179) as well as from mitochondrial dsRNA produced
in p53 deficient mice (180). The mitochondria, in particular,
may be an important source of immunostimulatory host
dsRNA. Viral infections are well-known to cause mitochondrial
damage (252). Knockdown and hepatocyte-specific conditional
KO of mitochondrial RNA degrading enzymes resulted in the
increase of cytoplasmic mitochondrial dsRNA which was able
to activate MDA5 (253). Additionally, extracellular vesicles
(EV) secreted by apoptotic endothelial cells were found to
contain long interspersed nuclear element (LINE) and short
interspersed nuclear element (SINE) RNAs that are products
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of RNA polymerase III and were able to activate RIG-I
signaling (254). Collectively, these findings demonstrate the
many unique ways by which cellular RNAs can modulate RIG-I
andMDA5 functions as well as the potential implications of RIG-
I activation by pharmaceuticals as an anti-viral or generalized
immunotherapy, though much caution and studies would still
be needed to determine the appropriate levels of RIG-I and
MDA5 activation.

VIRAL MODULATIONS OF RIG-I AND
MDA5 FUNCTIONS

Given that RIG-I and MDA5 are critical for activating expression
of IFN1 during viral infection, there is much interest in studying
the interactions of these cellular proteins with viral factors (RNAs
or proteins), as the ability to modulate interferon expression
is a major evolutionary driving force in viral evolution (255,
256). There are many mechanisms viruses have evolved to
evade RIG-I and MDA5 signaling, which have been discussed at
length elsewhere (257, 258). Such mechanisms are of particular
importance to segmented RNA viruses, providing potentially
more dsRNAs for RIG-I andMDA5 activation (259). IAV and the
other orthomyxoviruses are unique in that they replicate in the
nucleus of the cells (260), preventing the viral RNA from being
detected by the PRRs. However, recent preliminary evidence
seems to suggest that RIG-I may also endogenously be present
in the nucleus and performs similar viral RNA binding and
activation of the IFN1 pathway (261), yet this finding has yet to
be replicated by other laboratories.

There is also increasing evidence to suggest that RNA
processing is another mechanism of immune modulation.
Certain bunyaviruses can cleave the 5′ tri-phosphate group
from their genomic RNA (262) in order to avoid immune
detection. RIG-I has also been found to be subjected to negative
modulation by RNAi during IAV infection (263). On the
contrary, nucleoproteins from the Sendai virus (264) regulate the
number of DI particles being produced, and IAV nucleoproteins
also regulate the production of abortive replication RNA (208),
mini viral RNAs (265) and DVG RNA (208), all of which are
immunostimulatory. The Semliki Forest virus (SFV) polymerase
has even been found to convert host RNA into 5′-ppp dsRNA
to induce IFN1 expression (266). This raises an intriguing
possibility that induction of IFN1 may actually benefit some
viruses under certain circumstances despite IFN1 signaling
negatively regulating viral replication.

The viral RNA levels and localization throughout the viral life
cycle might also play an important role in immune evasion (267).
Control of viral RNA levels by viral exoribonucleases in particular
illustrates the complicated balance between viral production and
immune evasion for optimal viral propagation, as has found to be
the case for arenaviral nucleoproteins (NPs) (268, 269) and non-
structural proteins found in coronaviruses (270, 271). Finally,
viral infection has the capability to disrupt processes of the cell’s
basic functions, such as transcription and translation, thereby
affecting viral replication and immune signaling in complicated
ways (258).

One of the most significant ways viruses modulate RIG-
I and MDA5 signaling is through their viral proteins (272)
(Figure 6). The respiratory syncytial virus (RSV) non-structural
protein (NS2) protein and the Z matrix proteins of pathogenic
arenaviruses interact with the RIG-I CARD domains to block its
interaction with MAVS (273, 274). The HSV1 deamidase UL37
specifically targets RIG-I through its helicase domain, abrogating
its ability to bind to RNA (275). The IAV polymerase components
also interact directly with RIG-I (276), though their biological
significance has yet to be determined as they don’t significantly
affect IFN1 production. On the other hand, RNA binding appears
to be an important bridge between the interaction of RIG-I with
other viral proteins, as the nucleoproteins (NPs) of IAV (276)
and arenaviruses (277, 278) both interact with RIG-I through
viral RNA. The NS1 protein of rotaviruses targets RIG-I for
degradation that is independent of proteasomes (279). The V
protein of paramyxoviruses inhibits MDA5 (40) by targeting a
unique feature of the ATP binding pocket in MDA5 (280) and
by inhibiting MDA5 CARD dephosphorylation (93), but can
also inhibit RIG-I by interacting with the CARD domain to
prevent its ubiquitination by TRIM25 (281). Finally, the US11
protein of HSV1 (282) and the arenaviral Z matrix proteins (274)
directly interact with and inhibit RIG-I and MDA5 in a similar
fashion. There are alsomany other viral proteins that can regulate
proteins in the RIG-I and MDA5 pathways, which have been
discussed in detail elsewhere (44, 53, 59, 96, 257, 283).

MODULATIONS OF RIG-I AND MDA5
FUNCTIONS BY THEIR
POST-TRANSLATIONAL MODIFICATIONS
AND/OR BY OTHER VIRAL OR CELLULAR
PROTEINS

It is important to consider the different regulatorymechanisms of
RIG-I andMDA5when considering their different functionalities
(Figures 4, 6). One of the key differences between these proteins
is in their post-translation modifications (96). Ubiquitination
of RIG-I is necessary for its activation (118) and is a point
of negative regulation by host proteins (117, 284, 285), viral
proteins (281, 286, 287) and ubiquitin mimics (288) as well
as positively regulated by influenza B NS1 protein (289) and
another ubiquitin mimic (290). On the contrary, MDA5 is
more well-known to be negatively regulated by ubiquitination
(291), with positive regulation by K63 ubiquitination being
more controversial. While the deubiquitinase USP3 inhibits
MDA5 as well as RIG-I, it is thought that this may be due to
USP3 directly binding the MDA5 CARD domain to prevent
RNA filamentation (284). This raises the question of how
RIG-I can maintain its stability outside of the proteasome, as
ubiquitination at other lysine residues in RIG-I besides K172
induces proteasomal degradation (291–293). This proteasomal
degradation may be mediated by a p62 autophagic complex that
associates with LRRC25/ISG15 (294) and SQSTM1 (295) and
also mediates mitophagy and downregulation of MAVS signaling
during measles virus infection (296).
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FIGURE 6 | RIG-I/MDA5 interactions with host and cellular proteins. Host proteins (shown in purple) and viral proteins (shown in orange) that modulate RIG-I and

MDA5 signaling are shown. Figure created using BioRender software.

One key observation is that, while both RIG-I and MDA5 are
cleaved during picornavirus infection, this cleavage is mediated
by the viral proteinase 3Cpro (297) and is independent of the
proteasome (298) for RIG-I, whereas it is mediated by cellular
caspases and the proteasome for MDA5 (299). MDA5 is also
cleaved by caspases during apoptosis (4), though it hasn’t been
shown whether this is mediated by MDA5’s ubiquitination sites.
The ubiquitin linkage site may be a determinate of function,
as the ubiquitin ligases RNF122 (300) and STUB1 (293, 301)

have been shown to negatively regulate RIG-I catalyzed K48-
linked ubiquitination as opposed to the known K63-linked
ubiquitination at the K172, K849 and K851 activating sites, and
RNF125 has also been proposed to K48 ubiquitinate RIG-I (291)
(though it hasn’t been shown directly) (59). TRIM40 has also
been shown to negatively regulate RIG-I and MDA5 by K27 and
K48 ubiquitination (123).

Substantiating the possibility that K63 ubiquitination on RIG-
I may be functionally distinct from its other ubiquitination
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sites by protecting it from degradation is the finding that the
NS1 protein of West Nile virus (WNV) targets both RIG-I
and MDA5 for degradation by proteasomes. Additionally, NS1
inhibited K63 ubiquitination of RIG-I, but MDA5 was not found
to be K63 ubiquitinated (126). Heat shock protein 90-alpha
(HSP90) has been found to protect RIG-I from proteasomal
degradation, but it is unknown which type of ubiquitination that
is inhibited by HSP90 (302). Taken together, the experimental
evidence suggests that RIG-I may be protected from proteasome
degradation despite its activating ubiquitin moieties (52). This
warrants further studies for mechanistic elucidation.

RIG-I and MDA5 additionally interact with different cellular
co-factors, contributing to their differential regulations of
function. RIG-I is well-known for being potentiated by proteins
that also bind dsRNA, such as (PACT) (303, 304), which was first
discovered as a protein activator of PKR, the serine/threonine-
protein kinase 1 (TBK1) (305–309) and the oligoadenylate
synthetase L (OASL) (310). PACT in particular has some
functional similarities to RIG-I, as they each contain three
distinct RNA binding domains (311) and interact with many of
the same cellular co-factors, such as PKR (312) and Dicer (312,
313). Because of the important role of PACT in augmenting RIG-
I function, it is a prime target for inhibition of RIG-I signaling by
several viral proteins from diverse families of viruses (314–316),
the molecular mechanisms of PACT inhibition by these viral
proteins can vary and still need to be characterized in detail in
future studies. Similarly, the host ribonucleoprotein RAVER1 can
increase affinity of MDA5 for dsRNA (317), and the zinc-finger
protein ZCCHC3 has recently been found do so for both RIG-
I and MDA5 (125) in similar mechanisms to the other known
RNA-binding proteins. On the contrary, the human hemoglobin
subunit beta (HB) has recently been suggested to decrease MDA5
signaling by competing for long dsRNA, while HB can enhance
RIG-I signaling by increasing K63 ubiquitination on RIG-I (318).

Several host factors interacting with RIG-I and MDA5 do so
by yet undescribed mechanisms. PKR [which is also activated
by PACT (319, 320) and is sequestered by the cellular helicase
DHX36 protein to form stress granules (321, 322) along with
RIG-I (323, 324) and TRIM25 (324)] appears to have a novel and
yet uncharacterized function in enhancing MDA5-dependent
MAVS signaling that is dependent on the kinase activity
of PKR (325). Additionally, the porcine Interferon-Inducible
Oligoadenylate Synthetase-like protein (pOASL) has also been
found to interact with and inhibit MDA5 by an unknown
mechanism (326).

The RIG-I CARD domain interacts with MAVS to induce
interferon signaling, so proteins that disrupt this interaction
[as it has been proposed for the Atg5 and Atg12 autophagy
proteins (59)] can specifically inhibit RIG-I signaling. However,
other cellular proteins, such as the complement protein gC1qR
(327) and TARBP2 (328) that interact directly with MAVS,
inhibit both RIG-I and MDA5. Lactate and hexokinase have
also recently been found to inhibit RIG-I and MDA5 by
interacting with MAVS, which may be significant in explaining
the interplay between metabolism and immune signaling as
glycolysis was found to be greatly decreased upon RLR signaling
(329). Likewise, cellular proteins, such as NLRC5 (330) that

interacts with the RIG-I and MDA5 CARD domains have
been shown to block interaction of both RIG-I and MDA5
with MAVS. Contrarily, DHX15 has been identified as a
RIG-I cofactor that interacts with the RIG-I CARD domains
and with PAMP (dsRNA), thereby increasing RIG-I ATPase
activity (331). Additionally, ADP-ribosylation factor proteins
can block RIG-I and MDA5 from interacting with PAMPs
and thereby inhibit their activation (332, 333). Lastly, the
green tea molecule EGCG has also been shown to inhibit
the ATPase function of RIG-I (334). The similarities and
differences between RIG-I andMDA5modulations and signaling
are complex and will need to be elucidated further in
future studies.

EVOLUTION AND SPECIATION OF
RIG-I/MDA5 AND RIG-I/MDA5-LIKE
PROTEINS

Despite their structural and mechanistic differences, it is
important to emphasize that existing phylogenetic analysis
indicates that RIG-I andMDA5 come from a common origin that
is also shared among several other protein families (Figure 7).
The linkage of the helicase and DExD/H box protein appear
to be ancient, as orthologs of these proteins are found in the
Archaea kingdom (335, 336). MDA5 orthologs are found in
most vertebrates (184), while RIG-I orthologs are only found
in mammals, ducks, geese and some selected fish and reptiles
(184, 337–343) (Figures 2, 7).

It is therefore likely that MDA5 evolved first, perhaps from a
common ancestor with the closely related LGP2 helicase family
(184), which is structural similar to RIG-I and MDA5 but lacks
the CARD domains at its N terminus (185). LGP2 orthologs are
also only found in vertebrates while the next closest related family
of proteins (Dicer) are more ancient proteins. It has therefore
been proposed that the RIG-I helicase-DExD/H complex may
have been duplicated from MDA5 in the common ancestor of
vertebrates (184). The association of the two CARD domains
appears to have followed, as individual CARD domains are found
in a variety of vertebrates that also encode caspases (344, 345), but
only RIG-I, MDA5, and certain members of the Nacht family of
NTPases (346) have two CARD domains. Phylogenetic analysis
has shown that the helicase-DExD/H and CARD2 have strong
co-evolution history (347, 348), while CARD1 has evolved more
independently (184). CARD2 appears to have been grafted onto
the RIG-I helicase-DExD/H complex first, with the CARD2-
MDA5 being duplicated from this event. Finally, CARD1 was
grafted onto the CARD2-helicase-DExD/H complex in separate
events for RIG-I and MDA5 (184). In mammals, positive
selection can be seen in the flexible hinge region connecting
the CARD domains to the helicase in RIG-I and MDA5. RIG-
I contains an additional site of positive selection within the
Hel1 structural motif (N421), while most of the unique positive
selection sites for MDA5 are in regions specific to it, including a
29 amino acid insertion in Hel2 (349).

While RIG-I and MDA5 may both originate from common
ancestors of vertebrates, there is increasing evidence to suggest
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FIGURE 7 | Evolutionary timeline of RIG-I, MDA5, and other related DExD/H-box helicases. The evolutionary tract of RIG-I, MDA5, and related DExD/H-box helicases

are shown as a phylogenetic tree, along with their lowest level of biological taxonomy that these proteins are found in present day. In short, the precursor of the MDA5

helicase-CTD likely originated from a common ancestor with the precursor for LGP2, which was then duplicated to create the helicase-CTD precursor of RIG-I in the

common ancestor of vertebrates. CARD2 was then grafted onto the helicase-CTD protein, and this protein was duplicated to create the CARD2-helicase-CTD

precursor of MDA5. Finally, CARD1 was grafted onto these proteins in separate events, forming the modern-day RIG-I and MDA5.

that proteins with similar functions may have evolved separately
in other species from ancient helicase-DExD/H proteins,
implicating RNA-mediated defense responses as a potentially
universal biological function. A RIG-I homolog has recently
been found in a planarian that is able to activate downstream
inflammatory genes in the absence of the traditional CARD
domains (350), and a similar homolog in Caenorhabditis elegans
has been proposed to mediate anti-viral RNAi by complexing
with Dicer and catalyzing their translocation on the viral genome
(351). Additionally, insects have been found to primarily respond
to RNA viruses by RNAi mediated by Dicer proteins (352). Dicer
may potentially mediate dsRNA-activated anti-viral signaling
pathways that is independent of RNAi pathways, as has been
found to be the case for the expanded CAG-repeat dsRNA (353).
Pattern recognition receptors (PRRs) that respond to viral RNA
have not yet been found outside of the animal kingdom, as RLR-
like proteins in prokaryotes do not have CARD domains and
the PRRs in plants found so far are surface-receptor kinases that
respond to external molecular elements of bacteria (354) [similar
to the mammalian toll-like receptors (TLRs)]. However, RNA
silencing has been demonstrated to be an important anti-viral
strategy in plants (354, 355) and certain Arabidopsis mutants
appear to be more susceptible to infection by RNA viruses (356).

RIG-I (357) and MDA5 (357, 358) are known to influence
antiviral signaling in zebrafish (Danio rerio) and other fish
species (357, 359–361) through the canonical MAVS signaling
pathway. Fish RIG-I like receptors (RLRs) have been shown to

be regulated by the expression of alternate splicing isoforms
(358, 362), which have also been found to occur with a
dominant-negative splice variant of the human RIG-I (363). RIG-
I and MDA5 have also been found to participate in anti-viral
signaling in ducks (364–367) and geese (340, 368, 369), and
MDA5 alone in chickens (370–372) and other birds (373). The
observation across species of RLR’s performing compensatory
mechanisms when a function or a pathway protein is absent
is reiterated in birds, as MDA5 has been found to sense
short and long dsRNA in chickens (372) and in the Chinese
shrew (374), both of which lack RIG-I. Additionally, TRIM25
activates RIG-I in ducks (364) and in the Chinese goose (375)
in the absence of the K172 activating ubiquitin binding site
that is conserved in primates and some rodents (364). Finally,
the rainbow trout (Oncorhynchus mykiss) has been found to
express a LGP2 variant in addition to the canonical LGP2
that contains an incomplete C-terminal domain of RIG-I (376).
The differential presence of PRRs may also influence viral
evolution. A mutation in the IAV polymerase subunit PB2
found in avian-adapted H1N1 strains decreases the inhibition
of human RIG-I function by IAV nucleoproteins, which may
indicate a differential selective pressure for viruses that propagate
in species that don’t contain RIG-I (377). The evolutionary
pattern and compensatory mechanisms of RLRs across species
implicate them as critical for anti-viral function, and that
evolutionary forces drive the available pathway proteins to meet
these functional needs. Future studies need to be done to further
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differentiate RLR function among the different species, as this
will provide critical information concerning the various methods
of disease control by targeting the pathogen by these important
host proteins.

There is also increasing evidence for other RNA-sensing
DExD/H helicases serving important roles in anti-pathogen
immune sensing, which have recently been reviewed elsewhere
(187). Some RNA helicase (DDX) proteins appear to serve as
complex proteins upon interacting with viral RNA. DDX3 is a
well-known example, being suspected of being a transcription
factor for IFN-β (378), associating with spliceosomes and
the stress-induced p-bodies to influence mRNA splicing and
decay, respectively (322, 378), and interacting with the MAVS
complex during viral infection conditions (378, 379). In
particular, DDX3 associating with MAVS has been found to be
important for anti-viral control against several viruses (378–
380), and since the two DDX3 homologs are found on the X
and Y chromosomes, they may contribute to immunological
differences between genders (381). This is a repeated theme,
as DHX9 (382), DHX15 (383), and a complex consisting of
DDX1/DDX21/DHX36 (384) have also been found to associate
with the MAVS complex to enhance IFN1 signaling, while
DHX33 interacts with MAVS independently of viral infection
(385). DDX proteins can also activate other proteins in the IRF
pathway. Multiple DDX proteins can interact with IKKε, with
DDX3 being phosphorylated by IKKε to induce IRF3 interaction
with the TBK1-IKKε complex (378), and DDX19 blocking this
interaction to inhibit IFN1 signaling (386). Similar control
mechanisms have been demonstrated for DDX3 interacting with
viral proteins. For example, DDX3 has recently been found to
associate with arenaviral NPs to increase viral RNA synthesis
and IFN1 expression (387). Additionally, the NP of the 1918
H1N1 IAV pandemic strain has been shown to target DDX3 for
degradation as a potential mechanism of virulence (388). DHX15
(389) and DHX33 have also been found to activate NFκB and

MAPK signaling pathways. Finally, DDX60 has been shown to
act as a cofactor for RIG-I (390, 391) and DHX29 for MDA5
(392). Taken altogether, these cellular proteins have likely evolved
to regulate RIG-I and MDA5 signaling from their common
DExD/H helicase predecessors.

SUMMARY AND FUTURE OUTLOOKS

As our capacity to study the molecular mechanisms and to
purposefully modulate immune responses increases in specificity,
so will our needs to characterize the differences between
related immune signaling proteins. The concept of personalized
medicine derives from the idea that we can therapeutically
intervene in a situation that is designed around the individual’s
unique characteristics. While this is an achievable realm of
medicine in the future, an immediate step is to determine the
functions of some critical proteins, such as the RIG-I and MDA5
of the innate immune arm. Examining their structural and
functional similarities and differences at multiple levels will allow
for a deeper level of appreciation of these proteins, which may
be exploited therapeutically to differentially modulate RIG-I and
MDA5 signalings by different RNA ligands (43, 191, 393, 394)
or other pharmaceutical compounds (395) toward the goal of
achieving personalized medicine.
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