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ABSTRACT

Deep learning methods have resulted in significant performance improvements in
several application domains and as such several software frameworks have been
developed to facilitate their implementation. This paper presents a comparative
study of four deep learning frameworks, namely Caffe, Neon, Theano, and Torch,
on three aspects: extensibility, hardware utilization, and speed. The study is per-
formed on several types of deep learning architectures and we evaluate the per-
formance of the above frameworks when employed on a single machine for both
(multi-threaded) CPU and GPU (Nvidia Titan X) settings. The speed performance
metrics used here include the gradient computation time, which is important dur-
ing the training phase of deep networks, and the forward time, which is important
from the deployment perspective of trained networks. For convolutional networks,
we also report how each of these frameworks support various convolutional algo-
rithms and their corresponding performance. From our experiments, we observe
that Theano and Torch are the most easily extensible frameworks. We observe
that Torch is best suited for any deep architecture on CPU, followed by Theano. It
also achieves the best performance on the GPU for large convolutional and fully
connected networks, followed closely by Neon. Theano achieves the best perfor-
mance on GPU for training and deployment of LSTM networks. Finally Caffe is
the easiest for evaluating the performance of standard deep architectures.

1 INTRODUCTION

Deep learning methods have recently influenced several application domains, namely computer vi-
sion (Krizhevsky et al., 2012; Russakovsky et al., 2014), speech recognition (Ding et al., 2014; Han-
nun et al., 2014), and nature language processing (Collobert et al., 2011b), where they have enjoyed
significant performance improvements compared to state-of-art methods in the respective domains.
For the latest list of domains and challenges on benchmark datasets where deep learning performed
better than the existing state-of-art, see http://deeplearning4j.org/accuracy.html.
Most of the successful deep learning architectures are composed of a combination of different types
of layers such as fully connected, convolutional, and recurrent layers and are usually trained with
a variant of the stochastic gradient descent algorithm along with various regularization techniques
such as dropout and weight decay (Bengio et al., 2015). As the popularity of the deep learning meth-
ods have increased over the last few years, several deep learning software frameworks have appeared
to enable efficient development and implementation of these methods. The list of available frame-
works includes, but is not limited to, Caffe, DeepLearning4J, deepmat, Eblearn, Neon, PyLearn,
Theano, Torch, etc. Different frameworks try to optimize different aspects of training or deployment
of a deep learning algorithm. For instance, Caffe emphasises ease of use where standard layers
can be easily configured without hard-coding while Theano provides automatic differentiation capa-
bilities which facilitates flexibility to modify architecture for research and development. Several of
these frameworks have received wide attention from the research community and are well-developed
allowing efficient training of deep networks with billions of parameters, thanks to their strong GPU
backends. Developers have constantly improved these frameworks by adding more features (e.g.
by adding support for different types of convolution algorithms) and speed improvements to attract
more users and foster research (Bergstra et al., 2011; Collobert et al., 2011a; Vasilache et al., 2014;
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Measures Caffe DeepLearning4J Eblearn Neon Theano Torch7

Number of members in Google groups 3517 819 108 48 2512 1617
Number of contributors in GitHub 158 47 NA 26 182 62

Table 1: Community involvements for some of the deep learning frameworks as of 11/18/2015.

Property Caffe Neon Theano Torch

Core C++ Python Python Lua

CPU 3 3 3 3

Multi-threaded
CPU 3Blas x Only data loader 3Blas, conv2D,

limited OpenMP
3Widely
used

GPU 3
3customized
Nvidia backend 3 3

Multi-GPU 3(only data
parallel) 3

x Experimental
version available 3

Nvidia cuDNN 3 x 3 3

Quick deploy. on
standard models 3Easiest 3

x Via secondary
libraries 3

Auto. gradient
computation 3 3Supports Op-Tree 3Most flexible

(also over loops) 3

Table 2: Properties of Caffe, Neon, Theano, and Torch as of 12/21/2015.

Bastien et al., 2012; Jia et al., 2014). Recently, the efficacy of several deep learning frameworks
have been evaluated in Chintala (2015a). However, the comparison is only focused on speed per-
formance of the convolutional frameworks. Hence, this paper expands on the previous benchmarks
and evaluates four deep learning frameworks, namely: Caffe, Neon, Theano, and Torch. Among the
available software frameworks, Caffe, Theano, and Torch are indeed the top three well developed
and widely used frameworks by the deep learning community. The reason for including Neon in
this study is its recently reported state-of-the-art performance for training several deep learning ar-
chitectures (Chintala, 2015a). We evaluate these frameworks from the perspective of practitioners,
on the following aspects:

• Extensibility: Their capability to incorporate different types of deep learning architectures
(convolutional, fully-connected, and recurrent networks), different training procedures (un-
supervised layer-wise pre-training and supervised learning), and different convolutional
algorithms (e.g. FFT-based algorithm).

• Hardware utilization: Their efficacy to incorporate hardware resources in either (multi-
threaded) CPU or GPU setting.

• Speed: Their speed performance from both training and deployment perspectives.

The study will provide the users and enterprises a broad picture of the strengths and (current) lim-
itations of the studied deep learning frameworks to enable them to assess suitability in the context
of their requirements. Moreover, the discussions highlight the current limitations of the respective
frameworks which can be addressed in their future developments 1. We plan to share the code for
all the frameworks in the near future through a publicly available webpage.

The rest of the paper is organized as follows: Section 2 gives a brief overview of the software frame-
works we focus on in this paper; Section 3 describes the benchmarking set up which is followed by
results and conclusions in Section 4 and Section 5, respectively.

2 OVERVIEW OF THE DEEP LEARNING FRAMEWORKS

With deep learning methods gaining popularity in many applications domains over the last few
years, there have been quite a lot of interest from many academic (e.g. Univ. of California Berkeley,

1Note that most of these frameworks have very active community support that keeps adding new fea-
tures/functionalities potentially making some of our observations obsolete in the near future.
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NYU) and industry groups (e.g. Google, Facebook) to develop software frameworks (e.g. Theano,
Caffe) that help easily create and test various deep architectures. At the time this paper was writ-
ten, some of the widely used software frameworks for deep learning were: Caffe, Theano, Torch,
Neon, Chainer, DeepLearning4J, deepmat, Eblearn, MXNet, etc. (for a more complete list of Deep
Learning Softwares see http://deeplearning.net/software_links/). Many of these
frameworks are mature already as of today and are very fast in training deep networks with billions
of parameters thanks to their strong CUDA backends. Today, almost every group training deep
networks use Graphical Processing Units (GPU) to accelerate the training process and this has led
to joint development of software libraries (e.g. cuDNN) between academic (e.g. Berkeley, NYU)
and industry players (e.g. Nvidia). Table 1 shows the number of users in Google groups and the
number of contributors2 for each of the frameworks in their corresponding GitHub repositories.
It is clear that the top three widely developed and supported deep learning frameworks are Caffe,
Theano, Torch, and are thus selected in this paper for the benchmarking purposes. We also eval-
uate Neon framework from Nervana as it has recently shown the state-of-the-art performance for
training convolutional networks (Chintala, 2015a). Table 2 shows the general properties of these
four deep learning frameworks. Note that, for this paper, we restrict ourselves to frameworks built
for single node (with potentially multiple GPUs) but not distributed deep learning frameworks like
DeepLearning4J. For a brief review of the selected frameworks see Appendix.

3 BENCHMARKING SETUP

3.1 EVALUATION METRICS

We use the two following evaluation metrics to obtain a holistic understanding of speed of the four
deep learning frameworks under various system scenarios and application domains:

• Forward Time: We measure the time it takes for an input batch of a pre-selected batch
size, for a given dataset and network, to flow through the entire network and produce the
corresponding output. This is important as it indicates the latency of a deep network when
deployed in real-world.

• Gradient Computation Time: We also measure the time it takes to get the gradients for each
measurable parameter in the deep network for a given input batch. This is an important
indicator of the training time. Note that, for most of the cases (e.g. Torch), this gradient
computation time is the summation of the times spent in calling the corresponding forward
and backward functions as these two functions should be called consecutively to compute
the gradients. But for Theano, this gradient computation time is measured by calling a
Theano function that is compiled to generate the gradients given the inputs to the networks
which implicitly performs the forward and backward steps through computational graphs.
It should be noted that the gradient computation time we report, does not include the time
taken to update the network parameters, such as computation of learning rate, weight decay,
momentum term, etc.

For Theano, one initially need to compile forward and gradient computation functions before calling
them during execution. To provide a complete picture, these compilations times are also reported
(See Tabel 8). We also report the GPU memory usage for large networks.

3.2 SYSTEM SETUP

All the experiments are performed on a single machine running on Ubuntu 14.04 with Intel Xeon
CPU E5-1650 v2 @ 3.50GHz 12; Nvidia GeForce GTX Titan X/PCIe/SSE2; 32 GiB DDR3 mem-
ory; and SSD hard drive. We used openCV 3.0.0, CUDA 7.5, cuDNN v3, and OpenBLAS 0.2.14
with commit ID 3684706. For Caffe, commit ID 8c8e832 is used. For Neon, version 1.0.0.rc1
(2015-09-08) with the commit ID of a6766ff is used. Theano version 0.7.0.dev and Torch7 used
here have commit IDs 662ea98 and 8c8e832, respectively. The commit ID for fbcunn is 5bb9785.
Data arrays are stored using the float32 format.

2We only report the number of the contributors in the main repository of the framework. The numbers do
not include any other relevant repositories.
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4 RESULTS AND DISCUSSIONS

The evaluations are performed by training stacked autoencoders and convolutional networks on the
MNIST (LeCun et al., 1998) and the ImageNet datasets (Deng et al., 2009) as well as training LSTM
network using the IMDB review dataset (Maas et al., 2011). Note that the evaluation metrics can
vary drastically based on the CUDA package used along with the native software. For example,
in Torch, one can perform the convolution operations using Nvidia cuDNN library or cunn library
(a CUDA backend for the nn package) or fbcunn library (deep learning CUDA extensions from
Facebook AI Research containing FFT based fast convolutions). In Theano, it is also straightforward
to perform convolution using cuDNN or conv-fft. The conv-fft is a FFT-based implementation of
convolution operation on Theano. Hence we try to use as many libraries as possible for each of the
cases and measure the performance to present the inherent tradeoffs with each of the libraries. We
use the same blas library for Caffe, Theano, and Torch which performs majority of the computations
when CPU is used. Neon uses its own CPU/GPU backend. Moreover, wherever applicable, we
measure the speeds with both GPU and CPU (single and multi-threaded) so as to understand the
hardware specific behaviours of these frameworks from both training and deployment perspectives.
We perform several iterations of warm-ups before timing the operations. The timings reported here
are average of 20-1000 iterations and are controlled to have small standard deviations.

4.1 LENET

The first benchmark is a slightly modified LeNet neural network on the MNIST dataset (LeCun et al.,
1998) where the sigmoid activations are replaced with ReLU units and softmax logistic loss layer
is used instead of the RBF network. It consists of two convolution-pooling layers with the tanh
activation functions and two fully connected layers. For Caffe, the network is available in Caffe
model repository. For Theano, the code is adopted from LISA Lab (2014). For Torch, we used the
“mnist” package for easily loading the dataset and wrote our own script for timing purposes. For
Neon3, we adopted the code from the Neon GitHub repository. Neon requires the kernel size of
convolutional layers and mini-batch size to be multiples of 4 and 32, respectively when employed
on GPU. Thus the second convolution layer for Neon implementation is chosen to have 52 filters
instead of 50 filters used in the other frameworks.

Table 3 shows the averaged processing time for gradient computation as well as the time for a
forward step obtained by the four frameworks on both CPU and GPU using batch size of 64. For
CPU timings, the number of threads used in each experiment is also reported. It should be noted
that Neon cannot be configured to use multiple CPU threads and thus its performance on CPU is
only reported with one thread. On the other hand, Caffe can be configured only during installation
to run on a pre-determined number of threads (12 here) and thus it’s performance on CPU is only
reported with 12 threads. Theano and Torch are flexible in selecting the number of threads and
thus their performances on CPU are reported with multiple settings. We report results for six and
twelve threads since our system has six physical cores which can also be used with twelve threads
using Hyper-Threading. When GPU is used, the underlying convolution library (e.g. cuDNN) is
mentioned along with the framework. Neon uses its own GPU/CPU backend as mentioned before.
The processing times clearly show the advantage of GPU over CPU (at least 20×) for training deep
convolutional networks. This advantage would be more significant when training more complex
models with larger data as will be shown later in this section. Torch results in best performance
when comparing CPU times while Neon results in the worst performance on CPU. It is seen in the
GPU experiments that cuDNN is faster for this network compared to the conv-fft. In general, the
performance gain of using the FFT-based approach is highly dependent on the size of the input and
kernel sizes (Mathieu et al., 2013). Theano results in best performance for the gradient computation
on GPU while Torch and Theano achieve the best GPU performance for deployment. It should
be noted that MNIST is a relatively small dataset and fits on the CPU host memory or the GPU
device memory. Therefore, when Theano, Torch, or Neon is employed on GPU, the data is entirely
copied into the GPU memory once before the training starts to avoid possible delays caused by
communications between GPU and host for copying mini-batches4.

3We directly call the fprop and get cost functions to time the forward pass. Similarly, the get errors and
bprop functions are used to time the backward pass.

4This is done on Theano using shared variables, on Torch by calling the :cuda() function, and on Neon
using the DataIterator class. Copying of the entire dataset into the memory can also be done for Caffe using
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Table 3: The averaged processing times using batch
size of 64.

Setting Gradient (ms) Forward (ms)
C

PU
1

Neon 545.6 172.7
Theano 141.1 48.3
Torch 46.1 18.1

6 Theano 142.7 50.4
Torch 18.1 5.6

12

Caffe 66.4 33.7
Theano 204.3 78.7
Torch 16.5 4.6

G
PU

Caffe + cuDNN 1.9 0.8
Neon 2.3 1.0
Theano + cuDNN 1.4 0.5
Theano + conv-fft 5.6 2.7
Torch + cuDNN 1.7 0.5
Torch + cunn 13.6 5.8
Torch + fbcunn 2.1 0.9
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Figure 1: The averaged processing times for
LeNet on GPU using different batch sizes. The
cuDNN is used for Caffe, Theano, and Torch.

Figure 1 shows the gradient computation time and forward step time of the four frameworks on
GPU using different batch sizes. It is seen that Theano has the best gradient computation time
for small batches while Neon has the best performance for large batches. Theano consistently has
the minimum forward time, specially for the large batch sizes. It is seen that Torch and Caffe
performances drop more rapidly as the batch size increases.

4.2 ALEXNET

In this section, we train AlexNet (Krizhevsky et al., 2012) on the ImageNet dataset. Note that there
have been many recent, larger networks like GoogleNet, OxfordNet, etc. but we stick with AlexNet
as it is the first network that significantly improved performance on ImageNet and is very popular.
The network consists of five convolution layers, out of which three of them use grouping which
restrict the connectivity of filters, and two have local response normalization (LRN) layers. The
networks also has three pooling layers, two fully connected layers with ReLU activation units and
dropout, and a softmax logistic loss. Each image is cropped to have dimension of 224. The data
augmentation using random cropping or transformation is not performed5. For Caffe and Neon, the
network is available from the corresponding GitHub repository. Neon currently does not support
grouping and LRN layers. For Theano, the code of Ding et al. (2014) is adopted without performing
data parallelization. We updated the implementation to avoid unnecessary dimshuffle operations.
The convolution on GPU on Theano is performed by calling either the dnn.dnn conv function from
cuDNN library or the corresponding function from pylearn2 cuda-convent wrapper67. The latter is
referred as cuconv in the results. For Torch, in addition to cuDNN library, we report the timings on
GPU using both cunn and fbcunn libraries. Note that fbcunn does not support stride lengths greater
than 1. So when reporting fbcunn results, we use the cuDNN-based convolution for the first layer of
AlexNet and fbcunn-based convolutions for the rest. Furthermore, cunn and fbcunn do not support
grouping. In addition to reporting the results for the exact AlexNet implementation, we also report
the results without LRN layers and with grouping set to one to make the comparison transparent.

MemoryData layer. Here we used efficient LMDB database for Caffe and the communication overhead is not
significant. The combined averaged forward and backward computational time of the data layer of LeNet in
Caffe is about 1/1220 (1/30) of the total computational time of the batch when using CPU (GPU). This includes
the time to rescale the images of the batch to the unit range.

5The ImageNet data is accessed in Caffe using the LMDB database, in Neon using ImgMaster class, in
Theano using Hickle, and in Torch using a multithreaded data loader provided in Chintala (2015b) that creates
a pre-specified number of threads for parallel data loading from disk.

6The cuda-convnet (Krizhevsky et al., 2012) is a fast implementation of convolution but has some restric-
tions on input and kernel shapes with a different memory layout compared to Theano convolution operator.

7The Theano implementation does not use the standard convolution function (conv.conv2d) as it does not
implement the type of padding used in AlexNet, known as “same” padding. Thus, it is not possible to perform
the AlexNet Theano experiment on CPU or using conv-fft as they can be accessed through the conv2d function.
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Table 4: The averaged processing times for AlexNet as well
as peak GPU memory usage with batch size of 256.

Settings Gradient Forward GPU RAM
(ms) (ms) (GB)

C
PU

Caffe (12 threads) 43 152 19 817 -
Neon (1 thread)∗† 100 987 28 828 -
Torch (6 threads)∗ 11 977 4383 -
Torch (12 threads)∗ 8421 2746 -

G
PU

Caffe + cuDNN 422.4 111.7 4.1
Theano + cuDNN 529.8 162.8 3.3
Theano + cuconv 684.9 156.1 5.6
Torch + cuDNN 390.2 92.5 3.7

Caffe + cuDNN∗† 521.2 130.4 2.7
Neon∗† 290.5 96.3 2.4
Theano + cuDNN∗† 561.2 172.3 2.7
Theano + cuconv∗† 698.8 211.1 6.8
Torch + cuDNN∗† 405.9 100.7 2.8
Torch + cunn∗† 915.7 365.3 2.9
Torch + fbcunn∗† 286.3 98.4 4.8

∗Without local response normalization layers.
† No grouping is performed in convolutional layers.
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Figure 2: The averaged processing
times for AlexNet on GPU using dif-
ferent batch sizes. The cuDNN is used
for Caffe, Theano, and Torch. Experi-
ments are without normalization layers
and grouping.

Table 4 shows the performance of the four frameworks on the AlexNet using batch size of 256.To
have a better performance comparison across the frameworks, the time required for data loading and
processing (mean normalization) in each batch is excluded from time of forward and backward steps
in all our experiments. We also report the peak GPU memory consumption to illustrate the efficacy
of the frameworks in implementing deep networks8. In the CPU setting, Torch results in the best
speed performance, similar to the LeNet results. The speed-up obtained by using GPU instead is
more significant (at least 25×) here compared to the LeNet. When employed on GPU, Torch results
in the best performance on the exact AlexNet implementation. When LRN layers are dropped and
grouping are set to one, Torch using fbcunn results in the best gradient computation performance
while Neon results in the best forward pass performance followed closely by Torch. Figure 2 shows
the performance of the four frameworks on GPU using different batch sizes when no LRN layers
are used here and grouping for all convolutional layers are set to one. Note that Neon and Torch
have consistent superior performances for different batch sizes for the forward pass but Neon results
in best performance for the gradient computation time. In terms of GPU memory consumption,
similar efficient usage are observed across Caffe, Theano, and Torch when cuDNN is used while
Neon has the most memory efficient usage. We also noticed from our experiments that the LMDB
database used in Caffe has significantly better performance than the other data access layers used
in other frameworks as it supports concurrent reads. Caffe also uses pre-fetching to eliminates IO
latency. This can be an area of future developments for Neon, Theano, and Torch to make the LMDB
database (or other efficient databases) and pre-fetching available in their frameworks. Pre-fetching
and multi-thread processing can also be implemented in Torch as has been done for the Imagenet
example in Chintala (2015b).

4.3 STACKED AUTOENCODERS

To benchmark a scenario with layer-wise pre-training procedure,we choose stacked autoencoders.
This also provides a better picture of the performances of different frameworks when only fully-
connected layers are used. We train three autoencoders (AEs) where each AE has a encoder and a
corresponding decoder layer with tied weights, i.e. the decoder weights are transpose of the encoder
weights.The sigmoid activation functions are used. The network is trained on the MNIST dataset
in two steps: layer-wise unsupervised training and supervised fine-tuning. The unsupervised layer-
wise training step is performed similar to the procedure in Bengio et al. (2007) using mean squared
loss function. The AE1 is first trained on the raw images and then its weights are fixed. The AE2 is
then trained on the resulting outputs of the first encoder and this procedure is repeated until all AEs

8We used nvidia-smi to monitor the GPU memory consumption.
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Gradient (ms) Forward (ms)

Setting AE1 AE2 AE3 Total pre-training SE SE

C
PU

th
re

ad
s 1

Neon 14.6 11.5 10.5 35.6 9.7 4.8
Theano 14.8 10.5 8.4 33.7 8.2 6.4
Torch 13.7 8.7 6.5 28.9 8.2 5.0

6 Theano 5.8 3.9 2.5 12.2 2.6 1.8
Torch 5.0 3.0 2.3 10.3 3.3 1.9

12
Caffe 11.7 10.6 8.6 30.9 7.4 6.1
Theano 6.2 4.4 4.0 14.6 3.7 2.8
Torch 9.8 4.2 3.2 17.2 3.8 2.3

G
PU

Caffe + cuDNN 0.7 0.8 0.8 2.3 1.0 0.6
Neon 1.1 1.5 1.7 4.3 1.8 0.9
Theano + cuDNN 0.6 0.4 0.3 1.3 0.4 0.2
Torch + cuDNN 0.6 0.5 0.5 1.6 0.7 0.3

Table 5: The averaged processing times of the stacked autoencoders (AE) for both pre-training and
fine-tuning steps using batch size of 64. The encoder dimensions for AE1, AE2, and AE3 are 400,
200, and 100, respectively. For the unsupervised pre-training step, the gradient computation times
are reported for the individual AEs along with the total gradient computation. For the supervised
fine-tuning step of the stacked enocoders (SE), both gradient computation and forward pass times
are reported. Caffe and Neon implementations do not have tied weights.

are trained. Note that once an AE is trained, its encoder outputs are not computed and recorded for
the entire dataset in the memory to be used for the following AE9, rather each batch is separately
processed. Thus the forward pass for AE2, for example, includes a pass from raw image data to
the first encoder and AE2 before loss is computed. In the supervised fine-tuning step, the training
is performed on the stacked encoders (SE) of each AE with a softmax layer of size 10 and a cross
entropy loss function. The decoders are not present in this fine-tuning step.

The above pre-training and fine-tuning steps are implemented in Theano LISA Lab (2014) and
Torch. For Caffe, pre-training step is implemented using a few tricks. We have four configuration
files in which three of them handle training of the individual AEs and one handles the fine-tuning
step on the SE. We set the learning rates of the layers that should not be updated during pre-training
step to zero10. For example, when training the second AE, the learning rate for the weights of first
encoder are set to zero11. Our Neon implementation is very similar to Caffe implementation and
Multiple optimizers are used to set the learning rates of the layers that should not get updated to
zero. It should be noted that Caffe and Neon do not yet support tied weights and thus, different from
our Theano and Torch implementations, have independent parameters for encoders and decoders.
The performance of the four frameworks are shown in Table 5 where the encoders of the three AE
layers have 400, 200 and 100 hidden layers, respectively. It is seen that Torch and Theano results in
superior performance and Neon results in the worst performance for both CPU and GPU settings.
We have also evaluated the frameworks in a different setting, where the number of hidden layers
of encoders of AE1, AE2 and AE3 are 800, 1000 and 2000, respectively. For this larger network,
Caffe results in better performance compared to Theano on GPU but Torch again achieves the best
performance. The results of this experiment are shown in Table 7 in the Appendix.

4.4 LSTM

In this section, we train a LSTM network (Graves et al., 2012) for the task of sentiment analysis on
IMDB dataset. In this task, each sentence is considered as a (varying-length) sequence of words. The
network architecture is the same as the one used in LISA Lab (2014). It consists of an embedding
layer followed by an LSTM layer. The outputs of the LSTM layer are then averaged and fed to a
linear fully connected layer with softmax logistic regression for binary classification. The sequences

9Saving the outputs of trained encoder for the entire input would improve computational time but is not a
memory-efficient procedure, specially for large datasets, and therefore is not employed here.

10One can use PyCaffe and the Caffe “net surgery” procedure to transfer the learned weights of each trained
AE to the following AE. This is not performed here as we are only interested in the computational performance.

11It should be noted that Caffe detects the zero learning rates and does not perform unnecessary calculations.
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Setting Gradient (ms) Forward (ms)

C
PU Theano (6 thread) 205.77 96.24

Torch (6 threads) 117.18 54.8

G
PU Theano + cuDNN 16.72 4.66

Torch + cuDNN 98.74 29.2

Table 6: The averaged processing times of the LSTM using batch size of 16.

within each batch are padded to have the same size as the largest sequence within the batch and a
masking array is used to make sure the recursive computations of the LSTM layer remain valid. For
Torch, we use the LSTM layer from the “rnn” package Leonard (2015) along with the MaskZero
and LookupTableMaskZero modules for handling the varying length scenario.

Caffe does not yet officially support cyclic architectures, and in particular LSTM, and thus its perfor-
mance is not reported here12. While Neon has LSTM layers and has the option to pad data to fixed
sizes, it does not accept variable length inputs within a batch and thus is not used here. It should
be noted that one of the main advantages of recurrent networks are their capabilities in handling
variable length inputs without the need to make the window size constant (Graves et al., 2012).

We used 124 iterations, one entire epoch, to average the computational time for different padding
sizes. Also shuffling is not performed on the training set to make sure different frameworks receive
the same sequence of batches and thus have the same number of flops. As the dataset is small, it
is initially loaded into the device or host memory. Table 6 shows the performance of Theano and
Torch for the LSTM network.As with previous cases, Torch performs best for CPU but with a GPU,
Theano results in better performance.

5 CONCLUSIONS

We evaluated four of the top deep learning frameworks, namely Caffe, Neon, Theano and Torch for
a variety of settings on a single machine. Here are our main observations:

• Theano and Torch are the most extensible frameworks both in terms of supporting various
deep architectures but also in terms of supported libraries. The symbolic differentiation
is one of the most useful features that Theano offers for implementing non-standard deep
architectures. Torch community is trying to fill this gap13.

• For CPU-based training and deployment of any tested deep network architecture, Torch
performs the best followed by Theano, and Neon has the worst performance.

• For GPU-based deployment of trained convolutional and fully connected networks, Torch
is best suited, followed by Theano.

• For GPU-based training of convolutional and fully connected networks, we noticed Theano
is fastest for small networks and Torch is fastest for larger networks. Neon is very compet-
itive on GPU for large convolutional networks.

• For GPU-based training and deployment of recurrent networks (LSTM), Theano results in
the best performance.

• Torch could greatly benefit from expanded documentation of its libraries and capabilities
and better error debugging tools.
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6 APPENDIX

6.1 CAFFE

Caffe is a deep learning tool developed by the Berkeley Vision and Learning Center and by com-
munity contributors and is released under BSD 2-Clause license (Jia et al., 2014). It is developed
in C++ with expression, speed, and modularity in mind which uses CUDA for GPU computation
and has commandline, Python, and Matlab interfaces for training and deployment purposes. It sepa-
rates the definition of the network architecture from actual implementation allowing to conveniently
and quickly explore different architectures and layers on either CPU or GPU. Caffe can use LMDB
database that allocates memory on the host and device automatically and lazily based on demand for
efficient memory usage and high-throughput. The LMDB database supports concurrent reads.

Several types of layers and loss functions are already implemented which can be configured in the
form of arbitrary directed acyclic graphs in a configuration file. There are also pre-trained models
for popular networks such as AlexNet (with non-commercial license) which allows reproducible
research. At the time of writing this report, Caffe supports various layers such as convolution, fully
connected and pooling layers, etc. The convolution operation can be computed using either a native
implementation (by dense matrix multiplications using Blas) or Nvidia cuDNN, if it is installed,
where latter usually results in faster computation.

6.2 THEANO

Theano is a free Python symbolic manipulation library, under a BSD license, aiming to improve
execution time and development time for machine learning algorithms (Bergstra et al., 2011; Bastien
et al., 2012). It has specifically been utilized for the gradient-based methods such as deep learning
that require repeated computation of the tensor-based mathematical expressions. Such mathematical
expressions can be rapidly coded in Theano using a high-level description language similar to a
functional language that can be compiled and executed on either a CPU or a GPU.

Theano uses CUDA library to define arrays located on an Nvidia GPU memory with Python bind-
ings. Theano includes many custolllrrm C and CUDA code generators tailored for different types,
sizes, and shapes of inputs which optimizes the computation of the complicated tensor computa-
tions. Theano benefits from a large user community that contribute to its development partly due to
the ease of development offered by Python language and its scientific computing stack. Examples
of the deep learning algorithms implemented using Theano can be found at LISA Lab (2014). In the
latest version of Theano used here (Theano 0.7), the convolution operation automatically uses the
optimized Nvidia cuDNN library, if installed, to perform the convolution. It also provides two addi-
tional implementations for the convolution operation, an FFT-based implementation (Mathieu et al.,
2013) and an implementation based on the open-source code of Alex Krizhevsky (Krizhevsky et al.,
2012).While Theano is a general mathematical expression library and may have a relatively steep
learning curve for writing efficient code and debugging, several libraries (e.g. Pylearn2, Keras, and
Lasagne) have been developed on top it which are specifically tailored for deep learning algorithm
providing building blocks for fast experimentation of the well-known methods.

6.3 TORCH

Torch is a scientific computational framework built using Lua that runs on Lua (JIT) compiler (Col-
lobert et al., 2011a). It has strong CUDA and CPU backends and contains well-developed, mature
machine learning and optimization packages. The Tensor libraries that come with it have very ef-
ficient CUDA backend and the neural networks (nn) libraries can be used to build arbitrary acyclic
computation graphs with automatic differentiation functionalities i.e. It has a :forward() function
that computes the output for a given input, flowing the input through the network; and it has a
:backward() function that will differentiate each parameter in the network w.r.t. the gradient that is
passed in. Torch also provides bindings to the latest version of Nvidia cuDNN that gives it access to
state-of-art speedups for convolutional operations. The latest version, Torch7, has easy to use multi-
GPU support and parallelizing packages that make it very powerful for training deep architectures.
Torch has a large community of developers and is being actively used within large organizations like
Facebook, Google and Twitter. Specifically, many researchers at NYU and Facebook AI Research
(FAIR) lab actively contribute to Torch by making a lot of their code open source. Many companies
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also have in-house teams to customize Torch for their deep learning platforms that has contributed
to its popularity in recent times.

6.4 NEON

Neon is a Python based deep learning framework developed by Nervana. It has recently been open-
sourced under an open source Apache 2.0 License. Neon has customized CPU and GPU backends,
known as NervanaCPU and NervanaGPU backends, respectively. The NervanaGPU backend con-
sists of kernels written in MaxAs assembler and Python wrappers which is highly optimized for
Nvidias Maxwell GPUs (e.g. Titan X). The NervanaCPU backend is built on top of python NumPy
library. Neon supports commonly used models such as convnets, MLPs, RNNs, and autoencoders.
Compared to above three frameworks, Neon is a relatively young framework. Thus, it has not yet
been adopted widely within the deep learning community and many of the features already available
in the other frameworks, are still under development for Neon. More discussions on the available
and missing features of Neon will be provided in the following sections.

6.5 SUPPLEMENTAL RESULTS

Gradient (ms) Forward (ms)

Setting AE1 AE2 AE3 Total pre-training SE SE

C
PU

th
re

ad
s 1

Neon 24.6 46.1 120.1 190.8 76.5 29.3
Theano 23.2 36.9 79.0 139.1 65.1 43.2
Torch 22.9 35.0 79.2 137.1 61.8 34.0

6 Theano 8.1 13.7 24.8 46.6 24.3 14.6
Torch 7.6 13.0 24.9 45.5 22.7 11.4

12

Caffe 17.2 30.0 63.9 111.1 44.3 32.0
Theano 8.9 15.8 29.0 53.7 25.9 15.8
Torch 11.4 19.3 37.7 68.4 31.9 16.0

G
PU

Caffe + cuDNN 0.8 1.1 1.5 3.4 1.7 0.9
Neon 1.1 1.5 1.9 4.5 2.0 1.0
Theano + cuDNN 0.9 1.2 2.2 4.3 1.1 0.9
Torch + cuDNN 0.8 0.9 1.8 3.5 1.5 0.7

Table 7: The averaged processing times of the stacked autoencoders (AE) for both pre-training and
fine-tuning steps using batch size of 64. The encoder dimensions for AE1, AE2, and AE3 are 800,
1000, and 2000, respectively. For the unsupervised pre-training step, the gradient computation times
are reported for the individual AEs along with the total gradient computation. For the supervised
fine-tuning step of the stacked enocoders (SE), both gradient computation and forward pass times
are reported. Caffe and Neon implementations do not have tied weights.

Setting First compile (s) Re-compile (s)

C
PU

LeNet 25.2 0.7
Stacked Auto Encoder (small) 19.9 2.0
LSTM 80.1 12.7

G
PU

LeNet 177.7 5.0
AlexNet 212.0 6.1
Stacked Auto Encoder (small) 106.8 2.0
LSTM 283.5 19.7

Table 8: The averaged times required on Theano to compile both gradient and forward functions for
the studied deep networks. The cuDNN library is used for the GPU measurements. We report two
sets of measurements. The first set shows the compilation times when the Theano cache is clear.
The second set shows the times required to re-compile the functions. The re-compilation times,
which are significantly faster, are more indicative of times required to fine-tune and cross-validate
an architecture and thus are more relevant for practical scenarios. We noticed from our experiments
that changing hyperparameters (e.g. number of feature maps or convolutional layers) causes only
slight changes in the re-compilation times. For more information see: http://deeplearning.
net/software/theano/extending/pipeline.html.
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