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ABSTRACT

We have carried out N-body simulations for rotating star clusters with equal mass and compared

the results with Fokker–Planck models. These two different approaches are found to produce

fairly similar results, although there are some differences with regard to the detailed aspects.

We confirmed the acceleration of the core collapse of a cluster due to an initial non-zero

angular momentum and found a similar evolutionary trend in the central density and velocity

dispersion in both simulations. The degree of acceleration depends on the initial angular

momentum. Angular momentum is being lost from the cluster due to the evaporation of stars

with a large angular momentum on a relaxation time-scale.

Key words: celestial mechanics, stellar dynamics – globular clusters: general.

1 I N T RO D U C T I O N

There are two different approaches to study the dynamical evolution

of collisional stellar systems (e.g. globular clusters): a statistical ap-

proach and direct integration of the N-body equations of motion.

Among the statistical methods, the Fokker–Planck (henceforth re-

ferred to as FP) equation, which is a second-order approximation

of the collisional Boltzmann equation, has been frequently used.

The FP equation is solved by using either Monte Carlo techniques

(e.g. the series of eight papers, from Spitzer & Hart 1971 to Spitzer &

Mathieu 1980, see also an alternative approach by Hénon 1971, and

for recent adaptations Giersz 1998; Joshi, Rasio & Portegies Zwart

2000; Freitag & Benz 2001), or the direct numerical solution of the

discretized FP equation on a mesh. In this paper, we focus on the

latter approach. One-dimensional FP models assuming a spherical

symmetry and isotropic velocity dispersion have been extensively

exploited during the last several decades, and they have successfully

elucidated the full dynamical history of star clusters (Cohn 1980;

Drukier, Fahlman & Richer 1992). Two-dimensional anisotropic

models are a generalization of the one-dimensional model, in which

the anisotropy of the velocity dispersion between the radial and the

tangential directions is taken into account; however, the isotropized

distribution function continues to be used for determining the dif-

fusion coefficients (e.g. Takahashi 1995, 1996, 1997).

The statistical methods have to make several simplifying approx-

imations and have some limitations. More realistic simulations can

be performed by directly integrating the complete equations of mo-

tion of all stars. However, the N-body integration still requires a

⋆E-mail: ekim@astro.snu.ac.kr

huge amount of computing power. An improvement in computing

facilities, particularly the advent of special purpose hardware such

as GRAPE machines (Makino & Taiji 1998; Makino et al. 2003;

Fukushige, Makino & Kawai 2005), made it possible to perform

high-accuracy N-body simulations with one million body (Makino

& Funato 2004; Berczik et al. 2006; Iwasawa, Funato & Makino

2006; Harfst et al. 2007). The comparisons between the results ob-

tained from one- or two-dimensional FP models and direct N-body

models generally show good agreement (e.g. Spurzem & Aarseth

1996). Comparative studies that use the currently available N-body

solver for studying the dynamical evolution of collisional stellar sys-

tems are very important for checking the validity and limitations of

the statistical methods. There have been several previous researches

involving comparative studies (Giersz & Heggie 1994a,b, 1997;

Giersz & Spurzem 1994; Freitag, Rasio & Baumgardt 2006; Khalisi,

Amaro-Seoane & Spurzem 2007) and the comparisons show that

for isolated non-rotating star clusters the results of FP simulations

are generally in good agreement with those of N-body simulations.

However, when a tidal boundary is included, a discrepancy between

the N-body and FP models arises; this discrepancy becomes sen-

sitive to N because the relaxation and crossing time-scales are re-

lated to different dynamical processes (Takahashi & Portegies Zwart

1998; Takahashi & Lee 2000; Baumgardt 2001). For example, the

treatment of the tidal boundary has to be performed carefully in FP

models since the mass evaporation process involves both orbital dy-

namics and two-body relaxation. The N-body model has to imitate

the FP technique to remove stars immediately if they acquire an

energy higher than the tidal energy; with these precautions, good

agreement can be obtained (Spurzem et al. 2005).

Another extension of the one-dimensional FP model was car-

ried out to include the effects of rotation. The first numerical

C© 2007 The Authors. Journal compilation C© 2007 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
8
3
/1

/2
/1

0
6
6
8
4
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Comparative study of N-body and FP simulations 3

simulation of FP models for rotating clusters was pioneered by

Goodman (1983), but neither the results nor the code was pub-

lished. A more detailed and extended work by Einsel & Spurzem

(1999, henceforth referred to as Paper I), who developed a new two-

dimensional FP code named ‘FOPAX’ for this study from scratch, re-

vealed that rotating clusters collapse faster than non-rotating ones. A

post-core collapse study of rotating star clusters, improving ‘FOPAX’

by several features, including an energy source due to formation

and hardening of three-body binaries, was done later by Kim et al.

(2002, henceforth referred to as Paper II). Papers I and II stud-

ied the dynamical evolution of rotating stellar systems using the

orbit-averaged two-dimensional FP equations only for equal-mass

systems. In both cases and in the study of Goodman (1983), it was

assumed that the distribution function f depends only on the en-

ergy and z-component of the angular momentum (Jz). Kim, Lee

& Spurzem (2004, henceforce referred as Paper III) extended the

method to multi-mass systems, and exhibit interesting results con-

cerning the segregation of mass and angular velocity with heavy

stars in the cluster centres. Fiestas et al. (2006) modelled individual

rotating globular clusters using the model, and Fiestas & Spurzem

(in preparation) included a star-accreting central black hole with a

loss cone. In general, according to the strong Jeans theorem there are

three integrals of motion with regard to the orbital motion of stars

in axisymmetric potentials (Binney & Tremaine 1987). Two of the

integrals of motion are known as E and Jz. However, the nature of the

third integral of motion is not known clearly. In addition to the stan-

dard approximation required for FP models, the two-dimensional

FP models presented here and in Papers I–III ignore any effect of

the third integral. For stellar systems not too much flattened, it might

be possible to construct three-dimensional FP models following the

three integral models of Lupton & Gunn (1987), in which the square

of total angular momentum (J2) was adopted as an approximate third

integral. However, it would be an extremely difficult task numeri-

cally and physically (owing to the diffusion coefficients!); even then

it would still be approximate since we do not know the third inte-

gral analytically (cf. Binney & Tremaine 1987 regarding this issue).

Hence, a thorough comparison with direct N-body models appears

to be the best method to acquire knowledge on the validity of all

approximations made in our two-dimensional FP models.

There have been some preliminary studies of rotating star clus-

ters involving comparisons between N-body and FP methods (Boily

2000; Boily & Spurzem 2000; Ardi, Mineshige & Spurzem 2005;

Ernst et al. 2007). Although these authors found good agreements

between these two methods, the number of cases studied is rather

limited. This can be understood in two ways. First, for a smaller

value of N (say up to a few 104) a large number of statistically inde-

pendent simulations are needed, and only the ensemble average can

be compared with the approximate FP models. On the other hand,

different physical models, such as isolated or tidally limited models,

different degrees of central concentrations of stars (i.e. different cen-

tral potential), need to be studied. In this paper, we have carried out

a series of numerical N-body simulations of rotating stellar systems,

which are directly comparable with our two-dimensional FP mod-

els in Papers I and II. By comparing the results with those obtained

from FP models, we can investigate the validity of the assumptions

made in rotating FP models.

This paper is organized as follows. In the next section, we

briefly describe initial N-body models and compare them with

FP models. In Section 3, we present the numerical results ob-

tained from N-body simulations and their comparisons with those

of FP models. The summary and discussions are given in the last

section.

2 T H E M O D E L S

2.1 Numerical methods

The FP code FOPAX, which takes into account the effect of rotation,

was developed in Papers I–III in order to study the secular evolution

of star clusters having initial rotation.

For performing direct N-body simulations to study the dynami-

cal evolution of rotating stellar systems, we have used the currently

available high-accuracy, collisional N-body code NBODY6 (Aarseth

1999). The NBODY6 code uses the fourth-order Hermite scheme with

hierarchical block time-steps (HTSs) and the Ahmad–Cohen neigh-

bour scheme for particle integration. Close encounters between stars

and persistent binaries formed by three-body interactions are solved

for their internal motion by using two-body regularization methods

(Kustaanheimo & Stiefel 1965) and chain regularization (Mikkola

& Aarseth 1990, 1993, 1996, 1998). Although NBODY6 is capable

of dealing with many more astrophysical components such as the

existence of primordial binaries and stellar mass loss due to stellar

evolution, we have considered only the treatment of close encoun-

ters between stars in this study since we are mainly interested in

the role of the initial angular momentum on cluster dynamics and

in comparisons with FP simulations.

2.2 Initial models and boundary condition

In Paper II, the initial two-dimensional FP models are generated

according to Lupton & Gunn (1987). Our initial N-body models

that follow rotating King models with a central concentration of

W0 = 6 have the same conditions as those of two-dimensional FP

models in Paper II. We have constructed the initial models for the

N-body simulations from the two-dimensional FP models in Pa-

per II by random number generation. Three different initial rotations

(ω0 = 0.0, 0.3 and 0.6) are considered in this work. In Table 1, we

list some information on the initial models used for the present sim-

ulations.

Since most globular clusters are bound to their host galaxy, they

are tidally limited and stars escape from them through a tidal bound-

ary. There are many previous studies that considered the effects of

the tidal field on cluster evolution and comprehended it as an impor-

tant component of the evolution (e.g. Lee & Ostriker 1987; Lee &

Goodman 1995; Takahashi & Portegies Zwart 1998; Takahashi &

Lee 2000; Yim & Lee 2002; Spurzem et al. 2005; Lee, Lee & Sung

2006). Among the few different implementations of modelling the

tidal effects, we adopted the instantaneous removal of stars whose

total energy exceeded tidal energy of the cluster. This approximation

is known to be inconsistent with the realistic N-body treatment for

small-N models, but the inconsistency decreases for a large value of

N. We considered the equal-mass models, which are tidally bound

to their host galaxy, in order to compare the obtained results with the

FP results in Paper II. We have modified the original NBODY6 code to

imitate the tidal environment of the clusters modelled with the two-

dimensional FP equation in Paper II; this implies that we promptly

Table 1. Initial parameters for the equal-mass models.

W0 ω0 rt/rc rh/rt Ttot/|W|a N

0.0 18.0 0.15 0.000 10 240

6 0.3 14.5 0.18 0.035 10 240

0.6 9.6 0.24 0.101 10 240

aTtot/|W|: ratio of rotational energy to potential energy.
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4 E. Kim et al.

remove stars whose energies exceed the tidal energy (e > etid, see

equation 1), as considered in two-dimensional FP models. In order

to maintain the density within the tidal radius constant, the tidal

radius decreases with time when there is a loss of mass through the

boundary. Subsequently, we have adjusted the tidal energy at every

regular time-step according to the following expression:

etid (t) = −
G M(t)

rtid

, (1)

where rtid and M(t) are the tidal radius and the total mass of the cluster

within the tidal radius, respectively. We have used the initial tidal

radius obtained from the FP models to compute the mean density

that is kept constant.

The number of stars (N) in a cluster is one of the important pa-

rameters for the dynamical evolution of the cluster. While the com-

putational burden (except for the core-collapse phase) does not sig-

nificantly depend on N in the statistical FP method, the number of

stars is very important in the N-body simulation as the computation

time becomes nearly proportional to N3. We use N = 10 240 for

the present equal-mass models only because the number should be

close to that used in Paper II (N = 5000). In testing the validity of

our FP models, it does not matter that the actual number of stars in

globular clusters is significantly larger. The choice of the number of

stars determines the relative strength of the three-body interactions,

which initiate the post-collapse phase (see e.g. Spurzem & Aarseth

1996).

The realization of the rotating King model for N-body simula-

tions is shown in Figs 1 and 2. We have shown the radial profiles

of density for both the N-body and the FP models (Fig. 1) and the

distribution of the radial and tangential velocities of the stars in

the N-body realization of the rotating King models (Fig. 2). Three

N-body models having different degrees of rotation are compared

with the two-dimensional FP models. Each density profile is ob-

tained from the mean of 10 different initial models generated by

different random seed numbers. The open circles represent the den-

sity profile adopted in the FP models. Each rtid,0 is the initial tidal

radius derived from the FP model. Excellent agreement is observed

Figure 1. Radial profiles of the density for the initial N-body models with

a central potential of W0 = 6 and ω0 = 0.0, 0.3 and 0.6. The upper left-hand

panel shows the FOPAX results. For comparison, the density profile of the

initial FP model with (W0, ω0) = (6, 0.6), (6, 0.3) and (6, 0.0) is shown (open

circles). The N-body realization of the initial model shows good agreement

with that of the FP model, except for the central region.

Figure 2. Tangential and radial velocity distributions of the initial N-body

models with a central potential of W0 = 6 and initial rotation of ω0 =
0.0 (left-hand panels) and 0.6 (right-hand panels). The X-axis represents the

sky-projected equatorial distance measured in units of the initial core radius.

The mean radial velocity distribution along the projected equator is shown

by the filled circles with 1σ errors. The central solid body rotation and the

subsequent highly differential rotation are typical of rotating clusters (see

fig. 10 of Paper II for comparison).

between the radial profile beyond the core radius (rc) in the N-body

realization and that in the FP model. However, within rc, the den-

sity of the N-body model is slightly lower than that of FP model.

This may be due to the fact that the number of stars inside the core

is rather small. However, due to inevitable random fluctuations, it

is impossible to construct initial N-body models perfectly identi-

cal to the FP models. We believe that statistical FP models agree

very well with the averaged N-body models and increasing the num-

ber of stars will improve the degree of agreement. Fig. 1 also shows

that increasing the rotation decreases the concentration of the stellar

system (smaller ratio between the tidal and the core radii).

The position–velocity distributions that are sky-projected are dis-

played in Fig. 2 for the N-body models of non-rotating (ω0 = 0.0,

left-hand panels) and highly rotating (ω0 = 0.6, right-hand panels)

clusters with the central potential of W0 = 6. To have maximum

effect of initial rotation in sky-projected distribution, we project the

model clusters on the sky in such a way that the rotating axis is a

perpendicular axis in the sky-projected plane. The distance to the

rotation axis is measured in units of the initial core radius. We also

show the mean profiles of the radial velocities with 1σ errors (filled

circles). The profile of the radial velocity for the non-rotating model

shows increasing velocity dispersion towards the centre of the clus-

ter. A typical velocity structure of the rotating model is shown clearly

in the distribution of the radial velocities of the rotating model: rigid-

body rotation inside the core radius and highly differential rotation

subsequently.

3 R E S U LT S

3.1 Core collapse, central density, and central velocity

dispersion

We start the discussions by presenting the results for the evolution

of the central density and central velocity dispersion (Fig. 3). The

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 2–10
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Comparative study of N-body and FP simulations 5

Figure 3. Evolution of central density and central velocity dispersion for

each model. FOPAX models are shown with the smooth lines.

Table 2. Time-scales of tidally bound models.

Model W0 ω0 tcc [τ rh,0] tdis [τ rh,0] Mcc

0.0 10.1 24.30 0.63

N-body 6 0.3 8.7 17.75 0.55

0.6 6.9 11.55 0.37

0.0 11.73 22.61 0.59

FOPAX 6 0.3 10.31 16.96 0.48

0.6 7.27 10.08 0.33

central density increases with time due to the two-body relaxation

for an equal-mass system, where the time is measured in units of

initial half-mass relaxation time (τ rh,0). The expression for τ rh,0 for

the equal-mass system is given by the following formula (Spitzer &

Hart 1971):

τrh,0 = 0.138
N 1/2r

3/2

h,0

G1/2m1/2ln�
, (2)

where N, rh,0, G, m and ln� = ln(γ N) denote the total number of

stars, initial half-mass radius, gravitational constant, mean mass of

stars and Coulomb logarithm, respectively. It has been shown by

Giersz & Spurzem (1994) and Giersz & Heggie (1994a,b) that the

best agreement between the direct N-body calculations and orbit-

averaged FP equation is achieved when the coefficient γ in the

Coulomb logarithm has a value of 0.11. Therefore, we use this value

in this work as it is also used in Paper II. Since the half-mass radius

varies with the rotation parameter ω0, the values of τ rh,0 could also

depend on ω0, even for models with the same W0.

The time of core collapse (tcc), the time for the complete disruption

of the cluster (tdis), and the cluster mass at the time of core collapse in

units of initial cluster mass (Mcc) are listed in Table 2. We can easily

note that the rotating models evolve faster than the non-rotating ones,

in both the N-body and FP models. The faster the cluster rotates, the

shorter the time taken for the core collapse. As discussed in detail

in Papers I and II, the acceleration is caused by the combination of

gravothermal and gravogyro instabilities.

In Fig. 3, we show the evolution of the central density (ρc) and

central velocity dispersion (σ c) of the cluster. The results obtained

from the FP and N-body models are displayed as the smooth lines

Figure 4. Time-evolutions of the Lagrangian radii containing 1, 5, 10, 20,

50 and 75 per cent of the initial cluster mass. The initial parameters that

characterize the cluster model are written on the lower left-hand corner of

each panel. The FOPAX calculations are shown with the dashed lines on each

panel.

and solid lines with a large fluctuation, respectively. Although the

core collapse occurs at slightly different times (one can estimate

tcc more accurately in Fig. 4), there is good agreement between the

FP and N-body results. The N-body model produces rather noisy

data since there is a significant statistical fluctuation in the phys-

ical parameters. However, we can still perform some quantitative

comparisons between the FP and the N-body approaches. In the

early evolutionary stage, the central density derived from the N-

body model is less than the value obtained by FP for the model with

ω0 = 0.6. This may reflect the difficulty in determination of the

central density for N-body models, especially for rapidly rotating

clusters that are significantly flattened. Therefore, the most rapidly

rotating model has the largest discrepancy with regard to the central

density between the N-body and the FP models.

From Table 2, we note that the times for core collapse in the FP

simulations are generally greater than those in the N-body simu-

lations by 5–15 per cent. Apparently, different approaches should

yield some different results, and we regard a small difference of

5–15 per cent in tcc as being insignificant. These differences would

decrease for large N models as the assumptions made in the FP

method become more appropriate. In fact, we have observed that

tcc decreases for models with large values of N when we compared

the simulations performed for N-body models with N = 5000 and

10 240.

After the core collapse, the evolutions of ρc derived from the

N-body and FP models are also somewhat different from each other.

Towards the end of the evolution, the difference becomes quite sig-

nificant. The disruption time of the N-body models is slightly larger

than that of the FP models. This is due to the fact that the escape

rate varies with the number of stars. We perform more detailed

comparisons on the evaporation of stars in Section 3.3. It is easier

to determine the exact core-collapse time based on the evolution of

the central velocity dispersion because the fluctuation amplitude is

smaller than that of the central density. The times of core collapse

listed in Table 2 are determined by inspecting the behaviour of σ c.

We show the evolution of the Lagrangian radii of the equal-mass

models in Fig. 4. The results from the FP simulation are displayed

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 2–10
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6 E. Kim et al.

Figure 5. The evolution of σ c as a function of ρc. σ c follows power laws

during pre- and post-collapse states. The evolution is nearly independent of

ω0.

by the dashed lines. Each line represents the radii where the cluster

contains 1, 5, 10, 20, 50 and 75 per cent of the initial mass of the

cluster. It is not straightforward to determine the Lagrangian radii in

a flattened system. In Paper I, the Lagrangian radii were evaluated

along the specific zenith angle where the effects of flattening on the

mass shells are expected to be less important; the same zenith angle

is used in Fig. 4. However, as our models are nearly spherical, we

determine the Lagrangian radii on the assumption that the system

is spherically symmetric for the N-body models. As seen in Fig. 4,

differences between the FP and the N-body models are very small.

Analysing in more depth, we note that after the core collapse, the

inner part of the cluster expands more rapidly in the FP model than

in the N-body model, although the difference is rather small.

The relationship between the central density and the central ve-

locity dispersion is shown in Fig. 5. The upper left-hand panel

(Fig. 5a) shows the relation between σ c and ρc which is obtained

from all the three FP models with different initial rotations. The

other three panels (Figs 5b–d) show the results of the N-body mod-

els. From Papers I and II, we know that this relationship is not

affected considerably by the initial rotation, as shown in Fig. 5(a).

Again, we find good agreement between the FP and the N-body

models. The large amount of scatter during the post-core collapse

phase, as shown in Fig. 5 is mainly due to the large fluctuation in

the central density. The power-law behaviour of σ c on ρc during

the pre-collapse phase is a consequence of the self-similarity of the

collapsing core and it is well known that σ c ∝ ρ0.1
c during this stage

(Cohn 1980). During the post-collapse phase, we can derive the

relationship between σ c and ρc using an energy balance argument

and the assumption of self-similar evolution (see Section 3.4). It

follows that σ c ∝ ρβ
c with β = 0.25, which is in good agreement

with β = 0.23 derived from the FP model in Paper II. The N-body

results appear to follow similar power-law behaviour, although the

power-law index β is difficult to determine because of the large

scatter.

From the N-body calculations, we have confirmed the earlier find-

ing of a significant acceleration in cluster evolution due to rotation,

which was obtained from the FP calculations in Papers I and II. We

also find that both the N-body and FP models give similar results,

although there are small differences with regard to the time of core

collapse, and the disruption times.

3.2 Evolutions of anisotropy and angular momentum

In axially symmetric systems, the natural decomposition of velocity

vectors is to use the cylindrical coordinate which has its origin at

the centre of mass of the cluster. We investigate the evolution of the

velocity dispersions (σ R, σ φ , and σ z) and show the evolution of these

quantities in Fig. 6, where (R, φ, z) represents the conventional axis

of the cylindrical coordinate system.

For initially rotating models, these three velocity dispersions have

different values. In the right-hand panels of Fig. 6, the ratio of σ φ

to σ 0 is initially greater than 1 for the rotating models and ap-

proaches the isotropic value of 1, where σ 0 represents the average

one-dimensional velocity dispersion defined by σ0 = (σ 2
R + σ 2

φ +
σ 2

z )1/2/
√

3.

The angular momentum in rotating stellar systems is transferred

outwards through two-body relaxation, and is also lost due to es-

caping stars. The stars gaining a large angular momentum migrate

to the outer parts of the system, while those losing angular momen-

tum drift towards the central parts. As the stars with a high angular

momentum move outwards and finally escape from the cluster, the

total angular momentum of the system decreases with time.

In Fig. 7, we display the evolutions of the z-component of the an-

gular momentum per unit mass (Jz) of an entire cluster. The results

from the N-body models are shown by the solid lines, while those

from the FP models are shown by the dashed lines. To indicate the

degree of error in determining Jz, we also show the time-evolution of

Jz for the non-rotating model. We first note that there is good agree-

ment between the N-body and FP results. The effect of neglecting

the third integral in the FP models is minimized when dealing with

global cluster properties (e.g. total cluster mass and total angular mo-

mentum), while this effect is severe for local properties (e.g. central

density). It is clearly shown that Jz monotonically decreases with

time. The loss rate of angular momentum is large in the early phases

and decreases as the cluster evolves (see Fig. 7b). The combined

Figure 6. Time-evolutions of σR, σ φ and σ Z (left-hand panels) and σ φ /σ 0

(right-hand panels) for each model. At the time of core collapse, σR, σ φ

and σ Z are almost equal and σ φ /σ 0 ≈ 1, where σ 0 is the one-dimensional

velocity dispersion.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 2–10
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Comparative study of N-body and FP simulations 7

Figure 7. Evolution of the z-component of angular momentum per unit mass

(Jz) (Fig. 7a) and the loss rate of Jz (Fig. 7b). The results for the N-body model

and FP model are shown with the solid lines and dashed lines, respectively.

The Jz evolution for the non-rotating model indicates the corresponding error

in determining the Jz. It is clearly shown that Jz for rotating models decreases

with time due to the escape of stars possessing an angular momentum and

that the time-evolution of Jz in the N-body and FP models agrees quite well.

The loss rate of Jz for the N-body models (solid lines) is smoothed for easier

comparison.

effect of gravitation and rotation accelerates the evolution of the

cluster. A substantial loss of the initial angular momentum in an

entire cluster prevents rotation from playing an important role in

the evolution of a cluster in later phases. Since the cluster is losing

mass at a nearly constant rate, the total angular momentum of the

cluster decreases more rapidly than Jz.

3.3 Evolutions of rotation curve

We can construct the rotation curves by computing the averages of

Vφ , which is the φ-component of the velocity of stars. We choose the

model with ω0 = 0.6 and present the distribution of Vφ for all stars

at some specific epochs in Fig. 8. The asymmetry of Vφ with respect

to Vφ = 0 indicates the global rotation of the stellar system. During

the pre-collapse phase, Vφ becomes more dispersive, particularly

around the central region. A large spread near the centre (R ∼ 0)

at t = tcc and the slight asymmetry of Vφ indicate that the cluster

is losing angular momentum; this also indicates that as the core

collapse approaches, the stars are falling into the central region of

the cluster with a high angular speed (but low rotation velocity).

After tcc, Vφ still has a small amount of asymmetry.

The radial profiles of the rotational velocity (vrot) for the model

with ω0 = 0.6 are shown in Fig. 9. We also display the radial profiles

of vrot obtained from the FP model by the dashed lines. The profiles

at different evolutionary epochs are shown with different symbols:

the filled squares for the initial model, open circles for the pre-

collapse phase, filled circles at the time of core collapse, and open

star marks for the post-collapse phase. The radial profiles in Fig. 9

are obtained by averaging Vφ for stars having the same value of R

in cylindrical coordinates.

The radial profiles of vrot at the initial epoch shows good agree-

ment between the N-body and FP models except for a very central

region (R < 0.5rc). The amount of rotation decreases with time and

Figure 8. Distribution of the Vφ at four selected evolutionary epochs in a

cylindrical coordinate system for a model with (W0, ω0) = (6, 0.6). When

there is no rotation, it should show a symmetry with respect to Vφ = 0.

A asymmetry of Vφ disappears with increasing time due to the loss of the

angular momentum. The filled circles are the average Vφ values and the error

bar corresponds to 1σ dispersion.

Figure 9. Radial profiles of mean rotational velocities of the cluster model

with (W0, ω0) = (6, 0.6) at four evolutionary stages. The radii are measured in

units of the current core radius (rc). For comparison, we show the rotational

profiles from the FP models by the dashed lines.

the radius where vrot has the peak value progresses outwards when

the radius is measured in units of the current core radius. This is

a consequence of the self-similar evolution during the pre-collapse

phase (Papers I and II). The radial profiles of vrot for the N-body

model during pre-collapse phases agree well with those for the FP

model. However, at later times, the two methods yield somewhat

different rotation curves. For example, at the time of core collapse,

the N-body model predicts a larger rotation speed for the stars in the

central and outer parts as compared to the FP method. The rotation

seems to continue until a very late epoch (t = 10trh,0) in the N-body

model, while there is virtually no rotation left in the FP model.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 2–10

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
8
3
/1

/2
/1

0
6
6
8
4
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



8 E. Kim et al.

2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4

(c) t=6.9 (cc) (d) t=10

(b) t=3.2(a) t=0

Figure 10. Density distribution of stars in (R, Z) coordinate at four selected

evolutionary epochs for a model with (W0, ω0) = (6, 0.6) as computed by

N-body (contour map) and FP methods (colour map). The horizontal axis is

R running from 0 to 3 in units of the initial core radius, while the vertical

axis is the z-coordinate with the same scale. The N-body and FP methods

give almost the same density distribution.

In Fig. 10, we have shown the distribution of the stellar density

in the form of a colour map for the FP results and in the form of iso-

density contours for the N-body results. The four panels represent

different epochs for the cluster with largest initial rotation speed

(ω0 = 0.6). We display the cluster shapes in (R, z) coordinates be-

cause we assume that the initial model has the axis of rotation along

z in cylindrical coordinates. To compare the cluster shapes at dif-

ferent epochs, we measure the size in units of initial core radius

(rc,0). First, we note that the shapes computed by the N-body and FP

models are almost identical. As the rotation becomes negligible, the

stellar system becomes more spherical. The effects of rotation on

the flattened shape of a cluster are observed during the time of core

collapse and the post-collapse phase (Figs 10c and d); the shape of

the cluster around the central region is almost spherical.

3.4 Tidal boundary

If the cluster rotates around the host galaxy on a circular orbit, the

tidal field experienced by the cluster does not change with time. In

a steady tidal field, the tidal radius is expressed as follows:

rtid ≈
(

M

3MG

)1/3

RG, (3)

where M is the total mass of the cluster within the tidal boundary;

RG, the distance of the cluster from the galactic centre; and MG, the

galactic mass within RG. The above equation ensures that the mean

density within the tidal radius is a constant. As the cluster loses the

stars beyond the tidal boundary, the tidal radius has been adjusted

to maintain a constant mean density.

We depict the evolution of the total mass of the cluster in Fig. 11.

During the pre-collapse phase, the evolution of the total mass, which

is computed from the N-body and FP models, is similar but shows

Figure 11. The evolution of the total mass of the cluster. The discrepancy

between FOPAX and NBODY6 is mainly due to the number of particles after

the core collapse.

small deviation from each other. However, after the core collapse,

the two methods result in somewhat different behaviour. This dis-

crepancy in post-collapse phase is partly due to the accumulation

of small difference during the pre-collapse phase. The escape rate

of the N-body simulation is lower than that of the FP simulation.

This may be caused due to the decrease in the number of stars

in the cluster. We have assumed the instantaneous escape of stars

whose energy exceeds the tidal energy. However, in the FP simula-

tions, the time-step is determined by the fraction of the relaxation

time, while the N-body uses a time-step proportional to the crossing

time-scale. As the cluster loses its mass, the ratio between these

two time-steps changes. In other words, the crossing time-scale and

the relaxation time-scale have the following relationship (Binney &

Tremaine 1987):

trelax ≈
0.1N

ln �
tcross. (4)

Therefore, tcross/trelax increases as N decreases. This means that the

N-body simulation removes stars less effectively than the FP sim-

ulation for small values of N; this is why we observe a long tail in

the N-body results in Fig. 11. In N-body simulations, after the core

collapse, the number of stars remaining in the cluster is of the order

of 103. This is not a sufficient number to obtain results comparable

with the FP method. Hence, the escape rate for N-body models is

lesser than that for the FP models during the late stages of the evo-

lution and N-body models survive longer than FP models. We can

also observe this effect in Fig. 3. In this figure, central density fea-

tures are observed to be inconsistent between the N-body and the FP

models towards the end of the evolution. With more stars, this gap

would become narrower. Since the number of stars in a real globular

cluster is considerably larger than that used in the present N-body

simulations, the difference between N-body and FP models would

decrease for a realistic number of stars (see Takahashi & Portegies

Zwart 1998).

3.5 Core, half-mass, and tidal radii

We now investigate the evolution of the core, half-mass, and tidal

radii of the star cluster. The behaviour of rtid and rc in units of the

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 2–10
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Comparative study of N-body and FP simulations 9

Figure 12. Time-evolution of rc, rh and rtid measured in units of the initial

half-mass radius (rh, 0). The most rapidly rotating cluster has the largest rc

and rh, and the smallest rtid.

initial half-mass radius (rh,0) is shown in Fig. 12. As the rapidly

rotating initial model has a half-mass radius smaller than the slowly

rotating model, the initial value of rc/rh for the most rapidly rotating

cluster is larger than that of the other two models, as shown in Fig. 13

(Paper II). The evolutions of rc and rtid in units of rh at the same

evolutionary stage as those in Fig. 12 are shown in Fig. 13. We find

that there are significant differences in rc/rh between the FP and the

N-body models, while the difference is not so apparent in rtid/rh. This

reflects the difficulties in determining rc for the N-body models with

a relatively small value of N rather than any systematic differences

in different approaches. Both rc and rh decrease with time, although

there is a difference in the decreasing rate that depends on the initial

degree of rotation. After the core collapse, both rc and rh increase

for some time at almost the same rate due to self-similar expansion.

Subsequently, the tidal boundary shrinks rapidly after core bounce.

Therefore, the half-mass radius begins to decrease again. However,

the shrinking of rtid does not affect the central region and rc continues

to increase. At the end of the evolution, rc shows a steep increase;

this signals the complete disruption of the cluster.

After the core collapse, rc/rh and rtid/rh show nearly the same

behaviour. The value of rc/rh is almost constant and the evolution

of rtid/rh for different initial models is similar to each other and

independent of the rotation parameter ω0. We already have assumed

the self-similar evolution of the inner part of the stellar system in

order to explain the relation between ρc and σ c after tcc (Fig. 4).

We can express σ 2
c ∼ Mc

rc
and σ 2

h ∼ Mh

rh
, where Mc and Mh are the

masses within rc and rh, respectively. Since the inner parts of the

cluster are nearly isothermal, we obtain σ h/σ c = constant. With the

self-similarity assumption (rc/rh = constant), we can rewrite σ c as

σ c ∼ ρ
1/6

h M1/3. On the other hand, according to Goodman (1987),

the energy balance argument predicts that ρc/ρh ∝ M4/3. Therefore,

σ c ∼ ρ1/4
c ρ

−1/12

h . If we use the tidal boundary condition, M/r3
tid =

constant and ρh ∼ M

r3
h

, we can obtain the following relation:

ln σc ∼
1

4
ln ρc −

1

4
ln

rtid

rh

. (5)

The variation in rtid

rh
during the post-collapse phase is very small

(by a factor of few) as compared with that in ρc (by a few orders

Figure 13. Time-evolution of rc/rh and rtid/rh. The self-similarity feature

after tcc is shown. In particular, the evolution of rtid/rh shows good agreement

with that of FP.

of magnitude), except near the disruption time. Therefore, we can

approximately write the following relation:

ln σc ∼
1

4
ln ρc. (6)

If we express σ c ∝ ρβ
c , β = 0.25, then this value is close to 0.23 that

was achieved in Paper II.

4 S U M M A RY A N D D I S C U S S I O N

We have performed numerical simulations for the evolution of ini-

tially rotating star clusters with equal mass using NBODY6 and have

compared the results with those computed by the direct integration

of the FP equation. We have considered clusters with N = 10 240.

For critical comparisons between N-body and FP models, we con-

structed the initial N-body models using the initial two-dimensional

distribution function used for FP models.

We observed the acceleration of the core collapse, as reported

in Papers I and II. The degree of acceleration obtained from the

present N-body models is slightly different from that obtained from

the FP models; however, the small difference in the core-collapse

time between the N-body and statistical methods (FP model, gaseous

model, etc.) has also been observed earlier (Spurzem & Aarseth

1996). The entire evolutionary trend of the central density agrees

with that of the FP models.

The z-component of the specific angular momentum (Jz) is ob-

served to monotonically decrease with time for the clusters with

initial rotation. The global evolutionary trend of Jz between the N-

body and the FP models shows excellent agreement. The loss rate

of Jz decreases as the cluster evolves. Therefore, we conclude that

during the early stages the existence of initial rotation significantly

affects the entire cluster evolution.

In FP simulations, the cluster evolution will be independent of

the third integral to the end of time. On the other hand, in the N-

body simulations, the third integral effect may appear during the

evolution. In addition, there is a limit on the number of stars and the

random fluctuations of the N-body models in this study and these

limits also causes differences with the FP method. Therefore, we
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10 E. Kim et al.

need to perform more N-body simulations with a larger number of

stars or with various models by using different random numbers.
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