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Purpose: Magnetic resonance imaging (MRI)-guided radiation therapy (RT) treatment planning is

limited by the fact that the electron density distribution required for dose calculation is not readily

provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms

recently reported in the literature, including segmentation-based, atlas-based and machine learning

techniques, using the same cohort of patients and quantitative evaluation metrics.

Methods: Six MRI-guided synthetic CT generation algorithms were evaluated: one segmentation

technique into a single tissue class (water-only), four atlas-based techniques, namely, median value of

atlas images (ALMedian)1, atlas-based local weighted voting (ALWV)2, bone enhanced atlas-based

local weighted voting (ALWV-Bone)3, iterative atlas-based local weighted voting (ALWV-Iter)4, and

a machine learning technique using deep convolution neural network (DCNN)5.

Results: Organ auto-contouring from MR images was evaluated for bladder, rectum, bones, and

body boundary. Overall, DCNN exhibited higher segmentation accuracy resulting in Dice indices

(DSC) of 0.93 � 0.17, 0.90 � 0.04, and 0.93 � 0.02 for bladder, rectum, and bones, respectively.

On the other hand, ALMedian showed the lowest accuracy with DSC of 0.82 � 0.20, 0.81 � 0.08,

and 0.88 � 0.04, respectively. DCNN reached the best performance in terms of accurate derivation

of synthetic CT values within each organ, with a mean absolute error within the body contour of

32.7 � 7.9 HU, followed by the advanced atlas-based methods (ALWV: 40.5 � 8.2 HU, ALWV-

Iter: 42.4 � 8.1 HU, ALWV-Bone: 44.0 � 8.9 HU). ALMedian led to the highest error

(52.1 � 11.1 HU). Considering the dosimetric evaluation results, ALWV-Iter, ALWV, DCNN and

ALWV-Bone led to similar mean dose estimation within each organ at risk and target volume with

less than 1% dose discrepancy. However, the two-dimensional gamma analysis demonstrated higher

pass rates for ALWV-Bone, DCNN, ALMedian and ALWV-Iter at 1%/1 mm criterion with

94.99 � 5.15%, 94.59 � 5.65%, 93.68 � 5.53% and 93.10 � 5.99% success, respectively, while

ALWVand water-only resulted in 86.91 � 13.50% and 80.77 � 12.10%, respectively.

Conclusions: Overall, machine learning and advanced atlas-based methods exhibited promising per-

formance by achieving reliable organ segmentation and synthetic CT generation. DCNN appears to

have slightly better performance by achieving accurate automated organ segmentation and relatively

small dosimetric errors (followed closely by advanced atlas-based methods, which in some cases

achieved similar performance). However, the DCNN approach showed higher vulnerability to

anatomical variation, where a greater number of outliers was observed with this method. Considering

5218 Med. Phys. 45 (11), November 2018 0094-2405/2018/45(11)/5218/16 © 2018 American Association of Physicists in Medicine 5218



the dosimetric results obtained from the evaluated methods, the challenge of electron density estima-

tion from MR images can be resolved with a clinically tolerable error. © 2018 American Association

of Physicists in Medicine [https://doi.org/10.1002/mp.13187]

Key words: MRI-guided radiotherapy planning, CT synthesis, segmentation, atlas-based, machine

learning

1. INTRODUCTION

Computed tomography (CT) is critical in radiotherapy treat-

ment planning as there is a direct relationship between CT

intensity values and tissue electron densities. However, organ

delineation on CT images is challenging owing to low soft-

tissue contrast, in particular for brain, head and neck, and pel-

vic regions6. In this regard, magnetic resonance imaging

(MRI), as a structural imaging modality, offers improved

soft-tissue contrast and organ visualization compared to CT

images. Beside excellent soft-tissue contrast, advantages of

MRI-guided radiation therapy (RT) planning include no

exposure to ionizing radiation and cost reduction as no plan-

ning CT needs to be acquired, multi-parametric imaging pos-

sibilities offered by MRI, and elimination of uncertainties

raised by imperfect coregistration.7,8 The fact that MRI does

not directly provide electron density information owing to

different physical principles, challenges the calculation of

dose distribution based on MRI and is, aside from engineer-

ing aspects, one of the major limitations of combining an MR

scanner with a linear accelerator.9

Eliminating the CT scan from the radiation therapy plan-

ning chain is not a trivial problem and necessitates accurate

estimation of electron density from the alternative MRI

modality. The techniques proposed in the literature to esti-

mate electron density maps from MR images can be catego-

rized into three generic categories.9–11 (a) Bulk segmentation:

This approach relies on bulk segmentation of the MR images

into a number of tissue classes followed by setting a homoge-

nous predefined density to each region. Tissue classes com-

monly include water, fat, air, or bone.12 Bony structures can

be identified using a specialized ultra-short echo time (UTE)

sequence, which is able to capture transient signal from com-

ponents with a short T2 relaxation time.13–15 This sequence,

however, suffers from long acquisition time compared to con-

ventional MR sequences, low signal-to-noise ratio and partial

volume effect which lead to significant bone segmentation

errors.16 (b) Atlas-based methods: This approach involves

rigid and nonrigid mapping of atlas CT images onto a target

MR image. An atlas dataset of aligned CT-MR image pairs is

created to accurately map complex anatomy, where, in the

first step, MR atlas images are mapped to the target MR

image pairwise. Thereafter, the corresponding atlas CT

images are transformed using these transformation maps and

an estimate of the target electron density map is obtained by

fusion of the transformed atlas CT images.17,18 (c) Machine

learning: Generally speaking, this approach attempts to esti-

mate tissues electron densities directly from intensities of

MR images. The training phase is the fundamental part of

this approach which involves a data set of aligned CT-MR

image pairs, similar to the atlas-based method. The algorithm

learns the intensity mapping from MR image to electron den-

sity map normally through highly nonlinear systems. There

are a number of highly effective machine learning algorithms

such as random forest19 and convolutional neural net-

works5,20 which have shown excellent capability to estimate

accurate electron density maps directly from MR images.

So far, many of the algorithms proposed in the literature

and those implemented clinically have demonstrated promis-

ing performance and as such, they seem ready for use in clini-

cal setting with acceptable errors.21–23 Aside from the brain,

MRI-guided radiation therapy for the prostate in the pelvic

region has attracted much attention recently as some algo-

rithms are becoming clinically available.21,24,25 Nevertheless,

there is a lack of direct comparison across the state-of-the-art

methods and consensus on a scheme of evaluation reflecting

the key performance parameters. The algorithms are com-

monly evaluated using different patient cohorts bearing dif-

ferent diseases and diverse image quality characteristics. A

recent study (part of the Gold Atlas project) reported on the

development of a dedicated MR-CT dataset with multi-obser-

ver delineations of organs designed for the assessment of syn-

thetic CT generation in the pelvic region.26 Comparison of

different methods using the same cohorts, RT planning set-

tings and evaluation standards gives valuable insight into

robustness, potential applicability and expected quantitation

errors in a clinical setting.

In this work, the aim is to assess the performance of multi-

ple state-of-the-art synthetic CT generation methods for MRI-

only radiation treatment planning in the pelvic region. A uni-

fied comparison between six MRI-based electron density esti-

mation methods was conducted using a common cohort of

MR-CT image pairs. Identical dosimetric metrics and refer-

ence CT-based RT plans were used to evaluate the accuracy

and robustness of the methods. Invitations were sent out to

major authors/groups who reported modern algorithms for

synthetic CT generation from MRI. Special attention was

paid to include techniques capable of automatic organ seg-

mentation and avoid redundancy since some methods were

quite similar. Authors/groups who accepted the invitation

were involved in this comparative study. A related study com-

pared a number of MRI-based synthetic CT generation meth-

ods in the pelvic region for prostate radiotherapy.27 This

study focused only on bulk density assignment (predefined

electron density values) to the different tissue classes. The

evaluated methods relied on manual bone (cortical and

spongy) delineation, which renders their clinical relevance

debatable. In our work, the selected methods exhibited
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promising performance in addition to featuring fully auto-

mated CT synthesis and being capable of performing auto-

mated organ segmentation, which makes them suitable for

clinical use.

At least one representative method from each of three gen-

eric synthetic CT generation categories has been included. As

representative of the bulk segmentation approach, a two-class

electron density map containing predefined values for water

and air was generated from each MR image. Considering the

number of publications, the atlas-based CT synthesis

approach is highly popular and efficient for MRI-only RT

planning.1,4,28 For this generic method, four state-of-the-art

atlas-based methods demonstrating promising results were

chosen, namely, the median value of atlas images (ALMe-

dian),1 atlas-based local weighted voting (ALWV) proposed

by,2 bone enhanced atlas-based local weighted voting

(ALWV-Bone),3 and the iterative atlas-based local weighted

voting (ALWV-Iter).4 In the computer vision literature, deep

learning and convolutional neural networks have demon-

strated superior performance and are becoming the method of

choice in many fields of computer vision as well as comput-

erized medical image segmentation and identification prob-

lems.29–31 Thus, we chose a machine learning method based

on deep convolutional neural network in our evaluation. This

neural network approach for synthetic CT generation

(DCNN)5 was originally developed for brain imaging to learn

direct image to image conversion between MR and CT pairs.

This method was adapted to pelvic images and evaluated

along with other methods as a state-of-the-art machine learn-

ing method.

Aside from generating synthetic CT containing continu-

ous or discretized attenuation properties of tissues, MRI-

only RT planning can be further expanded if proper seg-

mentation of the key organs at risk and target volumes

can be performed automatically from MR images. The

methods evaluated in this study are also able to perform

automated organ segmentation from MR images. Thus, the

organ delineation accuracy was assessed using standard

segmentation metrics. Further validation was performed

through comparison of doses calculated on the reference

planning CT and synthetic CT images through a number

of standard dosimetric analyses.

2. MATERIALS AND METHODS

2.A. Clinical data acquisition

All patient data sets were obtained retrospectively from

Calvary Mater Newcastle Hospital, where the same data set

was used previously to develop the automatic substitute CT

generation (ALWV) method as described in Ref.2 The cohort

contains 39 patients aged between 58 and 78 years and body

mass indices ranged from 19.1 to 35.4 kg/m2. For each patient,

three prostate pure gold fiducial markers of diameter 1.0 mm

and length 3.0 mmwere transrectally inserted before the plan-

ning image acquisition. CT scans (256 9 256 9 128 matrix

with a voxel size of 1.5 mm 9 1.5 mm 9 2 (or 2.5 mm) were

acquired on either a GE (Milwaukee, USA) LightSpeed RTor

a Toshiba Aquilion (Tokyo, Japan) with slice thickness of 2.5

and 2.0 mm, respectively. Patients were scanned with a full

bladder and empty rectum while positioned supine with knee

and ankle immobilization stocks on a rigid couch-top.

The MR images were acquired with a Siemens (Erlangen,

Germany) Skyra 3T scanner equipped for MR simulation

with a dedicated radiation therapy flat couch. The planning

MR sequence consists of a three-dimensional T2-weighted

1.6 mm isotropic SPACE (Sampling Perfection with Applica-

tion optimized Contrast using different flip angle Evolution)

with large field of view to cover the whole-pelvis area includ-

ing the bladder. Organ contouring was performed by three

experienced observers for bladder and rectum and the

ground-truth contours were generated using majority voting

to combine the observer decisions as described in a previous

study.32 The ground-truth contour for each organ was gener-

ated using majority voting to combine the observer decisions.

Identification of bone from CT images was performed using

the automatic segmentation tool implemented on Varian

Eclipse and then, the obtained contour was rigidly transferred

to whole-pelvis MR images and manually edited if required.

The cohort of 39 patients containing aligned whole-pelvis

T2 and CT image pairs were used as input to train the differ-

ent algorithms and to generate the synthetic CT images.

Together with MR-CT image pairs, the delineated organs

including the prostate, rectum, bones, and body contour, in

the form of binary masks were available to examine auto-

matic organ segmentation from MR images.

2.B. Synthetic CT generation algorithms

2.B.1. Median value of atlas images (ALMedian)

A simple multi-atlas approach was examined aiming to

give an insight into how advanced methods performed differ-

ently compared to simpler methods. Given the series of CT-

MR images aligned to the target MR images, the ALMedian

synthetic CT is created by calculating the median value of the

entire atlas CT images for each voxel independently using

Eq. (1),1 where x denotes the voxel index in the atlas CT

number n (ACTn):

ALMedain xð Þ ¼ median ACT1 xð Þ; . . .;ACTn xð Þð Þ (1)

A major advantage of calculating the median value instead

of the mean value for each voxel is that it shows greater

robustness to outliers and the ability to better deal with multi-

modal distributions.

2.B.2. Atlas-based local weighted voting (ALWV)2

Atlas-based local weighted voting (ALWV) involves

mapping information from a set of patient MRI and CT

scans to a new patient MR image. The ALWV extends and

improves on an earlier synthetic CT generation method23,

which used coupled group-wise (or average) atlases. The

initial step in the ALWV method is the offline development
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of an atlas set which contains image data from a large

number of patients (ideally representing population anatom-

ical variability). Each patient contributes an MR image; a

CT scan which has been accurately coregistered to the MR

image; and matching manual contours (prostate, bladder,

rectum, bones and body).

The steps to convert a new MR image to synthetic CT

are described in depth in Ref.2 In brief the conversion

process for a new MR image commences with an image

preprocessing step to reduce artifacts and improve registra-

tion accuracy. Following this step each of the MR images

in the atlas set is registered (rigid + nonrigid) to the target

MR image in a pairwise manner. The rigid transform and

nonrigid deformation field from each registration are then

applied to the matching coregistered CT and contours

from the atlas set.

Once the registrations are completed a small 3D patch

around each voxel in the set of registered MR images is

compared with a patch from the same spatial location on the

new MR image. Local weighted voting33 is used on each

patch to provide a measure of MR intensity similarity

between the registered images and the new MR image (more

similar patches receive higher weights). After normalization,

this weighting is applied to the same voxels in the coregis-

tered CT scans and these values are combined to generate

HU value estimates for each synthetic CT voxel. The same

weights are also applied to the coregistered contours, gener-

ating automatic contours which are useful for quality assur-

ance purposes. CT synthesis is finalized by a 1-mm

expansion to the synthetic CT to account for the missing

outer skin layer.

2.B.3. Bone enhanced atlas-based local weighted

voting (ALWV-Bone)3

The original algorithm was developed based on in-phase

Dixon MR images and for this study the same framework

was adapted to T2-weighted MR image. Initially, the

T2-weighted MR images were corrected for magnetic field

inhomogeneity, noise and inter-image MR intensity nonuni-

formity. After preprocessing, MR images in the atlas dataset

were registered to the target MR image through a leave-one-

out-cross-validation (LOOCV) scheme with a combination of

rigid and nonrigid registration based on normalized mutual

information and B-spline interpolator using Elastix open

source software as described previously.34 Then, the atlas CT

images were mapped to the target MR image using the

obtained transformation maps.

In the first step, bone segmentation was performed on the

target MR image through voxel-by-voxel atlas voting scheme.

This step leads to a binary bone map which can be assumed

to represent the most likely bone delineation of the target

image and helps to achieve atlas fusion with special emphasis

on the bony structures. Considering MRn and BLn denote

aligned atlas MR images and corresponding bone label maps,

respectively, the bone segmentation (Bt) of the target image

(Tr) can be performed using:

bBt xð Þ ¼ argmaxL
XN

n¼1

pn Tr xð ÞjMRn xð Þð Þð Þ

pn Bt xð ÞjBLn xð Þð Þð Þ

(2)

where N is the number of training subjects in the atlas dataset.

Estimation of the target bone at each voxel ( bBt(x)) depends on
image morphology likelihood pn Tr xð Þ;MRn xð Þð Þ between the

target and the atlas MR images as well as bone label prior

pn Bt xð Þ;BLn xð Þð Þ. Phase congruency map (PCM) was used to

calculate image morphology likelihood, which is robust to

inter-subject intensity variation and noise while providing valu-

able structural information.35 The bone label prior pn Bt xð Þ;ðð
BLn xð ÞÞÞ was calculated based on the signed distance transform
from the bone label maps (BLn). The output of this step ( bBt) is
used in the next step to define weighting factors for each atlas

image through comparison of the signed distanced maps calcu-

lated on bBt and each of atlas bone maps (BLn). The continuous

valued synthetic CT images were generated using a voxel-wise

weighted atlas fusion framework based on the PCM morphol-

ogy likelihood as well as the calculated signed distance maps.

2.B.4. Iterative atlas-based local weighted voting

(ALWV-Iter)4

The iterative multi-atlas propagation framework developed

by4 combines in a single pipeline segmentation and CT syn-

thesis. The method relies on a multi-atlas database consisting

for each atlas of coregistered structural MR image AMRI , CT

image ACT , and a set of manually segmented images AS. The

dataset of the nth atlas is denoted by An ¼ fAMRI
n ;ACT

n ;AS
ng.

At the initial iteration (t ¼ 1), the target subject’s dataset

is only composed of the subject’s MR image: L1 ¼ fIMRIg. A
set of probabilistic segmentations and synthetic CT image is

jointly generated from this target MR image by registering

each atlas MR image AMRI
n to the target MR image IMRI , and

fusing the propagated atlas segmentations and CT images

according to the similarity between each atlas MR image

AMRI
n and the target MR image IMRI .

For the subsequent iterations, the previously generated set of

probabilistic segmentations ISt�1 and pCT image I
pCT
t�1 is com-

bined with the target MR image IMRI to generate a new target

subject’s dataset Lt ¼ fIMRI
; I

pCT
t�1 ; ISt�1g. A new refined set of

probabilistic segmentations and pCT image is jointly generated

from the new target dataset Lt, first by registering each atlas

dataset An to the target dataset Lt (multichannel registration).

The propagated atlas segmentations and CT images are then

fused, not only according to the similarity between each atlas

MR image AMRI
n and the target MR image IMRI , but according

to the similarity between each atlas dataset An and the target

dataset Lt. As a compromise between accuracy and computa-

tion complexity, the process is stopped after the fourth iteration.

2.B.5. Deep Convolutional Neural Network (DCNN)5

The synthetic CT for each subject was generated using a

deep convolutional neural network method as described in
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Ref.5 The particular deep convolutional neural network

model architecture is a slightly modified version of the U-Net

model36 that was originally proposed for image segmenta-

tion, where the encoding path is modified to match the first

13 layers of the popular 16-layer Visual Geometry Group

(VGG) model.37 This modification allows the encoding path

parameters to be initialized using the pretrained VGG model

to implement transfer learning. The decoding path is a mir-

rored version of the encoding path, with an extra 1 9 1 con-

volutional layer added in the end to map each 64-component

feature vector from the previous layer to a CT number. In

total, there are 27 convolutional layers in the model and 35

million model parameters.

To generate the synthetic CT for every subject, a four-

fold cross-validation procedure is applied. The 39 subjects

are divided into four groups. At each time, one group is

retained as the test set, and the remaining three groups are

used as training data to train the DCNN model. The train-

ing of the method was originally performed using 18 brain

patient scans and a sixfold cross-validation scheme.5 The

larger sample size of the training datasets used in this work

is sufficient to train the DCNN. In addition, simple data

augmentation was also adopted to artificially increase the

number of datasets during model training. Once the model

is trained, it is applied on each test subject’s MR image to

generate the corresponding synthetic CT. It is noted that

the DCNN model works in 2D in that it takes a 2D MR

axial slice as input and outputs the corresponding 2D slice

of the final synthetic CT. Training the DCNN model takes

about 2.5 days of computation time using a single NVIDIA

Titan X GPU card. Once the model is trained, it takes

approximated 9 s to process all axial slices of a new MR

image to get the final 3D synthetic CT result. No pre- or

post- processing is performed except that the N3 bias field

correction algorithm38 is applied on each MR image to

reduce intensity nonuniformity artifacts. Bias field correc-

tion was also applied in ALMedian, ALWV and ALWV-

Bone methods.

It should be noted that organ segmentations performed

by the DCNN algorithm is a separate process from syn-

thetic CT generation since the training of the DCNN and

auto-segmentation are repeated for each organ separately.

Conversely, organ segmentation in atlas-based methods is

linked to the synthetic CT generation process. In these tech-

niques, synthetic CT generation entails a voxel-wise weight-

ing strategy to define the contribution weight of each voxel

of atlas CT images based on the local similarity between

the target MRI and the corresponding atlas MR images.

The final synthetic CT is then generated through a voxel-

wise weighted averaging of the atlas images. Likewise,

organ segmentation is performed using voxel-wise weight-

ing factors obtained from CT synthesis to weight the binary

image of the organ delineation in the atlas dataset. Then,

for each voxel, the binary vote of each atlas image is

weighted and averaged (to create a probability organ map

with a threshold of 0.5) to define the organ volume on the

target MRI.

2.B.6. Water-only

The dose distributions were also calculated for the water-

only synthetic CT. To generate this electron density map, the

body contour was segmented from the target MR image fol-

lowed by assigning Hounsfield Unit of water (HU = 0) to all

voxels within the body contour and HU = �1000 to the back-

ground air.

2.C. Evaluation strategy

2.C.1. Image segmentation accuracy metrics

Automatic organ delineations from MR images generated

by different methods were compared against the ground-truth

contours defined manually. The organs included in the auto-

matic segmentation evaluation were bladder, rectum, bone,

and body contour. In addition to automatic bone delineation,

bone segmentation directly from generated synthetic CTs

using the intensity threshold of 140 HU (referred to Bone-

thresh in result section) was evaluated separately. The seg-

mentation accuracy was evaluated using the Dice similarity

coefficient (DSC) [Eq. (3)], which represents the overlap of

the two volume divided by the total volume of the two

objects, and the mean absolute surface distance (MASD),

which measures the average of the absolute Euclidean dis-

tance (dave) between two segmentation surfaces (SR,A)

[Eq. (4)].

DSC A;Rð Þ ¼
2 A \ Rj j

Aj j þ Rj j
(3)

MASD A;Rð Þ ¼
dave SA; SRð Þ þ dave SR; SAð Þ

2
(4)

where A represents the automated segmentation volume and

R denotes the reference organ delineation.

2.C.2. Synthetic CT generation accuracy

In addition to volumetric evaluation of automatic organ

segmentation, the mean error (ME) and mean absolute error

(MAE) were calculated between reference CTs (RCT) and syn-

thetic CTs (ACT) for each organ (namely, bladder, rectum,

bones, Bone-thresh, and inside body contour) taking into

account all of the voxels within the segmentation volume (P)

as follows:

MAECT ¼
1

P

XP

i¼1

ACT ið Þ � RCT ið Þj j (5)

MECT ¼
1

P

XP

i¼1

ACT ið Þ � RCT ið Þ (6)

Moreover, linear regression analysis and joint histograms

of MRI-derived synthetic CTs versus reference CT images

were performed for each technique averaged over 39 subjects.
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The entire voxel within the body contour including the mar-

gins and the edges of the contours were included in ME and

MAE calculation as well as linear regression analysis.

2.C.3. Dosimetric evaluation

The EclipseTM treatment planning system (Varian Medical

Systems Inc, Palo Alto, CA, USA) was employed for treat-

ment planning based on the volumetric-modulated arc ther-

apy (VMAT) technique. Conventional RT treatment planning

was performed to deliver 36.25 Gy dose to the planning tar-

get volume (PTV). The PTV provided a safety margin of

10 mm around the clinical target volumes, which included

the prostate and seminal vesicles. 3D dose distributions were

calculated for the PTV and organs at risk (OARs), which

included the bladder, rectum, left, and right heads of femur

(HOF). It should be noted that automated organs segmenta-

tion was not used for RT planning as OARs and target vol-

umes delineations were performed manually.

The radiation therapy plans optimized on the reference

CTs (reference dose matrix) were copied onto the synthetic

CT images and dose distributions were recalculated accord-

ingly. Dose volume histograms (DVH), representing a his-

togram in a 2D graphical format relating radiation dose to

organ volume, were exported for the target volumes and

OARs. The dose calculation was carried out using the aniso-

tropic analytical algorithm (AAA v. 13) using a 6 MV photon

beam and a dose matrix of 2.5 9 2.5 9 2.5 mm3.

The comparison between synthetic CT and reference CT

dose distribution maps was performed by calculating mini-

mum (Dose-min), maximum (Dose-max) and mean (Dose-

mean) absorbed doses for different OARs and target volumes.

Then, Eqs. 7 and 8 were used to calculate the mean and mean

absolute absorbed dose errors for each synthetic CT genera-

tion algorithm across the 39 subjects. Here, DoseCT and

DosepCT denote planned doses calculated on the reference

CT and synthetic CT images, respectively.

MEDose %ð Þ ¼ 100�
DosepCT � DoseCT

DoseCT
(7)

MAEDose %ð Þ ¼ 100�
DosepCT � DoseCT
�� ��

DoseCT
(8)

The dose distributions recalculated over the different syn-

thetic CT images were also evaluated against the reference

CT dose in terms of the absolute volume (cc) receiving a cer-

tain level of dose discrepancy. To this end, a voxel-by-voxel

dose difference map was computed and used to measure the

associated volume having a dose discrepancy equal or greater

than a certain dose difference (for instance at a dose level of

1 Gy, the total volume bearing a dose difference equal to or

greater than 1 Gy is reported). The dose discrepancy levels

were plotted versus the corresponding accumulated volumes

ranging from �1 to 1 Gy.

Furthermore, a two-dimensional Gamma analysis,39 which

is a commonly used metric for comparing the dose

distributions combining features of dose difference and dis-

tance-to-agreement, was employed to analyze the axial dose

distributions intersecting the treatment isocenter. The Gamma

indices were presented for 3%/3 mm, 2%/2 mm and 1%/

1 mm dose difference/distance-to-agreement. The collimator

angle was 30° and all the dose levels were included taking

the local (pixel) value of the CT dose map as reference. The

skin dose was not taken into account as well as doses below

10% of the prescribed dose.

Paired t-test analysis with a significance level of 0.05 was

performed to assess if the differences between the obtained

results are statistically significant.

3. RESULTS

Representative slices of the different synthetic CT images

are presented in Fig. 1 together with the target MR and refer-

ence CT images. The binary bone maps obtained from apply-

ing intensity threshold of 140 HU on electron density maps

are shown next to each CT image. Visual inspection reveals

comparable bone extraction achieved by the different

synthetic CT generation methods.

As mentioned earlier, the methods evaluated in this work

are capable of performing automated organ contouring from

MR images. The results of the quantitative evaluation of the

automated organ contouring are summarized in Table I for

bladder, rectum, bone, body, and bone extracted from the CT

images. The DSC index and MASD are averaged over the 39

patients. The mean difference and absolute mean difference

between synthetic CT and reference CT images within each

automatically obtained contours from MR images are pre-

sented as well. In general, DCNN exhibited better automated

organ delineation and more accurate CT value estimation

followed by ALWV-Iter and ALWV-Bone, and ALWV. The

joint histogram analysis operating over the 39 patients

demonstrated a similar trend in Fig. 2. DCNN achieved the

closest estimation of the CT values followed by ALWV-Bone

and ALWV-Iter. DCNN achieved the lowest root mean square

error (RMSE), comparing all voxels values in synthetic CT

and reference CT images, of 2.33 HU while 3.23, 3.39, 4.59,

3.55, and 11.48 HU achieved by ALWV-Iter, ALWV-Bone,

ALWV, ALMedian, and water-only, respectively.

The therapy doses recalculated over the synthetic CT

images were measured within each body organ and target

volume, then the average errors (relative mean � SD) of

Dose_min, Dose_max and Dose_mean were computed using

Eqs. (7) and (8). Tables II and III show the results corre-

sponding to the different organs at risk and target volumes.

The mean absorbed doses within the organs at risk and target

volumes did not exhibit large difference between ALWV-

Bone, ALWV-Iter, ALWV, and DCNN methods, however,

DCNN achieved slightly lower errors. The statistical analysis

did not reveal statistically significant differences between the

mean absorbed doses within the different organs when using

the various synthetic CT generation methods (Tables II and

III). Given the dose maps, representative slices of dose distri-

butions calculated for the different methods together with
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 1. Representative slice of MRI-derived synthetic CT images together with a binary map of bone tissue segmented through applying an intensity threshold of

140 HU. (a) Reference CT, (b) Reference MR image, (c) Synthetic CTof ALMedian, (d) ALWV, (e) ALWV-Bone, (f) ALWV-Iter, (g) DCNN, and h) water-only.

TABLE I. Accuracy of automatic organ contouring from MR images using different synthetic CT generation methods compared with the reference CT images and

manual organ delineation on MR images in terms of Dice similarity (DSC), mean absolute surface distance (MASD), mean error (ME) and mean absolute error

(MAE) of Hounsfield unit (HU) calculated within each automated contour (mean � SD). Bone-thresh: bone segmented by applying intensity threshold of

140 HU. P-values are also shown.

Bladder ALMedian ALWV ALWV-Bone ALWV-Iter DCNN

DSC 0.82 � 0.20 (P < 0.01) 0.86 � 0.12 (P < 0.01) 0.86 � 0.13 (P < 0.01) 0.87 � 0.10 (P < 0.01) 0.93 � 0.17 (P < 0.01)

MASD (mm) 7.01 � 4.17 (P < 0.01) 5.10 � 4.57 (P = 0.01) 7.88 � 4.78 (P < 0.01) 7.56 � 4.42 (P < 0.01) 2.36 � 2.44 (P = 0.02)

ME (HU) �1.5 � 20.2 (P = 0.51) �2.9 � 18.7 (P = 0.43) 8.1 � 17.6 (P = 0.12) 7.7 � 16.1 (P = 0.1) �1.8 � 12.9 (P = 0.43)

MAE (HU) 30.0 � 17.6 (P < 0.01) 24.1 � 13.6 (P < 0.01) 26.4 � 12.7 (P < 0.01) 25.2 � 10.1 (P < 0.01) 18.4 � 6.6 (P < 0.01)

Rectum ALMedian ALWV ALWV-Bone ALWV-Iter DCNN

DSC 0.81 � 0.08 (P < 0.01) 0.84 � 0.06 (P < 0.01) 0.84 � 0.70 (P < 0.01) 0.84 � 0.06 (P < 0.01) 0.90 � 0.04 (P < 0.01)

MASD (mm) 5.03 � 2.72 2.37 � 1.34 4.95 � 2.39 4.81 � 2.22 2.09 � 1.11

ME (HU) 37.6 � 84.9 (P = 0.02) 6.9 � 81.7 (P = 0.18) 27.6 � 90.5 (P = 0.03) �30.3 � 94.6 (P = 0.03) 22.7 � 84.8 (P = 0.05)

MAE (HU) 93.5 � 71.2 (P < 0.01) 88.1 � 60.8 (P < 0.01) 100.0 � 62.0 (P < 0.01) 114.8 � 63.6 (P < 0.01) 78.3 � 69.2 (P = 0.01)

Body ALMedian ALWV ALWV-Bone ALWV-Iter DCNN

DSC 0.98 � 0.02 (P = 0.01) 1.00 � 0.00 (P < 0.01) 0.99 � 0.01 (P = 0.02) 0.99 � 0.01 (P = 0.02) 0.99 � 0.01 (P = 0.03)

MASD (mm) 4.12 � 01.89 (P < 0.01) 0.55 � 0.56 (P = 0.04) 3.01 � 1.86 (P = 0.03) 3.93 � 2.98 (P = 0.03) 1.78 � 0.63 (P = 0.04)

ME (HU) 10.2 � 18.3 (P = 0.31) �0.6 � 14.2 (P = 0.61) 8.7 � 15.6 (P = 0.27) 2.0 � 15.1 (P = 0.49) 3.5 � 11.7 (P = 0.43)

MAE (HU) 52.1 � 11.1 (P < 0.01) 40.5 � 8.2 (P < 0.01) 44.0 � 8.9 (P < 0.01) 42.4 � 8.1 (P < 0.01) 32.7 � 7.9 (P < 0.01)

Bone ALMedian ALWV ALWV-Bone ALWV-Iter DCNN

DSC 0.88 � 0.04 (P < 0.01) 0.91 � 0.03 (P < 0.01) 0.92 � 0.02 (P < 0.01) 0.92 � 0.02 (P < 0.01) 0.93 � 0.02 (P < 0.01)

MASD (mm) 3.73 � 0.58 (P < 0.01) 1.45 � 0.47 (P = 0.01) 1.94 � 0.45 (P = 0.01) 2.07 � 0.43 (P < 0.01) 3.51 � 3.92 (P < 0.01)

ME (HU) �32.9 � 55.4 (P = 0.03) �6.4 � 46.5 (P = 0.36) 26.6 � 56.7 (P = 0.04) 19.5 � 46.3 (P = 0.09) �4.1 � 40.7 (P = 0.43)

MAE (HU) 161.1 � 30.0 (P < 0.01) 134.2 � 24.0 (P < 0.01) 163.8 � 25.0 (P < 0.01) 130.2 � 23.4 (P < 0.01) 119.9 � 22.6 (P < 0.01)

Bone-thresh ALMedian ALWV ALWV-Bone ALWV-Iter DCNN

DSC 0.79 � 0.06 (P < 0.01) 0.81 � 0.06 (P < 0.01) 0.84 � 0.05 (P < 0.01) 0.83 � 0.05 (P < 0.01) 0.83 � 0.05 (P < 0.01)

MASD (mm) 3.67 � 1.71 (P < 0.01) 2.63 � 0.51 (P = 0.01) 2.94 � 1.48 (P = 0.01) 2.16 � 0.23 (P = 0.01) 2.12 � 0.22 (P = 0.01)

ME (HU) �35.4 � 59.7 (P < 0.01) 16.0 � 51.0 (P = 0.09) 40.3 � 60.0 (P < 0.01) 26.2 � 54.2 (P = 0.02) 14.4 � 46.9 (P = 0.08)

MAE (HU) 151.4 � 31.3 (P < 0.01) 143.6 � 24.8 (P < 0.01) 172.9 � 25.8 (P < 0.01) 138.8 � 24.9 (P < 0.01) 127.3 � 26.3 (P < 0.01)
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dose distribution error map are provided in Fig. 3. Moreover,

similar to Fig. 2, the joint histogram analysis was performed

over the dose distribution maps, comparing the plans recalcu-

lated on synthetic CT images to reference CT, are illustrated

in Fig. 4. ALWV-Iter achieved the lowest RMSE (1.15) com-

pared to other techniques, which resulted in a RMSE of 1.60,

1.73, 1.74, 2.47, and 4.78 for ALMedian, ALWV-Bone,

DCNN, ALWV, and water-only, respectively.

A representative graph of DVH obtained from recalculat-

ing the absorbed doses over different synthetic CTs are pre-

sented in Figs. 5 and 6 for some OARs (bladder, right femur,

left femur, and rectum) and target volumes (CTV, PTV, and

PTV_3 mm), respectively. Point-by-point analyses over the

DVH graphs are presented in the supplemental material.

Table IV summarizes two-dimensional gamma analysis of

isocenter dose distributions for three dose difference/dis-

tance-to-agreement criteria (3%/3 mm, 2%/2 mm and 1%/

1 mm). Considering the 3%/3 mm criterion, all methods per-

formed similarly with more than 98% (P <0.01) pass rate.

Likewise, at a pass threshold of 2%/2 mm, deep learning and

atlas-based algorithms performed equally well (>96.93%).

Water-only lagged behind with a success rate of 95.38% (P

<0.01). Lowering the pass threshold to 1%/1 mm results in

an apparent difference between the different methods where

ALWV-Bone, DCNN, ALMedian, and ALWV-Iter achieved

a pass rate of more than 93% followed by ALWV and Water-

only with 86.91% (P <0.01) and 80.77% (P <0.01), respec-

tively. In addition to gamma analysis, the accumulative

FIG. 2. Joint histograms averaged across 39 subjects, between the reference CT and synthetic CT images generated using different methods. Images are min/max

scaled between 0 and 1 [Color figure can be viewed at wileyonlinelibrary.com]
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volume associated with a certain dose difference threshold is

presented in Fig. 7. The volume corresponding to each dose

difference level is the average value measured over the entire

number of patients.

In addition to the evaluation of methods using conven-

tional global and local metrics, a number of cases where the

methods failed to produce proper segmentation or generation

of synthetic CT images are documented in supplemental

Figs. 1–4. Three cases presenting with bladder segmentation

failure when using DCNN (two cases) and ALWV-Iter (one

case) are reported in supplemental Fig. S1. ALMedian and

ALWV failed to identify bony structures for one patient (sup-

plemental Fig. S2). Incomplete electron density map and

body contour were observed for ALWV-Bone, DCNN, and

ALWV in one patient (supplemental Figs. S3 and S4). These

cases were included in the analysis of the results.

4. DISCUSSION

The primary aim of this work was to assess the perfor-

mance of a number of state-of-the-art MRI-only radiation

planning methods using multiple dosimetric and segmenta-

tion metrics evaluated across a common patient cohort. The

intention was to evaluate not only a representative approach

of each generic type but also focusing on highly promising

approaches proposed in the literature to provide valuable

TABLE II. Average error (relative mean(%) � SD) of Dose_min, Dose_max and Dose_mean for plans recalculated on different synthetic CT images calculated

for the following organs at risks.

Bladder

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.74 � 5.49 1.32 � 5.40 0.98 � 5.45 0.97 � 5.40 1.01 � 5.49 0.13 � 5.12

1.36 � 5.36 1.52 � 5.35 1.35 � 5.37 1.35 � 5.31 1.39 � 5.41 1.79 � 4.79

Dose_max 0.15 � 0.75 �0.76 � 0.77 �0.1 � 0.72 0.15 � 0.78 �0.03 � 0.69 0.54 � 1.18

0.63 � 0.42 0.85 � 0.67 0.57 � 0.43 0.64 � 0.45 0.51 � 0.46 0.96 � 0.87

Dose_mean 0.09 � 0.66 �0.55 � 0.76 �0.05 � 0.6 0.14 � 0.68 �0.02 � 0.57 �0.06 � 1.10

0.52 � 0.41 0.75 � 0.56 0.47 � 0.37 0.53 � 0.44 0.41 � 0.39 0.82 � 0.73

Rectum

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.05 � 1.12 �0.08 � 1.06 0.18 � 0.99 �0.39 � 1.22 �0.13 � 1.00 �0.09 � 1.82

0.80 � 0.77 0.76 � 0.73 0.70 � 0.70 0.88 � 0.93 0.74 � 0.68 1.36 � 1.20

Dose_max 0.20 � 0.80 �0.76 � 0.77 �0.03 � 0.75 0.18 � 0.84 �0.05 � 0.74 0.74 � 1.38

0.67 � 0.46 0.85 � 0.66 0.59 � 0.45 0.70 � 0.49 0.52 � 0.52 1.22 � 0.97

Dose_mean 0.28 � 0.78 -0.59 � 0.74 0.09 � 0.72 0.15 � 0.82 0.06 � 0.73 0.47 � 1.45

0.66 � 0.49 0.70 � 0.63 0.56 � 0.46 0.63 � 0.53 0.50 � 0.52 0.98 � 1.16

Left HOF

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.47 � 1.02 0.10 � 0.98 �0.09 � 1.13 �0.22 � 1.19 0.1 � 0.94 4.89 � 2.13

0.82 � 0.77 0.76 � 0.61 0.78 � 0.81 0.88 � 0.82 0.68 � 0.65 4.89 � 2.13

Dose_max 0.03 � 0.72 �0.76 � 0.78 �0.18 � 0.73 0.10 � 0.76 �0.1 � 0.63 1.62 � 1.10

0.60 � 0.39 0.89 � 0.62 0.61 � 0.42 0.60 � 0.47 0.49 � 0.40 1.62 � 1.10

Dose_mean 0.06 � 0.49 �0.67 � 0.56 �0.14 � 0.48 0.07 � 0.48 �0.07 � 0.43 1.27 � 0.69

0.40 � 0.27 0.72 � 0.50 0.40 � 0.30 0.38 � 0.31 0.32 � 0.30 1.27 � 0.69

Right HOF

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.52 � 0.99 0.17 � 0.93 0.14 � 0.89 �0.04 � 0.88 0.18 � 0.86 4.72 � 2.01

0.83 � 0.74 0.68 � 0.65 0.68 � 0.58 0.71 � 0.50 0.64 � 0.60 4.72 � 2.01

Dose_max 0.10 � 0.68 �0.61 � 0.74 �0.14 � 0.68 0.11 � 0.69 �0.07 � 0.60 1.72 � 1.02

0.56 � 0.40 0.76 � 0.58 0.53 � 0.44 0.53 � 0.45 0.45 � 0.40 1.72 � 1.02

Dose_mean 0.09 � 0.48 �0.63 � 0.58 �0.14 � 0.48 0.04 � 0.49 �0.08 � 0.42 1.29 � 0.67

0.40 � 0.28 0.69 � 0.51 0.39 � 0.31 0.39 � 0.30 0.32 � 0.28 1.29 � 0.67
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insight into accuracy and range of bias expected in MRI-only

radiation therapy. In this regard, four newly proposed meth-

ods, namely, ALWV, ALWV-Bone, ALWV-Iter, and DCNN,

which exhibited excellent results in the literature, were evalu-

ated in this work.

Automated organ segmentation from MR images can fur-

ther facilitate the introduction of MRI-only RT into the clinic.

Among the atlas-based methods, ALWV-Iter and ALWV-

Bone combined organ segmentation and synthetic CT estima-

tion in a single pipeline with the aim to improve both the

accuracy of segmentation and synthetic CT estimation. The

machine learning algorithm performs organ segmentation in

a more customized manner as for the DCNN method, in par-

ticular, the network training was repeated for each organ indi-

vidually which justifies the overall better segmentation

performance of this approach. DCNN exhibited superior per-

formance particularly for the bladder and rectum auto-seg-

mentation with a DSC of 0.93 and 0.90, respectively,

compared to ALWV-Iter as the second-best approach, which

achieved a DSC of 0.87 and 0.84, respectively. However,

ALWV-Bone and ALWV achieved almost similar results as

ALWV-Iter (DSC of 0.86 and 0.84, respectively). In the

ALWV-Iter approach, the probabilistic segmentation and syn-

thetic CT generation are optimized simultaneously, as

opposed to DCNN where the training is repeated for each

organ individually, to benefit the synergy of the joint estima-

tion. ALWV-Bone method relies on the similar idea to

ALWV-Iter’s but only concentrating on bone tissue, which

justifies its slightly better performance in bone identification

(Bone-thresh).

Aside from volumetric evaluation of auto-contouring, the

assessment of CT values estimation within each organ

revealed slightly more accurate performance of the DCNN

approach as it produced the smallest MAEs for all organs

reported in Table I. For instance considering the body con-

tour, DCNN resulted in MAE of 32.7 � 7.9 HU followed by

ALWV, ALWV-Iter, ALWV-Bone and ALMedian with

MAEs of 40.5 � 8.2, 42.4 � 8.1, 44.0 � 8.9, and 52.1 �
11.1, respectively (P <0.03). The ALWV method led to accu-

rate synthetic CT value estimation within organs, however,

the overall dose calculation is not as good. This can be par-

tially justified by the addition of a skin margin to the final

synthetic CT images, which was carried out in this method to

account for missing MR signal. The machine learning algo-

rithms in general and deep convolutional neural networks in

particular are capable of grasping a highly nonlinear MR

intensity to CT value correspondence,5 which explains better

performance of DCNN compared to the other atlas-based in

TABLE III. Average error (relative mean(%) � SD Dev) of Dose_min, Dose_max and Dose_mean for plans recalculated on different synthetic CT images calcu-

lated for the following targets.

CTV

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.25 � 0.76 �0.68 � 0.78 0.00 � 0.75 0.20 � 0.72 0.01 � 0.72 0.85 � 1.30

0.67 � 0.44 0.85 � 0.59 0.61 � 0.43 0.58 � 0.46 0.53 � 0.48 1.21 � 0.96

Dose_max �2.72 � 0.97 �2.18 � 1.15 �2.98 � 0.93 �2.67 � 0.85 �2.91 � 0.88 �4.84 � 1.85

2.72 � 0.97 2.23 � 1.06 2.98 � 0.93 2.67 � 0.85 2.91 � 0.88 4.84 � 1.85

Dose_mean 0.22 � 0.73 �0.73 � 0.73 �0.05 � 0.69 0.24 � 0.74 �0.02 � 0.67 0.86 � 1.21

0.62 � 0.42 0.83 � 0.61 0.55 � 0.42 0.63 � 0.43 0.51 � 0.43 1.14 � 0.95

PTV

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.33 � 0.95 �0.62 � 0.93 0.09 � 0.94 0.14 � 1.13 0.07 � 1.07 0.84 � 1.62

0.75 � 0.66 0.88 � 0.68 0.68 � 0.64 0.86 � 0.74 0.71 � 0.79 1.25 � 1.32

Dose_max �0.58 � 1.29 �1.03 � 1.33 �0.85 � 1.26 �0.56 � 1.30 �0.76 � 1.36 �0.65 � 2.18

1.04 � 0.94 1.27 � 1.09 1.11 � 1.03 1.02 � 0.96 1.11 � 1.10 1.69 � 1.50

Dose_mean 0.23 � 0.72 �0.72 � 0.71 �0.04 � 0.68 0.18 � 0.72 �0.01 � 0.64 0.82 � 1.22

0.61 � 0.44 0.81 � 0.60 0.54 � 0.41 0.60 � 0.42 0.47 � 0.43 1.10 � 0.97

PTV_3 mm

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

ME � SD ME � SD ME � SD ME � SD ME � SD ME � SD

MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD MAE � SD

Dose_min 0.27 � 0.96 �0.67 � 0.93 0.05 � 0.92 0.18 � 1.02 0.05 � 0.96 0.66 � 1.60

0.74 � 0.65 0.89 � 0.71 0.66 � 0.64 0.75 � 0.70 0.62 � 0.73 1.17 � 1.27

Dose_max �2.48 � 1.12 �2.10 � 1.17 �2.65 � 1.39 �2.46 � 1.02 �2.67 � 1.10 �4.43 � 2.10

2.51 � 1.06 2.15 � 1.09 2.80 � 1.05 2.48 � 0.99 2.71 � 1.00 4.54 � 1.85

Dose_mean 0.21 � 0.73 �0.73 � 0.72 �0.04 � 0.69 0.18 � 0.73 �0.03 � 0.65 0.78 � 1.26

0.62 � 0.44 0.83 � 0.61 0.55 � 0.41 0.60 � 0.44 0.49 � 0.43 1.11 � 0.97
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this regard. On the other hand, the atlas-based techniques

evaluated in this work rely mostly on the similarity of struc-

tures between target and atlas MR images to define the fusion

weights, which may not be as accurate as DCNN to estimate

correct synthetic CTvalues.

Considering the mean absorbed dose differences measured

for the different OARs and target volumes in Tables II and

III, aside from water-only approach, all other methods

resulted in less than 1% mean absorbed dose error as well as

mean absolute error. The largest mean absorbed dose differ-

ence for water-only occurred in bony tissue (right HOF),

which can be simply justified by the absence of bone in the

electron density map. However, largest errors of mean

absorbed dose for other methods were observed in the target

volumes. However, the differences between the mean

absorbed doses within all organs were not statistically signifi-

cant (P >0.3). The results presented in Tables II and III are

consistent with earlier evaluation of ALWV-Bone, ALWV,

and ALWV-Iter approaches performed on different datasets

and study settings.2–4

Gamma analysis, which quantifies the point-by-point

difference between measured and calculated dose distribu-

tions in terms of both distance-to-agreement and dose dis-

crepancies, has become the gold standard metric for the

comparison between measured and calculated absorbed

dose distributions. A pass rate of 1%/1 mm demonstrated

comparable performance of ALWV-Bone, DCNN, ALMe-

dian, and ALWV-Iter. Moreover, the difference between

the different techniques became evident when the pass rate

was lowered from 2%/2 mm to 1%/1 mm where ALWV

drops to ~87% with a large standard deviation while the

others stay in the 90s%. Although a pass rate greater than

93% at 1%/1 mm was achieved using atlas-based and

DCNN methods, relatively large standard deviations (>5)

implies that at smaller scales these methods may fail to

reach this accuracy. Although, the gamma index is a stan-

dard metric for dose verification in RT planning quality

assurance, the interactions between the parameters used in

the gamma index calculation (the distance-to-agreement

and dose difference) complicates the interpretation of the

(a) (b) (c)

(d) (e)

(f) (g)

FIG. 3. Representative slices of dose distribution calculated for different synthetic CT maps together with dose distribution error map. (a) Reference CT, (b)

ALMedian, (c) ALWV, (d) ALWV-Bone, (e) ALWV-Iter, (f) DCNN, and (g) Water-only. [Color figure can be viewed at wileyonlinelibrary.com]
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outcome. In this regard, dose discrepancy versus volume

analysis was performed to provide complementary informa-

tion about the extent of absorbed dose difference (Fig. 7).

Given the prescribed dose of 36.25 Gy, the volume corre-

sponding to �1 Gy dose difference (which indicates the

total volume bearing a dose difference ≥�1 Gy) is almost

equivalent to 3% of prescribed dose where no significant

margin is observed between the different methods. On the

other hand, considering a dose difference of �0.4 Gy

(which corresponds to almost 1% of the prescribed dose),

larger margins are observed between the different methods

but still showing comparable dose conformity, except for

the water-only approach. In addition, a slightly positive

bias is observed for ALMedian, ALWV, and ALWV-Bone

techniques.

In addition to assessment of methods performed both glob-

ally and locally using multiple segmentation and dosimetric

metrics, their robustness was examined through exploration of

the outliers and observed gross defects. Supplemental

Figs. S1–S4 illustrate the prominent cases related to both

organ segmentation and synthetic CT generation. Considering

the segmentation and dosimetric results reported so far, DCNN

exhibited excellent overall performance in organ segmentation

as well as electron density estimation for RT planning. Never-

theless, it displayed greater sensitivity to the outliers where in

some cases, it performed poorly in organ segmentation and

electron density map generation. Due to the fact that atlas-

based methods, ALMedian, ALWV, ALWV-bone, and

ALWV-Iter, rely on prior knowledge provided by the templates

during the course of segmentation or electron density

FIG. 4. Joint histograms averaged across 39 subjects, between the reference dose maps obtained from reference CT and synthetic CT images generated using

different methods. Images are min/max scaled between 0 and 1. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. Representative dose volume histogram of plans recalculated on different synthetic CT maps for different organs at risk. (a) Bladder, (b) Right femur, (c)

Left femur, and (d) Rectum. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Representative dose volume histogram of plans recalculated on different synthetic CT maps for target regions. (a) CTV, (b) PTV), and (c) PTV_3 mm.

[Color figure can be viewed at wileyonlinelibrary.com]
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generation, they showed greater robustness to odd cases even

when MR images suffered from artifacts or poor signal-to-

noise ratio. In particular, advanced atlas-based methods which

are able to select or give weight to more similar templates, are

less likely to fail to perform proper segmentation. The use of a

larger dataset containing a wide range of anatomical variations

during the training of machine learning approaches would

enhance the robustness of these methods. The major advantage

of atlas-based methods is their robustness to variability in MR

image quality and presence of artifacts as they rely on the prior

knowledge of atlas images. In the case of gross artifacts or low

MR image quality, atlas-based methods are capable of at least

generating a synthetic CT image representing the average atlas

population, which in most cases should not lead to a large

quantitation error. Increasing the size of the atlas database can

add to the robustness of atlas-based methods, however, the

computation time rises linearly, thus impacting the clinical fea-

sibility of the approach. Atlas registration is commonly per-

formed in a pairwise manner, and as such, the generation of a

synthetic CT might take a couple of hours. On the other hand,

machine learning algorithms are less robust to variability in

image quality and the presence of artifacts, but are capable of

swift generation of a synthetic CT (couple of minutes), which

facilitates their implementation in the clinic. Moreover,

machine learning algorithms can be retrained over time by

adding new samples to the training dataset to boost their

robustness without affecting computational cost.

Overall, atlas-based methods exhibit relatively high

robustness to image quality. However, this is highly depen-

dent on the registration algorithm and atlas selection strategy

employed. Most atlas-based methods, including those evalu-

ated in this work, use robust registration and atlas selection

algorithms, which makes them less sensitive to image quality.

Besides, atlas-based methods exhibited higher robustness to

outliers as they usually result in a realistic outcome represent-

ing the average of the atlas dataset. Advanced atlas-based

methods (in particular ALWV-Bone and ALWV-Iter) showed

even higher resilience to outliers owing to sophisticated atlas

selection procedures. Moreover, they produced competitive

segmentation performance (compared to DCNN) since CT

synthesis and organ segmentations are jointly carried out to

take into account the mutual dependency existing between

these two variables. Although the DCNN method achieved

the highest accuracy in organ segmentation and CT synthesis,

it was less robust to the outliers in comparison with advanced

atlas-based techniques. However, considering the computa-

tion time, DCNN is a more appealing choice for use in the

clinic since the synthetic CT generation process takes less

1 min as opposed to atlas-based methods which take up to

2 hours. This is an important issue in MRI-guided adaptive

RT planning (real-time adaptive replanning) involving re-

optimization and creation of new treatment plans during RT

fractions.40

One of the limitations of this study is that all subjects were

acquired on the same 3T MRI scanner with the same image

acquisition protocol. As such, the sensitivity of the algo-

rithms to scanner types, setup practices, such as immobiliza-

tion devices and field strengths were not assessed. In

addition, the datasets did not contain any metal imposed arti-

fact to particularly evaluate the methods robustness in the

presence of severe image artifacts; however, this issue war-

rants further investigation. The introduction of the fast acqui-

sition MR sequences such as ultra-short (UTE) and zero

echo-times (ZTE), enabled automatic separation of bone and

air41–43 and therefore can be considered as an alternative

image modality in RT planning. Evaluation of fast MR

sequences in MRI-only RT planning compared to the

advanced atlas-based and machine learning approaches

would be very much appreciated particularly in the presence

of metallic implants where UTE sequences are potentially

more robust against metal artifacts.

5. CONCLUSION

State-of-the-art MRI-based synthetic CT generation meth-

ods were evaluated in the context of MRI-only RT planning

using multiple segmentation, CT synthesis and dosimetric

TABLE IV. Gamma analysis results comparing the original CT plan with the same plan recalculated on the synthetic CT images. The differences are statistically

significant with a P < 0.01.

ALMedian ALWV ALWV-Bone ALWV-Iter DCNN Water-only

(mean � SD) (mean � SD) (mean � SD) (mean � SD) (mean � SD) (mean � SD)

3%/3 mm 98.96 � 0.78 98.41 � 1.56 99.51 � 0.32 98.96 � 0.57 99.22 � 0.46 98.22 � 1.75

2%/2 mm 97.92 � 1.49 96.93 � 2.69 98.84 � 0.48 97.99 � 1.02 98.47 � 0.68 95.38 � 5.17

1%/1 mm 93.68 � 5.53 86.91 � 13.50 94.99 � 5.15 93.10 � 5.99 94.59 � 5.65 80.77 � 12.10

FIG. 7. Volumes (cc) associated with a certain magnitude of dose difference

(Gy) between dose distributions calculated using reference CT and different

synthetic CT images. [Color figure can be viewed at wileyonlinelibrary.com]
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metrics. We aimed to provide a comparative assessment of

existing promising methods and demonstrate clinical feasibil-

ity in the pelvic region. The algorithm relying on deep convo-

lutional neural network approach (DCNN) exhibited

promising organ segmentation accuracy for bladder, bone,

and rectum. However, atlas-based techniques (ALWV,

ALWV-Bone, ALWV-Iter) showed comparable performance.

Considering the mean absorbed dose in different OAR and

target volumes, aside from water-only, all the other methods

performed similarly, achieving less than 1% mean absorbed

dose error. However, gamma analysis revealed that ALWV-

Bone, DCNN, ALMedian, and ALWV-Iter demonstrated

higher performance particularly at the 1%/1 mm criteria

achieving an average passing rate of more than 93% with

relatively large standard deviations (>5), which requires cau-

tion at small scales. Finally, the DCNN approach exhibited

higher vulnerability to anatomical variation as it resulted in a

larger number of outliers. Based on these results, it can be

concluded that the challenges of MRI-only radiation therapy

in the pelvic region are solvable with a clinically tolerable

error.
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SUPPORTING INFORMATION

Additional supporting information may be found online in

the Supporting Information section at the end of the article.

Fig. S1. Three outliers in bladder segmentation. DCNN and

ALWV-Iter automated contouring failed to identify bladder

boundary in three cases, DCNN in cases 1 and 2 and ALWV-

Iter in case 3. (A) Ground-truth bladder segmentation. (B)

Automated bladder contouring. (C) Target MR image.

Fig. S2. Two outliers in bone identification. ALWV and

ALMedian resulted in false bone identification in case 1 and

2, respectively. (A) MRI-derived pseudo-CT image together

with bone map (obtained from intensity thresholding of

140 HU). B) Reference CT and bone map.

Fig. S3. Two outliers in pseudo-CT generation. ALWV-Bone

and DCNN resulted in flawed electron density map in case 1

and 2, respectively. (A) Reference CT. (B) MRI-derived

pseudo-CT. (C) Difference HU error map. (D) Reference dose

distribution. (E) Recalculated dose distribution using the gen-

erated pseudo-CT image. (F) Difference dose error map.

Fig. S4. An outlier in body contour delineation and pseudo-

CT generation. ALWV resulted in flawed electron density

map for Case 2 shown in Supplemental Figure 3. (A)

Reference CT (transaxial, sagittal and coronal views). (B)

MRI-derived pseudo-CT. (C) Difference HU error map. (D)

Reference dose distribution. E) Recalculated dose distribution

using the generated pseudo-CT image. (F) Difference dose

error map.

Table S1. Dosimetric errors [relative mean � Std Dev (abso-

lute mean � Std Dev)] for the organs at risk calculated using

total number of DVH points between D100% and D0% in

dose increments of 0.1 Gy.

Table S2. Dosimetric errors [relative mean � Std Dev (abso-

lute mean � Std Dev)] for target regions calculated using total

number of DVH points between D100% and D0% in dose

increments of 0.1 Gy.
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