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Abstract

Considerable quantitative uncertainty has remained regarding the amount and structure of defects produced in molecular dynamics
simulations of collision cascades in Fe. The problem is most likely related to the description of interstitial energetics in the interatomic
potentials. Three potentials have recently been developed for Fe, which, even though they have different physical motivations and func-
tional forms, describe the interstitial energetics well. Using these potentials, we simulate recoil collision cascades in Fe in the recoil energy
range 0.5–20 keV. Prior to the cascade simulations a realistic high-energy repulsive part was added to two of the potentials, adjusting the
fit to reproduce the experimentally obtained threshold displacement energies. The results show that the total Frenkel pair production, as
predicted by the three potentials, is the same within the statistical uncertainty, but also that some differences remain in the fraction of
clustered defects. However, these differences are smaller than those predicted by previous potentials.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A first step in being able to understand neutron irradia-
tion damage buildup in fission and fusion reactor steels, is
knowing what the initial damage state produced by neu-
tron-induced atomic recoils in Fe is. Supporting this is
our recent study revealing that the primary damage in
Fe0.9Cr0.1 is essentially the same as in pure Fe [1]. To be
specific, we found that the chromium content did not affect
the total number of defects nor the vacancy and interstitial
clustered fractions. The primary state of the radiation
damage in Fe in the heat spike regime has been extensively
studied with computer simulations (for a recent overview
see [2]), resulting in good qualitative understanding of the
collision cascade development [3–5]. However, quantitative
differences of more than a factor of three have remained in
0168-583X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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the predicted clustered defect production numbers [2,5],
which can be a serious problem for modeling the longer
time scale development of the defect evolution. Moreover,
the disagreements between the potentials pose problems in
finding a reliable predictive model for the behavior of Fe
under irradiation. On the other hand, it is now well known
that many of the interatomic potentials used have serious
deficiencies in their description of e.g. the interstitial ener-
getics, which is a likely cause to the differences [2].

In the current paper, we utilize three recent interatomic
potentials for Fe which are comparable in overall quality
and in particular reproduce the energetics of interstitials
in different configurations in the correct order. These are
the potential by Ackland, Mendelev and Srolovitz et al.
(AMS) [6], the ‘magnetic’ potential by Dudarev and Derlet
(DD) [7] and the Tersoff-like [8] analytical potential by
Müller, Erhart and Albe (MEA) [9]. These potentials have
very different physical motivations and functional forms.
The AMS is a many-body potential of Finnis–Sinclair
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form, fitted to ab initio values of both point defects and
bulk properties [6]. The DD is also a many-body potential,
but includes the effects of magnetism on the interaction
energy between the atoms by using the Stoner and
Ginzberg–Landau models [7]. MEA, on the other hand,
is an angular dependent analytic bond-order potential fit-
ted to ab initio as well as experimental values of cohesive
energies, bond lengths and elastic constants of several
structures with different coordination. It is able to repro-
duce the transition from alpha to gamma to delta phase
of Fe. A comparison of the defect production predicted
by these three different potentials, gives a good view of
how sensitive the defect production properties are to mod-
ern potentials of comparable quality.

In MD simulations of collision cascades, it is important
to have a realistic description of both the equilibrium mate-
rial properties and the short-range behavior between recoil-
ing nuclei. The original repulsive potential fit of the DD
potential gives clearly too high threshold displacement
energies (see below) and no repulsive potential fit was car-
ried out during the construction of the MEA potential.
Hence in the current paper we first adjust the repulsive
parts of the DD and MEA potentials to obtain a good
description of the threshold displacement energies. We call
the modified potentials DD-BN and MEA-BN following
recent naming practice [2]. The short ranged part of the
AMS potential was not modified.

After the modifications, we compared the damage pro-
duction predicted by the AMS, DD-BN and MEA-BN
potentials by self-recoils in the energy range 0.5–20 keV.

The paper is organized as follows. First, we describe the
procedure of the repulsive potential modifications. A
description of the simulation and analysis methods is also
given in the same section. The next section includes results
and discussion. The potential modification results are pre-
sented and discussed in the first part of the section and the
second part comprises of the recoil collision cascade results
and a discussion thereof. Finally, the paper is concluded.

2. Method

2.1. Repulsive potential fit

During the initial stage of a recoil collision cascade, the
movement of the atoms are governed by simple ballistic
collisions with other atoms, and the interaction ranges in
this phase are short. At these distances the forces between
the atoms are purely repulsive, hence the evolution of a cas-
cade depends on the repulsive part of the interatomic
potential used. Moreover, this part of the potential also
determines the formation and energetics of interstitial
defects. A potential used in simulations of cascades is thus
required to correctly describe the interaction taking place
not only in the near-equilibrium range, but also at short
distances.

A repulsive part is often added to a potential after hav-
ing ensured that the equilibrium properties are described
satisfactorily. A smooth join is preferable, but the process
is complicated by the fact that very few well-defined exper-
imental data to fit to exist. A purely ad hoc fitting, or the
use of only one single observed property in the fitting, is
frequent [6,10–14]. However, when fitting to the threshold
displacement energies, one has to consider the fact that the
threshold really is a 3D surface, hence the use of only a
minimum value is inadequate. Moreover, one must also
consider the melting temperature and the interstitial forma-
tion energies, which might be modified by the adjustment.

Available data, that were used for adjusting the repul-
sive part of the DD and the MEA potentials, are experi-
mentally obtained thresholds [15,16] and defects
formation energies calculated with DFT methods [17].
Both the AMS and the DD reproduce the interstitial ener-
gies well, but the DD predicts far too high threshold ener-
gies (see Section 3.1). The MEA, on the other hand, did not
include any repulsive part. Therefore, by considering the
above mentioned data, the DD and the MEA potentials
were given adjusted repulsive parts. The resulting fits are,
however, compromises, since it was impossible to com-
pletely separate the regions that affected only the threshold
energies from those affecting the interstitials. The effect on
the melting properties, cohesion energy and vacancy for-
mation energy was also checked.

The pair function VDD(r) of the DD was modified by let-
ting the interactions at short distances be dictated by the
universal screened Coulomb potential VZBL(r) [18], modi-
fied only by subtracting a constant V0 (and thus denoted
with an *), and a merging interpolation function Vint(r).
The electronic structure calculations on which the ZBL
potential is based are optimized only for high-energy inter-
actions and are not meaningful at energies of a few eV [18],
hence introducing a small constant shift in the ZBL poten-
tial as a fitting parameter can be done without altering the
physically meaningful part of the potential. Note, more-
over, that the atom dynamics is only governed by the forces
dV/dr between atoms, and hence the introduction of the
constant does not change the atom trajectories in high-
energy collisions.

The density function of the modified potential, DD-BN,
is the original one, and the pair function is of the following
form:

V DD-BNðrÞ ¼ V �ZBLðrÞ; r 6 r1 ð1Þ
¼ V intðrÞ; r1 < r < r2 ð2Þ
¼ V DDðrÞ; r P r2; ð3Þ

where r1 and r2 equals 1.50098 and 2.25044 Å, respectively.
The rather large interval was required to get a smooth
interpolation. VDD(r) is Eq. (43) in [7] and Vint(r) is a
fifth-order polynomial,

V intðrÞ ¼ a0 þ a1r þ a2r2 þ a3r3 þ a4r4 þ a5r5; ð4Þ

which was constructed to give a continuous potential and
first and second derivatives at r1 and r2. The fitting was



C. Björkas, K. Nordlund / Nucl. Instr. and Meth. in Phys. Res. B 259 (2007) 853–860 855
done manually. Table 1 shows the resulting polynomial
constants.

A different approach was used in the modification of the
MEA. As done previously for Tersoff-like many-body
potentials [12,13], a total potential VTot was constructed
by joining the original universal ZBL repulsive potential
VZBL(r) [18] with the equilibrium MEA potential VEq(r)
using

V TotðrÞ ¼ V ZBLðrÞð1� F ðrÞÞ þ V EqðrÞF ðrÞ; ð5Þ

where VEq is the potential for states close to equilibrium de-
scribed in the main text of [9] and the Fermi function

F ðrÞ ¼ 1

1þ e�bf ðr�rf Þ
: ð6Þ

Note that the Fermi function is used here merely as a func-
tion which smoothly goes from 1 to 0 in a relatively narrow
r interval, with no connection to the Fermi level of the elec-
trons of the solid. The value of the constants bf and rf are
chosen such that the potential is essentially unmodified at
the equilibrium and longer bonding distances and that a
smooth fit at short separations with no spurious minima
is achieved for all realistic coordination numbers. As for
the DD potential join, the joining constants were manually
optimized to give a good description of the threshold dis-
placement energies without affecting the interstitial energies
overly much.

The threshold energies were calculated as in [19]. To
summarize, recoil cascades initiated by recoils directed in
angles in an interval of 0.2 Miller indices around the three
principal directions, h100i, h110i and h111i, as well as in
random directions, were performed. In this way, both the
direction specific thresholds Ed(h,/) and an average thresh-
old Eav

d;ave were obtained. The recoil energy was increased in
steps of 2 eVs and possible defects in each run were identi-
fied using Wigner–Seitz (WS) cells [20] and by detecting an
increase (of more than 4 eV) in the potential energy of the
system. The average number of defects produced in the
simulations was also obtained to be used in calculating
the defect cross-section, a property comparable to
experiments.

The melting temperature of iron as predicted by the dif-
ferent potentials was determined by simulating a solid–
liquid interface at zero pressure and different temperatures
Table 1
Polynomial coefficients of the interpolation function (Eq. (4)) used in the
modification of the repulsive part of the DD-BN potential

n an

0 0.72470528950874 · 103

1 �1.08800988724793 · 103

2 0.48788202708644 · 103

3 0.01143649654722 · 103

4 �0.05832166589588 · 103

5 0.01071895775243 · 103
[21]. The melting temperature was defined as the tempera-
ture at which the system was in equilibrium, i.e. when the
fractions of solid and liquid parts remained constant. The
simulations were performed for 50 ps.

Two features, describing a potential at short distances,
have also been observed to correlate with the behavior of
a cascade and the production of replacement collision
sequences (RCS) [5,22]. These are the range R, defined as
the interatomic distance at which the interaction energy
equals 30 eV, and the stiffness S, which is the gradient cal-
culated at that distance. These parameters are affected by
the stiffening of a potential. A high ratio S/R describes a
stiff potential and is proposed to lead to an increase in
the number of RCSs, and thus also to produce larger and
not very dense cascade volumes and shorter recombination
times. A dense cascade and a long recombination time is
attributed to a low S/R ratio [5,22]. We checked whether
the same correlation is found in the cascades of potentials
used in this work.
2.2. Cascade simulations and defect analysis

The recoil cascade simulation methods and defect anal-
ysis were the same as in [1]. The simulations were per-
formed with the MD code PARCAS [23]. The simulation
cells were at first relaxed for 10 ps at 0 kbar, 300 K after
which a recoil near the center was given an energy ranging
from 0.5 keV up to 20 keV in a random direction. Excess
heat was removed from the two outermost atom layers
and no recoiling atoms were allowed to hit the borders.
The temperature was controlled with the Berendsen
method [24]. A variable time step and periodic boundaries
but no electronic stopping were used. Information about
the number of cascades performed, the simulation time
and the size of the simulation cells for each recoil energy
and potential, is given in Table 2.

WS cells were employed to find the defects produced in
the cascade simulations. An empty cell corresponded to a
vacancy and multiply filled cells were defined as intersti-
tials. A clustered fraction of the two defect types was also
obtained. The cutoff radius in the cluster analysis was sec-
ond nearest neighbor and third nearest neighbor for the
vacancy and interstitial defects, respectively. These particu-
lar cutoffs correspond to those used in other studies, e.g.
[1,5], thus simplifying comparisons.

Cells of 1025 and 1023 atoms were used in calculating
the interstitial and vacancy formation energies, respec-
tively. The simulations were performed at 0 K and the for-
mation energy of a certain defect structure, Ef

def , was found
using

Ef
def ¼ Etot

def � N � Ecoh; ð7Þ

where Etot
def is the energy of the relaxed defect cell containing

N atoms and Ecoh is the cohesive energy of iron as pre-
dicted by the potential [25]. Long relaxation times and a
small time step were employed.



Table 2
The number of cascades performed, the simulation time and the size of the simulation cell for each recoil energy and potential used in this work

Recoil energy (keV) No. of events Time (ps) Box size (a0) No. of atoms

AMS MEA-BN DD-BN

0.5 20 20 20 25 20 16,000
1 20 20 20 25 25 31,250
2 20 20 20 25 31 59,582
5 100 40 20 25 42 148,176

10 15 20 15 25 54 314,928
20 25 15 15 25 67 601,526
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3. Results and discussion

3.1. Results of the repulsive potential fit

In the construction of the DD-BN potential, the fitting
procedure resulted in a value of V0 = 4.5 eV for the ZBL
offset and in coefficients of the interpolation polynomial
(Eq. (4)) given in Table 1. With this polynomial, the DD-
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Fig. 1. The original DD and the modified DD-BN dimer interaction
energy: (a) r1 and r2 indicates the interpolation range and ZBL is the
universal screened Coulomb potential [18] and (b) illustrates the
corresponding energy for the MEA and MEA-BN potentials.
BN dimer interaction at short distances became of the form
seen in Fig. 1(a). For the MEA-BN join the Fermi function
constants rf = 0.95 Å and bf = 2.90 · 1/Å were obtained.
The fit is illustrated in Fig. 1(b).

The results of the threshold calculations for the DD-BN
and the MEA-BN are shown in Table 3. Threshold energies
in the principal directions as obtained from three experi-
ments are included in the same table. The energies pre-
dicted by the modified potentials are in close agreement
with the experimental values.

Excellent agreement is found when comparing the defect
cross-section predicted by the potentials (see Fig. 2) with
that of an experiment [26]. The calculation methods are
described in [19]. Note that the experimental r(E) data is
for each electron energy E an integral over atomic recoil
energies T up to the maximum energy transfer Tm corre-
sponding to the electron energy E [19]. Hence the r(E) data
are dominated by the lowest threshold energies. This
explains why the DD-BN and the MEA-BN data in the fig-
ure are very similar, even though their average thresholds
differ.

The modifications of the potentials altered the intersti-
tial formation energies slightly. The unmodified potential
Table 3
Threshold displacement energies in eV as predicted by the different
potentials

Potential Ndirections Ed(h,/) Eav
d;ave

All h100i h110i h111i
DD 2584 33 33 51 35 66.5 ± 0.5
DD-BN 2714 17 17 29 25 35.0 ± 0.4
MEA 2933 15 15 23 19 36.9 ± 0.3
MEA-BN 2591 17 17 25 23 42.3 ± 0.3
AMS 2699 16 17 33 33 40.0 ± 0.3

Exp.a 16–18
Exp.b 17 >30 20
Exp.c 20 30

Ndirections is the number of directions that was used in determining the
minimum Ed(h,/) and the average threshold Eav

d;ave. The uncertainty of the
values (except for the average threshold) is 1 eV, due to the energy step of
2 eV used in the calculations. The direction specific thresholds are calcu-
lated in an interval of 0.2 Miller index around the principal directions.
Experimental values are also included.

a [26].
b [15].
c [16].
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Fig. 2. The defect cross-section as a function of electron energy as
predicted by the two modified potentials DD-BN and MEA-BN compared
to experimental values [26]. The unmodified potential DD is also included
to show the effect of the modification of the repulsive part.
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DD predicted formation energies close to the ab initio val-
ues, whereas MEA gave higher values (see Table 4). After
adjusting the repulsive parts, the DD-BN still predicts the
h110i interstitial to be the most stable defect, with an
energy difference of 0.43 eV and 0.74 eV to the h111i and
h100i interstitial, respectively. The absolute values are,
however, slightly lower than according to ab initio calcula-
tions. A correct order of the defects is found in the MEA-
BN as well, although the fit resulted in an energy increase.
The fit did not affect the vacancy formation of either poten-
tial but had a small affect of �2% on the cohesive energy in
the MEA-BN potential. It is vital to have a correct descrip-
tion of the interstitial energetics when modeling cascade
damage, since it affects the mobility of interstitials and
interstitial clusters [27] and thus also the clustered
fractions.

The defect energetics of the AMS, the calculated melting
temperature, as well as the range and the stiffness of the
Table 4
Defect formation energies Ef

def , cohesion energy Ecoh, melting temperature Tm

Ab initioa Exp. DD

Ef
vac (eV) 2.07 1.5–2.2 eVb 1.97

Ef
h100i (eV) 4.64 4.61

Ef
h111i (eV) 4.34 4.28

Ef
h110i (eV) 3.64 Stable, 4.7–5.0c 3.67

Ecoh (eV) �4.32d �4.316
Tmelt (K) 1811e 2175 ± 25
R (Å) 1.38
S (eV/Å) �101
jS/Rj (eV/Å2) 73

Available ab initio and experimental data are also given.
a [17].
b [29–33].
c [34].
d [35].
e [33].
potentials, are also included in Table 4. The AMS is the
only potential that predicts a melting temperature close
to the experimental value, whereas temperatures as high
as about 2300 K are required for melting in the MEA-
BN. A large overestimation of the temperature is also seen
in the DD-BN. A different description of the melting point
affects the life time of the melted cascade core and the
movement of vacancies towards the center [28]. Differences
between cascades ascribable to this is indeed observed (see
Section 3.2). Considering the range and stiffness of the
potentials, the MEA-BN is the most stiff one, i.e. has the
smallest range and a highest S/R ratio. The other two
potentials are similar in stiffness.
3.2. Collision cascade results

The number of Frenkel pairs (FP) after the recoil colli-
sion cascades is shown in Fig. 3. The shaded area included
in the figure represents the distribution of the number as
predicted by earlier iron potentials. The data are taken
from a recent review [2, and references therein]. The fluctu-
ations between the potentials used in this work are seen to
be small. This supports the notion that the threshold ener-
gies predicted by the potentials have a limited influence on
the surviving defects in a cascade simulation [2,5].

Fig. 4 illustrates the evolution of the average number of
FPs with time in 10 keV cascades. The AMS is seen to pre-
dict the largest number of defects at peak-time (when the
maximum amount of defects are produced), but the num-
ber is the same as predicted by the other potentials after
the recombination phase. The MEA-BN shows a shorter
peak-time (500 fs as compared to 750 fs for the AMS and
the DD-BN), a shorter relaxation time and only half as
much FPs at peak-time as the other two. The largest differ-
ence is seen after the end of the ballistic phase, at about
1 ps. Correlation is thus found between the stiffness of a
potential and the cascade behavior, since the stiffest poten-
tial, in this case the MEA-BN, predicts the least amount of
elt, range R and stiffness S of the original and modified potentials

DD-BN MEA MEA-BN AMS

1.97 1.56 1.56 1.71
4.22 5.50 5.78 4.45

3.91 4.51 4.75 4.12

3.48 4.17 4.52 3.67
�4.316 �4.280 �4.178 �4.013
2125 ± 25 2225 ± 25 2300 ± 25 1750 ± 25
1.33 0.87 1.05 1.33
�119 �102 �140 �130
89 118 134 98
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Fig. 5. Vacancy clustered fraction as a function of recoil energy. The
shaded area represents the distribution of the fraction as predicted by
earlier iron potentials.
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cascades.
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damage at peak-time. Denser cascades and more defects
are observed in the softer potentials AMS and DD-BN.
Noteworthy is, however, the close agreement on the
amount at the end of the cascades.

A comparison between the clustered fractions predicted
by the potentials does not show the same agreement (Figs.
5 and 7). The fraction of vacancies in clusters within the
MEA-BN is at high recoil energies lower, at values
[15%, than the ones in the other two potentials. At lower
energies, the fraction is roughly between 30% and 50% for
all potentials. The highest fraction is achieved using the
AMS.

When studying the vacancy fraction of the 10 keV cases
a bit closer, that is, looking at how the vacancy fraction
evolves during the cascades, one notices that the lower frac-
tion predicted by the MEA-BN is achieved rather fast (see
Fig. 6). The same behavior is seen also in 5 keV cascades.
The fraction within this potential is decreasing even after
the thermal spike, in contrast to the DD-BN and the
AMS, where the fractions are exhibiting a slight increase
during the same time. The vacancy clustered fraction has
been proposed to be related to the melting point of a mate-
rial, since the lattice recrystallization front pushes the
vacancies towards the center of the cascade [36,37]. A
higher melting point leads to a faster movement of the
recrystallization front inwards. This leaves less time for
vacancies to migrate towards the center and instead makes
them more likely to freeze in the lattice further away.
Hence a high melting point can be expected to correlate
with less vacancy clustering. One can indeed see that the
potential having the highest melting point (MEA-BN)
results in the lowest fraction and the one having the lowest
melting point (AMS) in the highest fraction. At low recoil
energies no heat spike liquid zone exists and thus no recrys-
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tallization front. Hence the difference is only visible at the
higher energies.

All the potentials predict similar behavior of the intersti-
tial clustered fraction (Fig. 7), since all the fractions are
seen to increase with energy. The MEA-BN predicts in this
case the largest fraction of the three potentials and the
AMS the smallest. The values lie, however, in the interval
of fractions predicted by earlier potentials (illustrated by
the shaded area in the figure). Two features of the AMS,
namely the low fraction of interstitials in clusters and the
tendency to produce about the same fraction of vacancy
and interstitial clusters, have also previously been observed
[5].

Fig. 8 shows the behavior of the interstitials clustered
fraction with time. Two things can be pointed out: the
increase of the fraction at the recombination phase, which
only the MEA-BN and the DD-BN show, and the small
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Fig. 8. The fraction of interstitials in clusters as a function of time in
10 keV cascades.
drop from maximum to minimum of the MEA-BN. This
could be explained by the mobility of the interstitials.
The interstitial migration energy Emig in the AMS is rela-
tively high, about 0.25–0.3 eV [38], hence the thermally
induced interstitial mobility is expected to be lower than
in the DD-BN and the MEA-BN, where the migration
energies are smaller. The values are within the original
potentials EDD

mig ¼ 0:15 eV and EMEA
mig ¼ 0:17 eV [9], respec-

tively. (We checked whether the modifications of the repul-
sive parts altered these values, noticing only a minor effect
of [0.02 eV.) The difference in mobility is visible in the
fact that the interstitial clustering fraction remains constant
during the end of the cascades within the AMS, while the
interstitials are able to rearrange and form clusters in the
other potentials.

These results suggest that in order to obtain a quantita-
tive description of the defect clustering, a potential must be
able to correctly reproduce both the formation and the
migration energies of defects. In this sense, the AMS can
be considered as the most reliable of the three potentials
studied in this work, since it predicts defect energies closest
to ab initio values.
4. Conclusions

Molecular dynamic simulations of recoil collision cas-
cades in Fe were performed with three recent potentials,
including a magnetic many-body potential (DD), an ana-
lytic bond-order potential (MEA) and a many-body poten-
tial (AMS) previously studied. The potentials have different
physical basis and different functional forms, but all repro-
duce the interstitial energetics well. The DD and the MEA
were given realistic repulsive parts by adjusting them to
reproduce experimentally obtained threshold energies and
thus renamed DD-BN and MEA-BN, respectively.

The defect analysis revealed overall agreement between
the potentials when it comes to the number of surviving
defects after the cascade, but show that the defect clustered
fraction still has some variation. A comparison with the
fractions predicted by previous potentials does, however,
show that the fluctuations are smaller. The differences
between the fractions are ascribed to the different descrip-
tions of the melting point and of the interstitial mobility
in the potentials.
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