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Comparative studies of alignment, 
alignment-free and SVM based 
approaches for predicting the hosts 
of viruses based on viral sequences
Han Li1 & Fengzhu Sun1,2

Predicting the hosts of newly discovered viruses is important for pandemic surveillance of infectious 

diseases. We investigated the use of alignment-based and alignment-free methods and support 

vector machine using mononucleotide frequency and dinucleotide bias to predict the hosts of viruses, 

and applied these approaches to three datasets: rabies virus, coronavirus, and influenza A virus. For 
coronavirus, we used the spike gene sequences, while for rabies and influenza A viruses, we used the 
more conserved nucleoprotein gene sequences. We compared the three methods under different 
scenarios and showed that their performances are highly correlated with the variability of sequences 

and sample size. For conserved genes like the nucleoprotein gene, longer k-mers than mono- and 

dinucleotides are needed to better distinguish the sequences. We also showed that both alignment-

based and alignment-free methods can accurately predict the hosts of viruses. When alignment is 

difficult to achieve or highly time-consuming, alignment-free methods can be a promising substitute to 
predict the hosts of new viruses.

Viruses are ubiquitous and can reproduce and evolve very fast. Virus infections in human can cause various dis-
eases and are a big threat to human health. Many infectious disease studies showed that virus cross-species trans-
missions are highly prevalent resulting in emerging infectious diseases (EIDs)1. EIDs continue to pose signi�cant 
public health problems as shown by the recent outbreaks of West Nile virus, SARS, MARS, and H1N12. Rapidly 
identifying the reservoir of the new pathogenic bacterial or viral origins responsible for these diseases will help 
the containment, control, and prevention of the outbreaks1,3,4. Further, investigating the potential host of a virus 
can throw light on the evolutionary history of the virus, thus provide guidance on how to cut o� the transmission 
path. �e biological presumption for most of the host identi�cation methods is that the more similar two viruses’ 
DNA/RNA sequences are, they are more likely to share the same host5.

With the availability of various databases containing di�erent types of pathogenic microbial species, one of 
the most commonly used approaches for identifying the origin of the new pathogen responsible for an EID is to 
�nd similar sequences in the pathogen databases using alignment by the Smith-Waterman algorithm6, BLAST7, 
or other alignment tools.

Recently, several alignment-free methods have been developed for the identi�cation of the hosts of pathogenic 
species. Kapoor et al.8 used relative dinucleotide frequencies and discriminant analysis to infer the hosts of novel 
picorna-like viruses. Aguas and Ferguson9 developed a feature selection method and used random forests (RF) 
based on the diverged nucleotide or amino acid bases among a set of aligned molecular sequences to predict the 
host species of pathogens. Tang et al.10 developed a support vector machine (SVM) based method using mono- 
and dinucleotide frequencies as features to detect the original hosts of coronaviruses with high accuracy. 
Kargarfard et al.11 predicted the host range of the in�uenza virus using various machine learning approaches. 
Several new alignment-free statistics including ⁎d2  and d S

2  for molecular sequence comparison using k-mers 
(k-grams, words, etc.) were developed recently12,13. It was shown that such measures are highly associated with the 
evolutionary distances estimated from alignment-based methods, thus validating the usefulness of alignment-free 
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methods for the comparison of molecular sequences14,15. In this study, we investigate the e�ectiveness of align-
ment, alignment-free and machine learning based methods for inferring the hosts of viruses responsible for 
emerging infectious diseases.

Results
We initially calculated the prediction accuracies of the K-nearest neighbors (KNN) algorithm based on the align-
ment method and the alignment-free distance/dissimilarity measures for k-mer length from 3 to 6 and the num-
ber of neighbors K from 1 to 10. �e results for the rabies virus, coronavirus, and in�uenza A virus datasets are 
given as Figs S1, S2 and S3 in the supplementary material, respectively. �ese �gures show that except for the 
Chebyshev divergence, all the other alignment-free distance/dissimilarity measures have similar prediction accu-
racy, very close to that of the alignment-based distance measure. �e prediction accuracy is not markedly a�ected 
by the length of k-mers from 3 to 6.

For clarity of presentation in the remaining of the paper, we let the k-mer size to be 6. Based on the sample size 
and distribution for each dataset, we choose K = 1 as the number of neighbors in KNN for the rabies virus dataset, 
and K = 7 for the coronavirus dataset and in�uenza A virus dataset. For alignment-free distance measures, we use 
Manhattan distance as an representative as many of them have similar prediction accuracies.

Results based on the rabies virus dataset. Figure 1 shows the multidimensional scaling (MDS) plots 
of the 148 rabies viruses with complete Nucleoprotein (N) gene sequences based on the Manhattan distance 
using 6-mers (le�) and alignment (right). In addition, Figs 2 and 3 show the hierarchical clustering of the viruses 
using alignment-based distance and Manhattan distances using 6-mers, respectively. �e clustering results using 
the alignment-based method and the Manhattan distance are highly similar indicating that the alignment and 
alignment-free based methods give roughly similar results.

Figure 4 shows the leave-one-out cross-validation (LOOCV) prediction accuracies of one nearest neighbor 
using alignment-based distance and Manhattan distance with 6-mers, and SVM for di�erent sample sizes. It can 
be seen from the �gure that the average prediction accuracies for the alignment based method and the Manhattan 
distance based method are similar. However, the prediction accuracies for the alignment-based method have an 
relatively larger variance than that for the Manhattan distance based method for almost all the sample sizes con-
sidered. On the other hand, the average prediction accuracies for the SVM based method are lower than that for 
both the alignment and Manhattan distance based methods.

We also use 10-fold and 20-fold cross-validation to estimate the prediction accuracy and the results are given 
in Fig. S4 in supplementary material. �e 10-fold and 20-fold cross-validation results also support that alignment 
based method and the Manhattan distance based method have highly similar performance. Comparing Fig. 4 
with Fig. S4, we can see that the prediction accuracies increase with “N” for N-fold cross-validation, which is 
reasonable since the proportion for the training dataset increases with “N”.

Results based on the coronavirus dataset. Similar to the rabies virus dataset, we �rst visually check 
the pairwise distance matrix using MDS and hierarchical clustering. Figure 5 shows the MDS plots of the 707 
coronaviruses with spike gene sequences based on alignment-free and alignment distances. Figures 6 and 7 
show the hierarchical clustering of the viruses using alignment-based distance and the Manhattan distance with 
k-mer length of 6, respectively. Figure 8 shows the LOOCV prediction accuracies of the coronavirus dataset using 
alignment-based distance and Manhattan distance, and SVM for di�erent sample sizes. �e prediction accuracies 
for all the methods are greater than 0.90 when the sample size is above 400. When the sample size is <400, the 
prediction accuracy of SVM is somewhat higher than the KNN methods. Similar results are observed based on 
10-fold and 20-fold cross-validations as shown in Fig. S5 in supplementary material.

Figure 1. MDS plots for the 148 rabies viruses with complete N gene sequences based on the Manhattan 
distance using 6-mers (le�) and alignment (right). Each point in the plots is a sample colored by the host 
species’ name.
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Results based on the influenza A dataset. Parallel to the investigations for the rabies virus and the coro-
navirus, Fig. 9 shows the MDS plots for the 1,200 in�uenza A viruses with N gene sequences based on Manhattan 
distance using 6-mers and alignment method. Figures S6 and S7 show the corresponding hierarchical clustering 
results. �e MDS and hierarchical clustering plots do not show a clear clustering pattern according to the hosts. A 
potential explanation is that the sources of the in�uenza A virus data are much more diverse and consist of several 
di�erent virus clades. Figure 10 shows the LOOCV prediction accuracies of the in�uenza A virus dataset using 
alignment-based distance, Manhattan distance using 6-mers, and SVM for di�erent sample sizes. �e prediction 
accuracies for alignment and alignment-free method are similar, and are higher than that of SVM method for 
this dataset. Similar results are obtained based on 10-fold and 20-fold cross-validations as shown in Fig. S8 in 
supplementary material.

Discussion
In this paper, we investigate the use of alignment-based and alignment-free distance methods and support vec-
tor machine to predict the host of viruses based on three virus datasets: rabies virus, coronavirus and in�uenza 
A virus. None of the three methods consistently outperforms other methods. For the rabies virus dataset, the 
alignment based and alignment-free methods perform similarly and both outperform SVM with a large margin. 
For the coronavirus dataset, SVM outperforms alignment based method followed by alignment-free method 
when the sample size is low. When the number of samples is large, eg. over 400, all the three methods perform 
similarly. Finally, for the in�uenza A virus, none of the methods performs well with prediction accuracies below 
0.6. �e alignment-free method does a little bit better than the alignment based method and both outperform 
SVM. �us, this study shows both alignment-based and alignment-free methods can be e�ectively used to predict 
the hosts of viruses.

Figure 2. Hierarchical clustering of 148 rabies viruses with complete N gene sequences using the alignment-
based distances of the virus sequences. Each leaf in the �gure is a virus sample colored by the host species’ name.
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Figure 3. Hierarchical clustering of 148 rabies viruses with complete N gene sequences based on the Manhattan 
distance between the 6-mer frequencies of the virus sequences. Each leaf in the �gure is a virus sample colored 
by the host species’ name.

Figure 4. �e prediction accuracy for di�erent sample sizes for the rabies virus dataset using alignment-based 
distance, Manhattan distance with 6-mers and one nearest neighbor, and SVM. �e smooth lines are the �tted 
curves for the mean prediction accuracy for di�erent sample sizes. Ma: Manhattan distance; align: Alignment 
based method; SVM: support vector machine based method.



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |  (2018) 8:10032  | DOI:10.1038/s41598-018-28308-x

Figures S1–S3 in the supplementary material show that the prediction accuracies of the various alignment-free 
and alignment methods tend to have large variation for K from 1 to 5 and become stable for K from 5 to 10. 
�erefore, we choose K = 7 for the coronaviruses and in�uenza A viruses datasets, and choose K = 1 for the rabies 

Figure 5. MDS plots for the 707 coronaviruses with spike gene sequences based on the distances calculated by 
the manhattan distance with 6-mers (le�) and alignment (right). Each point in the plots is a sample colored by 
the host’s name.

Figure 6. Hierarchical clustering of the 707 coronaviruses with spike gene sequences using the alignment-
based distances of the virus sequences. Each leaf in the �gure is a virus sample colored by the host’s name.
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viruses dataset, since the sample size of the rabies dataset is small and the viruses are unevenly distributed in 
di�erent host species, while the sample sizes of the other two datasets are much larger.

For both the rabies and the in�uenza A viruses, we use the nucleoprotein gene sequences, while for the coro-
navirus we use the spike gene. It was shown before that the spike gene evolves fast to better prevent the virus from 
detection by the host16, while nucleoprotein gene is much more conserved, especially at the non-synonymous 
sites17,18. For conserved genes like nucleoprotein genes, longer k-mers than mono- and dinucleotides are needed 

Figure 7. Hierarchical clustering of the 707 coronaviruses with spike gene sequences using the Manhattan 
distance between the 6-mer frequencies of the virus sequences. Each leaf in the �gure is a virus sample colored 
by the host’s name.

Figure 8. �e prediction accuracy for di�erent sample sizes for the coronaviruses dataset using alignment-
based distance, Manhattan distance with 6-mers and 7 nearest neighbor, and SVM. �e smooth lines are 
the �tted curves for the mean prediction accuracy for di�erent sample sizes. Ma: Manhattan distance; align: 
Alignment based method; SVM: support vector machine based method.
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to distinguish the sequences. �erefore, SVM using only mono- and dinucleotide does not perform as well as 
alignment based or Manhattan distance using 6-mers for the rabies and in�uenza A viruses. On the other hand, 
for highly divergent genes such as the spike genes, mono- and dinucleotide frequencies are enough to capture the 
di�erences among the sequences resulting in better performance of the SVM method.

Our study has several limitations. First, since viruses can jump from one host to another, a virus can belong to 
multiple hosts. We use the host which the virus is discovered from as its only host. However, the virus may also 
use other unknown species di�erent from the one it was discovered from as hosts. �is will in�uence the predic-
tion accuracy for both alignment and alignment-free methods. Second, we only investigate three types of viruses 
and there are many other types of viruses available. More studies are needed to see the general applicability of our 
prediction methods.

In conclusion, our study shows that both alignment based and alignment-free methods can be successfully 
used to predict the hosts of viruses. �erefore, when alignment is di�cult or too time-consuming, alignment-free 
methods provide a promising alternative to predict the hosts of new viruses.

Materials and Methods
Materials. We analyze three virus datasets with di�erent characteristics: rabies, coronavirus, and in�uenza 
A virus, to see if consistent results related to the relative performance of alignment, alignment-free, and machine 
learning based approaches can be obtained.

Figure 9. MDS plots for the in�uenza A viruses with N gene sequences based on the distances calculated 
using Manhattan distance of 6-mer frequencies (le�) and alignment method (right). Each point in the plots is a 
sample colored by the host species’ name.

Figure 10. �e prediction accuracy for di�erent sample sizes for in�uenza A dataset using alignment-based 
distance, Manhattan distance with 6-mers and 7 nearest neighbor, and SVM. �e smooth lines are the �tted 
curves for mean prediction accuracy for di�erent sample sizes.
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�e rabies virus dataset from Streicker et al.5. �e rabies virus is a single-stranded RNA virus and has a wide 
host range. We �rst investigate the rabies virus dataset from Streicker et al.5 consisting of 372 rabies virus samples 
from 23 bat host species. Among them, 148 viruses have complete N gene (1,353 bp) sequenced. In this paper, we 
concentrate on the study of these 148 viruses. �e accession numbers of the complete genomes and N gene of the 
viruses were provided in Streicker et al.5 and the corresponding gene sequences can be downloaded from NCBI 
genbank database using their accession numbers at https://www.ncbi.nlm.nih.gov/genbank/.

�e coronavirus dataset from Tang et al.10. Tang et al.10 developed a SVM based method using mono- and 
di-nucleotide sequences to predict the host of coronavirus. We use the same data as in Tang et al.10 consisting of 
724 coronavirus samples from 6 host species (human, porcine, bovine, bat, murine and avian). Among them, 392 
samples have complete genome sequenced, and 326 samples only have their spike genes sequenced. We extract 
the spike gene sequences from the complete genomes by checking the coding sequence annotation in NCBI and 
obtain additional 381 extracted spike gene sequences. Together with the original 326 sequences, we have a total of 
707 all spike sequences and we focus on the investigation of these 707 spike sequences.

In�uenza A virus dataset from the In�uenza Research Database19. Finally, we investigate the host of in�uenza 
A virus as in Kargarfard et al.11. We collect the avian in�uenza A virus from the In�uenza Research Database19 
and exclude those sequences with ambiguous host species such as chicken, duck, avian, and gull, and also those 
host species with less than 200 virus sequences in the database. We restrict the samples to the same taxonomic 
rank, and choose the level as “species” in the taxonomic hierarchy. �e prediction can surely be easier for more 
general categories. �ere are six remaining avian host species: American Black Duck Anas rubripes, Blue-Winged 
Teal Anas discors, Green-Winged Teal Anas carolinensis, Northern Pintail Anas acuta, Northern Shoveler Anas 
clypeata, and Ruddy Turnstone Arenaria interpres, for further study. For each host species, we randomly choose 
200 virus sequences in our study.

Computational methods. Calculate the pairwise distance/dissimilarity matrix of viruses. We compare the 
performance of alignment-based, alignment-free, and machine learning based approaches for inferring the hosts 
of viruses. For the alignment-based method, we �rst use the so�ware “Clustal Omega”20 for multiple sequence 
alignment using the default parameters and then use the so�ware “Phylip”21 and choose the “F84” evolutionary 
model to calculate the pairwise distance using the alignment results as input. We also investigate several 
alignment-free methods for calculating the distances/dissimilarities between viral sequences using the CAFE 
package15 and these include Chebyshev, Euclidean, Manhattan, CVTree22, d2, 

⁎d2 , d S
2  13, etc. �e de�nitions of these 

distances/dissimilarities were given in Lu et al.15. Our objective is to evaluate if alignment-free approaches have 
similar accuracies in predicting the hosts of virus sequences, but with much high computational e�ciency.

Visualize the distance/dissimilarity matrix. To empirically see if viruses from the same host tend to be more 
similar to each other than those from di�erent hosts, we �rst use MDS23 to project the virus sequences onto 
two-dimensional Euclidean space. MDS is a non-linear dimensionality reduction method that can reduce the 
pairwise distance matrix to lower dimensional space, while best recapitulating the original distance matrix. We 
also use hierarchical clustering with average linkage to visualize the relationship among the viruses, and intui-
tively assess whether the viruses infecting the same hosts are indeed closer than those infecting di�erent hosts.

Predict the host of a virus. We apply KNN24 method based on the pairwise distance matrix for both 
alignment-based and alignment-free distances for predicting the host of the virus. �e alignment-free distance 
measures include Chebyshev (Ch), Euclidean (Eu), Manhattan (Ma), CVTree (CVT), d2, 

⁎d2  and d S
2  with various 

k-mer sizes. For each virus, we choose the K viruses that are closest to the virus from the pairwise distance matrix, 
and then count the frequency of the hosts of the K viruses. We use the most frequent host as the predicted host of 
the virus. For machine learning based prediction, we use SVM based on mono– and dinucleotide frequencies (3 
mononucleotide frequencies and 16 dinucleotide biases10). R package e1071 was used for SVM analysis with 
“C-classi�cation” as the model type and “Radial” as the SVM kernel10.

We use LOOCV25 and N-fold cross-validation to evaluate the prediction accuracy. We implement this process 
for all the viruses and then compare the predicted host with its true host to obtain the prediction accuracy.

Investigate the impact of sample size on prediction accuracy. �e number of known sequences for each host can 
signi�cantly a�ect the prediction accuracy. In order to quantify the e�ects of sample size on prediction accuracy, 
we randomly choose a certain number of sequences and then apply the KNN and SVM approaches to the set of 
sequences to obtain the prediction accuracy as described above. We repeat this process for a series of sample sizes 
to see how the prediction accuracy changes with sample size. We let the sample size change from 70 to 145 with a 
step size of 5 for the rabies virus dataset, from 100 to 700 with a step size of 50 for the coronavirus, and from 200 
to 1100 with a step size of 100 for the in�uenza A virus dataset. For each sample size, we randomly choose 10 sets 
of sequences and calculate the prediction accuracy for each dataset.

Data availability. All data are publicly available online and can be found based on the information provided 
in Materials and Methods part.
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