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Abstract—We review different techniques for extracting the
power information contained in frequency bands in the context of
electroencephalography (EEG) based Brain-Computer Interfaces
(BCI). In this domain it is common to apply only one algorithm
for extracting the power information. However previous work
and our current study confirm that one may indeed expect
varying degrees of success by choosing inadequate algorithms for
the power extraction. Our results suggest that on average one
algorithm seems superior for extracting the power information
for Motor Imagery tasks : the application of a Morlet wavelet on
the raw EEG signals, with the time-frequency resolution tradeoff
selected by cross-validation.

I. INTRODUCTION

This paper proposes a comparative study of various tech-
niques for estimating the power information contained in
different frequency bands of a real signal, in the specific
context of motor imagery (i.e., limb movement imagination)
for Brain-Computer Interfaces (BCI) [1]. The specificity of
the BCI field is to deal with very noisy data captured by
Electro-Encephalo-Graphy (EEG). The goal is to infer the
user’s mental state from his/her EEG signals. In a BCI setup
we consider in this study the task is to find whether the
user imagines left hand or right hand movements, in order to
build an interactive Human-Computer interface based only on
brain activity. Practical applications are envisionned for severly
disabled people who cannot move their limbs but whose brain
is still functionnal [2].

One major challenge of this field is thus to extract reliable
information from noisy data in real time in the form of relevant
features [3]. These can then be passed on to classification tech-
niques for identifying the user’s mental state. Physiological
arguments suggest that the µ and β frequency bands (around 8-
12 Hz and 16-24 Hz) are especially relevant for discriminating
motor activity. A common approach in the BCI field is thus
to extract the power information from the signal over these
frequency bands and use that as the classification feature.

There is a wide litterature on power estimation (see [4]
for pointers). Time-frequency decomposition is in itself a
wide topic of research, which has been extensively studied.
Different techniques allow a practitionner to select the best
trade-off to make between time and frequency resolutions,
the presence of artifacts (spectral bias) or increased precision,

etc. Yet most BCI framework only propose or consider a few
of these techniques and with a limited range of trade-offs.
A thorough comparison of different power feature extraction
techniques in the context of BCI was presented in [5], together
with their use in classification of motor imagery. This paper
aims at complementing and reproducing independently the
observations made in that survey. Notable differences between
this paper and [5] include:

• Eleven out of the 13 subjets we used for our benchmark
are distinct from [5]. We used a subset of the most
representative power estimation techniques based on their
results and as justified in the next section.

• While some of our results confirmed independently the
results obtained in [5], other contrasted them. More
particularly, we showed that when the time-frequency
resolution is properly selected the Morlet wavelet can
be the most efficient band-power extraction technique,
whereas it was reported the less efficient one in [5].

• In [5] the power density is extracted along each time-
frequency decomposition atom (See Fig 1), and the
energy is summed over frequency components at that
time. In this paper we instead prioritise the frequency
representation and sum the energy over the trial duration.
This is justified physiologically by considering that motor
imagery related brain activity is more easily discriminable
in the frequency domain than in the time domain (i.e.
we are looking for frequency signatures rather than time
patterns). Moreover, focusing on a frequential signature
rather than on a temporal signature is a popular and
efficient approach that has been used and validated by
several leading BCI laboratories such as the Graz BCI or
the Berlin BCI [6], [7], [8].

• We use the log-transform of the energy in each frequency
band as the discriminant feature. We decided to compute
the energy on 1 Hz bands from 4 to 30 Hz, for both the
C3 and C4 electrodes. One can recover the physiological
µ and β bands (around 8-12 Hz and 16-24 Hz) by
combining the corresponding 1Hz bands to reduce the
number of features, which was done in [5]. Yet we prefer
to let the classifiers exploit all available information rather
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than fixing the µ and β bands a priori. This is indeed
justified by the well known inter-subject variability in
motor-imagery based BCI [9].

• We used only the Linear Discriminant Analysis (LDA)
classifier as it is well-used in the BCI litterature [10].
In [5], a genetic algorithm had to be used to fine-tune
Support Vector Machines. But we want to assess the
performance of the extraction methods. Using a non-
parametric classifier like LDA offers a stable basis of
comparison and avoids any interference from the SVM
training procedure.

In the next section we detail how we extracted the features
and present the corresponding techniques we used to extract
the band-power information. Section III presents the data set
we used and the results of our experiments. The paper ends
with a conclusion and some recommendations based on our
results.

II. POWER IN FREQUENCY BANDS

The next subsections describe each band-power estimation
technique we used and how they were extracted in the present
study. We considered using the periodogram, the spectrogram
and the Morlet wavelet scalogram to cover a diversity of time-
frequency samplings (see Fig 1); the Wigner-Ville distribution
following [4] because it represents an alternative compromise
to the spectrogram (see Section II-B); the power spectral
density estimation using an auto-regressive model with the
Yule-Walker algorithm for its good results in [5] and because
it brings another way of estimating the spectrum compared to
the aformentioned approaches; and the Butterworth filter since
it is a commonly used feature in the BCI litterature [1], [11].

A. The spectrogram method

A usual way to extract the power in frequency bands is to
use the spectrogram method [4] to get a time-frequency signal
decomposition:
• The signal is convolved with a windowing function that

is localised in time around t . A Fourier transform is then
performed on the convolved signal, non null only on a
sliding chunk centred on t, leading to a time-frequency
representation X(f, t) of the original signal x(t) (see Fig
1, second case).

• The energy marginals in the frequency domain [12] allow
us to estimate a spectrum: Ef =

∑
t |X(f, t)|2

• The energy in each band B is obtained by summing the
marginals in that band: EB =

∑
f∈B Ef .

As explained in the introduction, a feature vector is then
formed from the logarithms of the estimated energy in each
1Hz band.

B. The Wigner-Ville distribution

As shown in [4] there is a trade-off to make between
increased precision for the energy estimation in each decom-
position region of the time-frequency plane (see Fig 1), and the
occurrence of artifacts. These artifacts denote alterations due
to the frequency decomposition and not physiological artifacts

such as EOG or EMG. The spectrogram introduces little arti-
facts, and the Wigner-Ville distribution achieves the opposite
trade-off: improved accuracy over each decomposition atom,
at the cost of more artifacts.

An hypothesis is that the improved localisation in frequency
could compensate the presence of the artifacts for the classi-
fication tasks.

C. The Morlet wavelet scalogram

The scalogram is the third splicing of the time-frequency
plane represented on Fig 1. A mother wavelet ψ(x) function
is scaled and shifted and forms a basis for the decomposition.
The frequency interpretation comes from the fact that if
the mother wavelet is localised at a given frequency f0,
then a scaled version ψ(ax) is localised at frequency f0

a by
the scaling property of the Fourier transform. The wavelet
decomposition formula can thus be rewritten as we did in Fig.
1 to highlight f

f0
as a scaling factor.

In [5] the mother wavelet is carefully chosen so the relevant
µ and β bands are well covered in the time-frequency plane,
since they combine the energy contributions in these bands
into a single feature. In the present study we use the facility
provided by [12] to adapt the wavelet so that f = f0

a ranges
between 4 and 30 Hz: For a Morlet wavelet f0 can be chosen
arbitrarily, and the scale parameter a is adapted to maintain the
selected frequency range. The influence of this free parameter
however is to shape the effective resolutions on both axis in
the time-frequency plane as shown in 1. In the present study
we use a 10-fold cross-validation on the training set in order
to select the best time-frequency resolution compromise.

D. Periodogram on the whole signal

The spectrogram method considered sliding chunks because
it is primarily used for time-frequency decomposition: the
energy is localised with a fixed resolution in both the frequency
and time domain. However here we only perform a classifica-
tion step at the end of trials. Thus we are only interested in
the frequency components over a fixed signal duration, not at
each instant. Applying an FFT transform to the whole signal
and proceeding directly to the power estimation better matches
the structure of the time-frequency decomposition we need,
as depicted in Fig. 1. Technically the periodogram is thus
not a time-frequency decomposition method, only a frequency
decomposition on the whole signal.

Unfortunately as the signal is usually finite and non-periodic
this technique introduces spurious artifacts in otherwise unre-
lated frequency bands (known as spectral bias). A workaround
is to apply a window function on the whole signal, but we
loose some information as the window would smoothly damp
it to 0 on each end. The spectrogram copes with this by sliding
each chunk in time, thus getting a correct estimate over each
chunk centre.

A second workaround is to remove the 0 and low-frequency
components so as to detrend the signal: This operation centres
the signal around 0, and the periodisation implicitly operated
by the FFT results in less artifacts. We applied this second
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Figure 1. Splicing the time-frequency plane

workaround by pre-filtering the signals with a linear phase-
response high-pass FIR filter: at least 50dB attenuation at 0Hz
and less than 1dB change at 4Hz in order to preserve the
physiologically relevant bands.

The periodogram is then simply computed:
• The signal x(t) is taken as a whole, without applying a

window function, but filtered as aforementioned.
• A Discrete Fourier Transform is applied, giving a fre-

quency representation X(f) of the whole signal, includ-
ing artifacts due to the non-periodic nature of the signal
(attenuated by the FIR pre-filtering).

• Power is extracted in narrow bands B (of 1 Hz in this
example): EB(X) =

∑
f∈B |X(f)|2.

E. Band-pass filtering with a Butterworth IIR filter

It is also possible to directly apply a band-pass filter to
the signal x(t) in order to damp out frequencies outside each
selected band B: the resulting filtered signal y(t) presumably
contains only the selected frequencies. Assuming a perfect
block filter, it is then possible to estimate the energy in these
bands by squaring the magnitude of the time series samples
directly: Eband =

∑
t |y(t)|2.

This is a frequent feature found in the BCI field [1]. This
is the method that is performed by default in the OpenViBE
software [11], with a Butterworth IIR filter of order 4, and
that was also used for [13].

In the present study we select the order of the Butterworth
filter on the training data set in a 10-fold cross-validation step.

F. Power spectral density estimation using an auto-regressive
model

The Yule-Walker algorithm can be used to train an auto-
regressive model. The power spectral density is then derived
from the model’s response. As in [5] we estimate the order of
the auto-regressive model with a 10-fold cross-validation on

the training data set (using a least-squarred error hyperplane
fit as the classifier). However the feature we extract is the
log-transform of the energy in each of the bands. We did not
consider using directly the auto-regressive model coefficients
as the feature vector as this was covered already in [5].

III. EVALUATION

A. Data sets

We have applied the power estimation techniques on 13
subjets. Twelve subjets are taken from the BCI competitions II,
III and IV1 [14][15]. We also captured data with the software
platform OpenViBE [11]2.

1) BCI competition data sets: These data set were captured
and provided by the Department of Medical Informatics, In-
stitute for Biomedical Engineering, University of Technology
Graz [16]. All the data we used follow the same experimental
protocol, with minor differences explained below. In a first step
a visual clue is presented to the subjet indicating left or right.
The subject shall then imagine moving the corresponding hand
for a fixed duration. The results presented below estimate the
power over all this imaginated period. In some experiments a
visual feedback is provided to the user during this period to
give him a clue as to how well the signal can be detected with
an internal classifier. A few seconds separate each trial, and
the whole experiment is repeated with another random left or
right direction.

We used data from three installments of the competitions:
• BCI competition II, data set III: This set contains data

captured from only one subjet. 280 trials were equally
spread in the left and right hand class. The C3, C4 and
Cz electrodes were sampled at 128 Hz. Following [17]

1http://www.bbci.de/competition/
2http://openvibe.inria.fr/?q=datasets
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we used only the C3 and C4 electrodes, during the trial
period 3s to 9s.

• BCI competition III, data set IIIb. Three subjets are
provided, but we used only the subjects labelled S4 and
X11 due to errors in the data of the remaining subject 3.
Again we used only the C3 and C4 electrodes, which
were sampled in this data set at 125 Hz, during the
presentation period 4s to 7s.

• BCI competition IV, data set IIb. Nine subjets are pro-
vided. Although the experimental protocol remains the
same the competition organisers warned against the pres-
ence of occular artefacts that are not present in the other
two previous competitions. One goal of this data set was
precisely to assert how well techniques can cope with
the presence of the artifacts. In the current study we
simply ignore them: we want to compare various ways
to extract the power in frequency bands, irrespectively of
whether the data contain artifacts or not. Should some
power extraction techniques be less sensitive than the
others to this kind of noise, then we are happy to have
our benchmark include this more realistic case. The total
of the visual cue and imaginary durations in the provided
signals is 4s or 4.5s depending on the trials.

All these data sets were preprocessed by the Graz team with
a band-pass filter between 0.5 and 30 Hz. We unfortunately
do not have access to the raw data for comparing directly the
various power extraction techniques. We thus assume that the
filter they used does not interfere too much in the bands we
used for comparison: between 4 and 30 Hz.

2) OpenViBE data set: We captured data from one subject
using the same protocol as for the BCI competition experi-
ments.

We recorded 560 trials over two weeks, equally spread on
the left and right hand movement classes, each trial lasting 5s.
We then randomly selected half the trials for training with the
constraint of maintaining the same number of left and right
instances. The remaining trials were used as the test set. We
recorded 10 electrodes at 512 Hz : C3, C4, FC3, FC4, C5,
C1, C2, C6, CP3, CP4 (nasion reference). We then applied a
discrete Laplacian spatial filter [18], [19] over the C3 and C4
electrodes.

B. Comparison of the power extraction techniques

Table I shows the result of classifying the signals from the
test sets using each of the techniques presented in Section
II with a Linear Discriminant Analysis classifier, as this is a
classifier of choice with good success records in the BCI litter-
ature [10]. The parameters described in each respective method
subsection (ex: Butterworth filter length, auto-regressive model
order, etc) were determined by searching the parameter space
and optimising the 10-fold cross-validation accuracy on the
training set.

We compare each method using the classification accuracy
of the LDA classifier. In addition we also note for each subject

3See the notes at http://www.bbci.de/competition/iii/desc_IIIb_ps.html

which is the maximal performance obtained with any of the
power-band extraction method. The difference to that maximal
performance, on average, allows us to assert the performance
of the power-band method itself: an ideal extraction technique
would always be the best one. In a real case there are
fluctuations between subjects and experimental frameworks,
but a method that is better than the other on average (and
reliably so, i.e. with low deviation from that average) shall
still be prefered. These results are reported on the last two
lines of Table I.

We also compared the influence of performing a pre-filtering
on the data. Some methods indeed benefit from such pre-
filtering. As explained in section II-D, detrending the data by
removing low-frequency components increase the periodogram
accuracy by removing spectral bias. Similarly, training an
auto-regressive model only on the frequencies of interest
leads to better results than training it on irrelevant frequency
components. On the other hand some methods like the Morlet
Wavelet are intrinsically localised in time and frequency, so the
pre-filtering does not necessary help in this case. Morevover
the filters we used incur a 250ms delay on the data, which can
be penalizing for real-time applications. Table I mentions “hp”
for a high-pass filter where the 0Hz component is nullified, and
a “bp” filter with at least -50 dB attenuation at 0Hz and above
50Hz, in each case with less than 1dB change in the 6-30 Hz
band.

Only 2 subjects out of the 13 subjects considered here are
common with [5]. Our results both contrast with and confirm
some points of [5]. One conclusion there is that Yule-Walker
estimation of an auto-regressive model, which is then used
to estimate the power density spectrum, is adequate for BCI
tasks. In our experiments this technique performed well only
when pre-filtering the data with a low or band-pass filter.
It globally turns as the second-best technique (3.8% below
the maximum accuracy on average) with a relative stability
(3.4% standard deviation) of that performance, ex-æquo with
the standard Spectrogram estimation. The Spectrogram leads
here to a a better stabililty (3% standard deviation), but given
the low number of subjects to perform the statistical analysis
both methods seem equally suited.

However our results also contrast with [5]. They noticed that
“Morlet CWT produced clearly the least separable feature”
amongst the category of features they considered. On the
contrary, we here find that the Morlet wavelet produces very
good results, better than the auto-regressive model technique
on the test sets, and directly on the raw data (2.6% below
the maximal accuracy on average vs 3.8%, and 2.4% vs 3%
for the stability). This difference is probably explained by the
way we use the wavelet. In [5] the approach is to pre-tune the
wavelet time-frequency resolution in order to concentrate on
specific frequency µ and β bands a priori, and only keep the
extracted values at these frequencies. In the present study we
cross-validate the wavelet time-frequency resolution to adapt
it to the data, and we keep all frequencies available for the
classifier. Thus we claim that with adequate pre-processing,
the Morlet wavelet shall be considered as a technique of choice
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method Periodogram Butterworth Auto-regressive Spectrogram Wigner-Ville Morlet wavelet
subjet hp bp raw hp bp raw hp bp raw hp bp raw hp bp raw hp bp raw
bci2 78.6 74.3 72.1 77.1 72.9 78.6 70.7 76.4 75 78.6 82.1 80.7 75.7 76.4 77.9 73.6 74.3 77.1
s4 79.1 80.4 79.1 79.6 80.7 79.6 81.1 81.3 82.6 80.7 80.7 79.8 80.6 81.5 79.4 80.9 79.3 81.5
x11 75.9 77.4 75.7 74.8 75.9 76.3 78 76.1 76.9 78 79.3 79.1 77.6 77.2 77.6 79.1 78.5 80.4
ov 93.6 92.1 91.1 93.9 91.8 48.2 91.8 84.3 46.1 95 89.6 49.3 93.9 87.5 49.6 93.6 90.4 92.9
bci4s1 70 72.2 71.2 72.8 71.9 72.8 67.8 72.5 72.5 70.3 71.6 71.2 72.2 72.2 71.9 75.9 73.8 77.5
bci4s2 51.8 57.9 55 56.1 57.5 52.1 58.6 52.5 52.1 58.2 57.5 55.7 52.5 53.2 51.8 55.7 60 56.4
bci4s3 57.2 51.6 54.4 55.6 55.6 54.7 55.6 56.2 55.3 55.3 53.1 53.1 53.4 57.8 51.9 46.6 47.2 51.9
bci4s4 94.1 94.1 94.1 93.8 92.2 94.1 93.1 95.3 93.1 93.4 94.1 93.8 88.8 93.8 90 92.8 93.8 93.4
bci4s5 84.7 84.1 85 85 86.9 87.5 94.7 85.3 92.8 86.2 86.2 85.3 85 85.6 85 92.2 91.2 96.9
bci4s6 85.3 84.1 84.4 85.6 85.6 85.3 85.3 83.8 85 86.2 86.6 83.8 83.8 85.3 82.5 87.2 78.4 87.8
bci4s7 72.2 70.9 67.5 71.2 69.4 69.7 74.1 71.6 69.7 67.2 65.3 65.3 68.1 69.7 63.8 72.5 73.4 70.6
bci4s8 83.1 84.4 79.4 84.4 84.4 83.4 81.6 82.5 82.2 81.9 81.6 83.8 82.2 81.9 82.5 81.9 85.3 80
bci4s9 80.3 83.4 79.4 78.4 78.4 79.4 77.8 84.7 76.6 79.4 79.1 79.4 81.9 82.2 81.2 81.6 80 78.8

avg
δmax

4.12 4.05 5.47 3.94 4.33 7.52 3.79 4.38 7.66 3.78 4.05 7.63 4.91 4.25 8.8 3.53 4.15 2.64

dev
δmax

3.34 3.33 2.86 2.95 2.8 12.02 3.41 3.72 12.61 2.96 3.21 11.85 2.86 3.08 11.36 3.1 3.47 2.36

Bold figures indicate the maximum accuracy for each subject, gray background results within 1.5% to the maximum. “hp” stands for high-
pass prefiltering of the data (see the main text), “bp” indicates a band-pass filtering, and “raw” represents the unfiltered data. δmax is the
difference to the maximum accuracy obtained for each subject.

Table I
CLASSIFICATION ACCURACY (%) OF POWER EXTRACTION TECHNIQUES ON THE TEST DATA SETS

for extracting power information for BCI tasks.

IV. CONCLUSION

This study has reproduced and extended the comparisons
performed in [5] to identify the best method for extracting
the power in given frequency bands, for BCI purposes. We
have evaluated the features obtained with the various band
power estimation methods on motor imagery data from several
EEG data sets, including the effect of pre-filtering the data.
Our results both confirm and contrast with [5]. We confirmed
that using the Yule-Walker algorithm for estimating an auto-
regressive model is a good technique for estimating the power
in selected frequency bands for BCI tasks. But we have found,
unlike [5], that the Morlet wavelet seems better suited. This
difference between the two comparative studies is probably
due to our cross-validation of the Morlet wavelet parameters
and keeping more frequency bands.

In any case the Butterworth filter, commonly used in the
litterature [1], is here amongst the worse techniques. We thus
stress as in [5] that better power estimation algorithms shall
be considered for BCI tasks. Software for computing all the
features we used is widely available on the Internet [12]. The
code for all the experiments performed in this study is also
provided on the main author’s web page4.
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