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Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania;
sai-manoj.rayapureddy@vilniustech.lt (S.M.R.); alfredas.rimkus@vilniustech.lt (A.R.)

2 Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
3 Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
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Abstract: This article is a study of Hydrotreated Vegetable Oil and Butanol Fuel blends, which are
mixed in three different proportions (HVOB5, HVOB10 and HVOB20), and the comparison of their
combustion (in-cylinder pressure, pressure rise and ROHR), performance (fuel consumption, BSFC
and BTE) and emission (CO2, NOX, HC and Smoke) characteristics with those of fossil diesel fuel.
In the wake of finding an alternative fuel that requires little to zero modifications to the existing IC
engines, it is necessary to account for the necessity of matching the efficiency of conventional fuels
as well as greatly reducing its exhaust emissions. As a result of transesterification, HVO is found
to have better stability and higher CN compared to other biofuels. It is termed a “renewable diesel”
due to its ability to reduce emissions while maintaining efficiency. HVO as a fuel has higher cost
efficiency, and for a more stable oxygen content in the fuel, an alcohol substitute is needed. Butanol,
which has a considerable advantage over other alcohols due to its higher density, viscosity and CN,
is selected. HVOB5 and HVOB10 are found to match diesel fuel in terms of fuel consumption while
having a ~1% lesser efficiency. In terms of emissions, all the fuel mixtures including HVO100 are
found to have ~4–5% lesser CO2, ~10–15% lesser NOX and a ~25–45% reduction in smoke levels.

Keywords: Hydrotreated Vegetable Oil; butanol; diesel fuel; combustion parameters; performance;
emissions

1. Introduction

Mobility is among the top priorities of the modern world, making automobiles an
essential part. There has been constant and tremendous growth in the automobile sector
since the industrial revolution. While it continues to grow further, problems related to
the decrease in fossil fuel availability and increased emissions have also begun to rise.
Concerned with the damage caused by emissions such as carbon dioxide (CO2), which has
been the major cause of global warming, as well as human health, which is affected by the
rising levels of carbon monoxide (CO), nitrogen oxides (NOX) and particulate matter (PM),
strict regulations have been put in place to constrain the damage [1–4].

According to the European Automobile Manufacturers’ Association (ACEA), vehicles
powered by conventional fuels accounted for 62.2% of the market share in the second
quarter of 2021. Although the demand and production of electric vehicles expanded, they
are found to capture only 7.5% of the market share [5]. The transition time and costs associ-
ated with a complete transformation to 100% electric vehicles and their infrastructure are
essentially out-of-reach. While hybrid electric vehicles are found to contain emission levels,
there is still a need for the development of Internal Combustion (IC) engines with higher
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efficiency and lower emissions. The noise emissions generated by internal combustion
engines were discussed by Czech and Madej [6] or Figlus and Liściak [7]. On the other hand,
the issues of exhaust emissions have been widely discussed for many years, as evidenced
by previous research [3,8,9]. Currently, the development of internal combustion engines
is visible primarily in the improvement of their design [10,11], the improvement of the
combustion process in spark-ignition engines [12–15] and the development of fuel-injection
systems in diesel engines [16–20] and exhaust gas-cleaning systems [21–23]. One of the
directions for reducing exhaust emissions is the use of alternative fuels. In this area, re-
search on Liquified Petroleum Gas (LPG) is popular in many countries [15,24,25], as well
as biogas [20], natural gas [26,27], Compressed Natural Gas (CNG) [28–30] and Liquified
Natural Gas (LNG) [31,32]. Interesting studies have been presented on alternative fuels to
diesel, as well as mixtures of both, inter alia, [33–39]. In the wake of this scenario, a more
reliable alternative fuel that can be used alone or along with conventional fuels in existing
IC engines, with little to no modification, is required [1,40,41].

Complying with the European emission target of reducing CO2 emissions by 37.5%
by 2030 and the EURO 7/VII Emission Standards, which require renewable energy to
account for at least 32% of the total energy, there is a need for alternative fuels with a higher
hydrogen/carbon ratio [42–44]. Biodiesel and alcohols are found to be promising sources
of alternative fuels, which are already been commercially used on a large scale [45]. They
can be either blended with diesel or used in their pure form. Alternative fuels that do not
contain aromatic compounds possess great potential for reducing hydro carbon (HC), CO
and PM [46].

Hydrotreated Vegetable Oil (HVO), which is termed “renewable diesel”, possesses spe-
cial properties of decreasing emissions while maintaining efficiency and fuel consumption,
which places it above any ether-based alternative fuels. It offers a higher cetane number and
stability than biodiesels produced through transesterification [47]. The noted advantage
of using HVO as an alternative fuel is that it can be used without any modifications to
fuel systems. PM is greatly reduced due to its paraffinic and aromatic-free nature. Its high
cetane number (CN) would be well-suited to low-compression-ratio engines, which results
in lower NOX and PM. The absence of sulphur greatly reduces the ageing and deterioration
of engine components. The primary disadvantage of HVO is the absence of Oxygen (O2)
and that it is expensive compared to other biodiesels. From the results of previous studies,
it is evident that when HVO is used at high loads, NOX and PM are reduced by up to 50%
compared to standard diesel fuel [48–50].

Alcohols are mostly used as an alternative fuel and are blended with diesel fuel to
increase their O2 content and decrease emissions. The two predominantly used alcohols
for diesel engines are ethanol and butanol. They possess greater potential because of
their production rate, ease of use and sustainability. Butanol, with its higher density,
viscosity, flash point, cetane number and lubricity, is a comparatively better alternative
than ethanol [47,51,52].

Mixing a high-reactivity fuel with a low-reactivity-rate fuel is found to have combined
advantages such as a lower pressure increase and, in turn, a greater reduction in smoke
and NOx emissions [53–55]. Alcohols can also be added to increase the efficiency of
engines powered by biodiesel [46,56]. Researchers observed that with the increase in
engine load, using butanol as a fuel increased the brake thermal efficiency (BTE) and
decreased brake-specific fuel consumption (BSFC) [57,58]. It is also found to particularly
decrease PM emissions (Vojtisek-Lom). However, due to its lower cetane number, there
has been some inconsistency in the results of various research studies concerning NOX
emissions [51,59–62].

Butanol and HVO blends can be a potential solution as they counterbalance their
critical parameters [63]. HVO, which has almost all the parameters as that of diesel, is
expensive and has a higher cetane number, with the best ignition properties, while butanol
is cost-effective and has a lower cetane number while possessing the ability to reduce PM
to a great extent [47].
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The aim of this research is to perform numerical analysis through combustion pa-
rameters such as the in-cylinder pressure and Rate of Heat Release (ROHR) along with
recording performance indicators such as fuel consumption (Bf), BSFC and BTE and emis-
sion characteristics such as CO2, NOX, HCm and Smoke for pure HVO and HVO–Butanol
fuel mixtures prepared in three different volumetric proportions and compare them with
those of pure diesel fuel.

2. Materials and Methods
2.1. Testing Engine

The IC engine that was used for testing the fuels was the AUDI 1.9 Turbocharged
direct-injection engine with the BOSH VP37 controlled Electronic Control Unit (ECU). It
operates on the single injection strategy, and the Start of Injection (SOI) was electronically
controlled. The test bench was situated in the Automotive department laboratory of Vilnius
Tech. The schematic representation of the engine is presented in Figure 1 along with its
engine specifications, which are presented in Table 1.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 16 
 

expensive and has a higher cetane number, with the best ignition properties, while buta-
nol is cost-effective and has a lower cetane number while possessing the ability to reduce 
PM to a great extent [47]. 

The aim of this research is to perform numerical analysis through combustion pa-
rameters such as the in-cylinder pressure and Rate of Heat Release (ROHR) along with 
recording performance indicators such as fuel consumption (Bf), BSFC and BTE and emis-
sion characteristics such as CO2, NOX, HCm and Smoke for pure HVO and HVO–Butanol 
fuel mixtures prepared in three different volumetric proportions and compare them with 
those of pure diesel fuel. 

2. Materials and Methods 
2.1. Testing Engine 

The IC engine that was used for testing the fuels was the AUDI 1.9 Turbocharged 
direct-injection engine with the BOSH VP37 controlled Electronic Control Unit (ECU). It 
operates on the single injection strategy, and the Start of Injection (SOI) was electronically 
controlled. The test bench was situated in the Automotive department laboratory of Vil-
nius Tech. The schematic representation of the engine is presented in Figure 1 along with 
its engine specifications, which are presented in Table 1. 

 
Figure 1. Engine schematic diagram. 1—Air Mass flow meter; 2—turbocharger; 3—exhaust gas an-
alyzer; 4—smoke analyzer; 5—temperature sensor; 6—air cooler; 7—turbocharger pressure meter; 
8—EGR valve; 9—exhaust gas temperature meter; 10—intake gas temperature meter; 11—cylinder 
pressure sensor; 12—fuel tank; 13—fuel consumption calculation equipment; 14—injection pump 
crankshaft; 15—fuel injection timing sensor; 16—position sensor; 17—connecting shaft; 18—cylin-
der pressure recording equipment; 19–21—fuel injection moment control equipment fuel consump-
tion calculation equipment; 20—fuel injection moment recording equipment; 21—engine torque and 
rotational speed recording equipment; 22—engine load plate. 

Table 1. Engine specifications. 

Parameter Value 
Fuel injection Direct injection (single) 

Fuel injection-pump design Axial-piston distributor injection pump 
Displacement (cm3) 1896 

Figure 1. Engine schematic diagram. 1—Air Mass flow meter; 2—turbocharger; 3—exhaust gas
analyzer; 4—smoke analyzer; 5—temperature sensor; 6—air cooler; 7—turbocharger pressure meter;
8—EGR valve; 9—exhaust gas temperature meter; 10—intake gas temperature meter; 11—cylinder
pressure sensor; 12—fuel tank; 13—fuel consumption calculation equipment; 14—injection pump
crankshaft; 15—fuel injection timing sensor; 16—position sensor; 17—connecting shaft; 18—cylinder
pressure recording equipment; 19–21—fuel injection moment control equipment fuel consumption
calculation equipment; 20—fuel injection moment recording equipment; 21—engine torque and
rotational speed recording equipment; 22—engine load plate.



Sustainability 2022, 14, 7324 4 of 16

Table 1. Engine specifications.

Parameter Value

Fuel injection Direct injection (single)
Fuel injection-pump design Axial-piston distributor injection pump

Displacement (cm3) 1896
No. of cylinders 4

Compression ratio 19.5
Power (kW) 66 (4000 rpm)
Torque (Nm) 180 (2000–25,000 rpm)

Bore (mm) 79.5
Stroke (mm) 95.5
Nozzle type Hole-type

Nozzle and holder assembly Two-spring
Nozzle opening pressure (bar) 200

The KI-5543 load bench was utilized to determine the brake torque (MB), with a
measurement error of ±1.23 Nm. The SK-5000 electronic scale, along with a stopwatch, was
used to record the hourly fuel consumption (Bf), with a measurement error of 0.5%. The
BOSCH HFM 5 m, with an accuracy of 2%, was utilized to determine the intake air mass.
The AVL GH13P piezoelectric sensor was used to determine the pressure in the cylinder,
with a sensitivity of 15.84 ± 0.09 pC/bar. VAG-Com and OBD II-ECU were utilised as
displays for SOI information. The Delta OHM HD 2304.0 m pressure sensor was used to
find the pressure in the engine intake manifold, with a measurement error of ±0.0002 MPa.
The AVL DiCom 4000 gas analyser was used to determine the concentration of exhaust
gases such as CO2, HC and NOX. The measurement error of the instrument was recorded
as 0.01% vol (O2) and 1 ppm (HC and NOX). An opacity meter with a measurement error
of 0.1% was used to determine the smoke levels.

2.2. Fuels and Testing Methods

The fuels used to prepare the mixture for testing are 100% pure diesel fuel (D100),
100% pure Hydrotreated Vegetable Oil (HVO100) and 100% pure butanol (B100). D100
meets the requirements of standard EN 590. The properties of these fuels are presented in
Table 2.

Table 2. Properties of 100% pure diesel fuel, hydrotreated vegetable oil and butanol.

PROPERTIES D100 HVO100 B100

Density (kg/m3) 835 779 809.8
Mass Fraction (%): Carbon 86.0 84.6 64.82

Hydrogen 13.9 15.4 13.6
Oxygen 0.1 0.00 21.59

C/H 6.19 5.49 4.77
LHV, MJ/kg 42.31 43.74 33.1

Cetane number 51.0 76.3 25.0

Three fuel mixtures were prepared and compared alongside D100 and HVO100. The
first mixture was prepared by blending 95% HVO and 5% butanol (hereafter, HVOB5).
The second mixture consisted of 90% HVO and 10% butanol (hereafter, HVOB10). The
third mixture was blended with 80% HVO and 20% butanol (hereafter, HVOB20). The fuel
mixtures were prepared by blending HVO and Butanol in the prescribed volumetric ratio
(V/V). The properties of these fuel mixtures, which are given in Table 3, are the result of
mass fraction (m/m) calculations.
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Table 3. Properties of prepared fuel mixtures.

PROPERTIES D100 HVO100 HVOB5 HVOB10 HVOB20

Density (kg/m3) 835 779 780.6 782.19 785.35
Mass Fraction (%):

Carbon 86.0 84.6 83.57 82.55 80.52

Hydrogen 13.9 15.4 15.31 15.21 15.03
Oxygen 0.1 0.00 1.12 2.24 4.45

C/H 6.19 5.49 5.46 5.43 5.36
LHV, MJ/kg 42.31 43.74 43.19 42.64 41.54

Cetane number 51.0 76.3 73.64 70.99 65.72

Experiments were carried out on an engine with a limited but frequently used operat-
ing speed (n) of 2000 rpm. Test results were measured using a Brake torque of (MB) = 30,
60, 90 and 120 Nm, which were ~20%, ~40%, ~60% and ~80% of the total engine load,
respectively. The brake mean effective pressure (BMEP) was 0.2, 0.4, 0.6 and 0.8 MPa. The
corresponding loads resemble a city car running at a speed range of ~50 to ~120 km/h.
The graphs presenting the performance and emission characteristics are the average re-
sults of tests performed 5 times. Performance indicators, such as fuel consumption (Bf),
brake-specific fuel consumption (BSFC) and brake thermal efficiency (BTE), are presented.
Emission characteristics such as carbon dioxide (CO2) emissions, nitrogen oxide (NOX)
emissions, hydrocarbon (HC) emissions and smoke (opacity) are recorded. Although the
carbon monoxide (CO) emissions were recorded with a measurement error of 0.01%, the
difference recorded by our analyser was too low to be evaluated.

In-cylinder pressure data along the crankshaft position were recorded by their respec-
tive sensors, which were then processed on LabView Real software. These in-cylinder
pressure graph readings were entered into Burn analysis (which is an AVL BOOST’s sub-
program) to obtain the combustion parameters, which are the rate of heat release and
pressure rise.

3. Results and Discussion
3.1. Combustion Parameters

To obtain a more detailed understanding of the performance and emission indicators, a
numerical analysis of the combustion parameters is presented. The combustion parameters
are obtained with an engine speed (n) of 2000 rpm, BMEP of 0.8 MPa and SOI at a crank
angle degree (CAD) of 7 before the Top Dead Centre (bTDC), which is controlled by the
engine ECU. The in-cylinder pressure diagram, with a detailed magnification of the peak
pressure, is presented in Figure 2. Even though there is not a considerable difference in the
peak in-cylinder pressure, D100 is found to be highest with ~102 MPa.

Ignition delay, which is determined from the start of injection (SOI), the start of
combustion (SOC) and the combustion duration (CD), is presented in Table 4. SOI is
obtained from the experimental data of the fuel injection timing sensor and SOC is derived
from the combustion analysis performed in the AVL Boost. The delay is found to be
relatively low in HVO100 when compared with D100, which might be because of the higher
cetane number of HVO100, which is presented in Table 3. Although there is a minimal
difference in the delay period between HVO100 and HVOB5, with the addition of butanol,
the delay is prolonged, which can be explained by the decreasing cetane number. HVO100
has a slightly longer combustion duration (CD) due to the longer fuel injection duration
due to lower fuel LHV and higher fuel volume to be injected. The addition of butanol also
prolongs the combustion duration, and this affects the energy efficiency of the engine.
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Table 4. Indicators of combustion process.

Fuels SOI, CAD BTDC SOC, CAD BTDC Delay, CAD CD, CAD

D100 7.0 2.0 5.0 68.0
HVO100 7.0 3.0 4.0 69.0
HVOB5 7.0 2.6 4.4 69.4
HVOB10 7.0 2.5 4.5 69.7
HVOB20 7.0 2.4 4.6 70.0

The pressure rise graph of the tested fuels is plotted covering the crank angle from
−10 CAD to 50 CAD, and a detailed magnification of −6 CAD to 10 CAD is given in
Figure 3. The highest peak of the pressure rise is observed in D100 with ~30% more than
the other fuels’ combined average. The fuels with a higher increase in pressure tend to
increase the mechanical loads, thereby increasing the noise. The temperature rise inside
the cylinder is presented in Figure 4. The detailed magnification of the premix combustion
phase is shown to indicate the influence of the temperature rise on NOx emissions. The
higher temperature rise of D100 during this phase explains the higher NOx emissions.
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The rate of heat release of the fuel blends along with D100 and HVO100 is presented
in Figure 5. To obtain a clear understanding of the detailed combustion process, three
magnifications are presented at different stages of the combustion. HVO is a fuel with
relatively high CN compared to diesel fuel, and the higher the CN is, the lower the ignition
delay, providing a longer combustion duration. It can also be observed that the start of
combustion for HVO100 is earlier compared to other fuels, indicating the shortest ignition
delay. With the addition of butanol, the cetane number is reduced following the delay order,
with diesel fuel ranking last. The maximum rate of heat release for diesel fuel is ~2 % lower
than the average of all the other fuels.
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3.2. Performance Indicators

For a better comparative understanding of performance indicators such as fuel mass
consumption, efficiency, and BSFC, all the graphs are plotted showing D100 values on
the top, comparing them with the percentage change in values with HVO100, HVOB5,
HVOB10 and HV0B20, respectively, at four different loads of 0.2, 0.4, 0.6 and 0.8 MPa,
respectively.

Change percentage of fuel =
(

XFUEL − XD100

XD100

)
∗ 100 (1)

where X represents the performance indicators and emission characteristics.
For D100, fuel consumption (Bf) is found to rise with an increase in load, as shown

in Figure 6. When BMEP is increased from 0.2 to 0.8 MPa, the fuel consumption of D100
is found to increase by ~160%. All other fuel mixtures, along with HVO100, are seen to
follow a similar pattern of increase in fuel consumption with the increase in load, and at
the highest recorded load of 0.8 MPa, all the fuels are found to decrease. In the comparative
analysis, it is found that, at any given load, with the addition of Butanol, the change in
fuel consumption of fuel mixtures is found to increase by ~100%, which might be because
of the rise in oxygen content in the fuel mixtures, as shown in Table 3. At 0.6 MPa, the
fuel consumption of HVOB5 (~4.41 kg/h) is found to be almost similar to that of D100
(~4.42 kg/h).
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BSFC is found to decrease with an increasing cetane number as presented in Table 3.
This might be because of the increase in the expansion work per cycle afforded by the
earlier ignition. The percentage change in the BSFC of HVO100 and the other three fuel
mixtures in comparison to D100 is found to follow a similar pattern as in Bf, as shown in
Figure 7. With an increase in the BMEP from 0.2 to 0.4 MPa, the BSFC of D100 is found to
decrease by 24%; when increased from 0.4 to 0.6 MPa, D100 is found to decrease by 10%;
similarly, from 0.6 to 0.8 MPa, the value fell further to 4%. After analysing the results of
mass fuel consumption and brake-specific fuel consumption, the properties of D100 are
found to fall between those of HVOB5 and HVOB10.
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The BTE of all fuel mixtures, along with D100 and HVO100, is found to increase with
an increase in load, as shown in Figure 8. BTE is greatly influenced by the combustion
duration of the prepared fuel mixtures. With an increase in the duration (Table 4), the
efficiency is found to decrease. D100, with a shorter duration is found to have higher
efficiency, although the difference varies from ~0.5–1%; with an increase in the alcohol
percentage, the duration is prolonged, thereby decreasing the efficiency. At lower loads,
the difference in the change percentage is found to be greater, with ~35% at 0.2 MPa and
~18% at 0.4 MPa. The value seems to gradually decrease at higher loads, with an ~8% mean
difference in the change percentage at 0.6 and 0.8 MPa. With an increase in the butanol
percentage, the BTE is observed to decline. The same tendency is applied to all loads.
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3.3. Emission Characteristics

Similar to that of the performance indicators, for a better comparative understanding
of exhaust emission characteristics such as CO2, NOX, HC and smoke, all the graphs are
plotted with D100 values on top, comparing them with the percentage change in other fuel
blends along with HVO100.

Due to the low C/H ratio of HVO100, B100 and its blends, as shown in Table 3, CO2
emissions are reduced to approximately ~4–6% at any given load, as presented in Figure 9.
With an increase in load, as BTE increased and BSFC decreased, the CO2 emissions are
found to decrease for D100 from ~996 g/kWh at 0.2 MPa to ~695 g/kWh at 0.8 MPa, which
is a reduction of ~30%. A similar trend is observed for HVO100 and other fuel mixtures.
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A significant, stable ~10–15% reduction in NOX emissions is observed at all loads for
all the fuel mixtures and HVO100, as shown in Figure 10. Due to its high cetane number
(which is ~50% higher than that of D100), HVO100 is found to have a consistent average
decrease in emissions of ~14% at all loads. With an increase in the percentage of butanol,
the CN of the fuel blends is reduced, thereby increasing their emissions. However, the
mean of the percentage change in NOX emissions in comparison to D100 was reduced over
the load.

As the load increases, hydrocarbon emissions of D100 are found to decrease, as shown
in Figure 11. All the remaining fuel mixtures, including HVO100, seem to follow the same
pattern. An increase in the combustion temperature with load may be the reason behind
the decrease in emissions. HVO100 is found to have the lowest emission levels of all the
tested fuels, with an average reduction of ~31% at all loads compared to D100. With an
increase in butanol, the emissions are found to increase. HVOB20 seems to have an average
of ~44% higher emissions than D100.
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For any specific fuel that is tested, a steady rise in smoke levels is observed to follow
load, as shown in Figure 12. Due to its increasing oxygen content and decreasing C/H
ratio, the smoke levels are found to decrease, as given in Table 3. On average, HVO100 has
~35% lesser emissions compared to that of D100, followed by HVOB5 with ~38%, HVOB10
with ~41% and HVOB20, being the lowest, with a ~52% reduction in smoke levels.
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4. Conclusions

This paper presents experimental tests on an internal combustion engine with a limited
operating speed (n) of 2000 rpm as the most frequently used operating speed. The test
results were performed for the braking torque (MB) = 30, 60, 90 and 120 Nm, which are
~20%, ~40%, ~60% and ~80% of the total engine load, respectively. The specified loads
resemble the operation of a car in normal traffic conditions, moving at a speed of ~50
to ~120 km / h. In addition, the engine efficiency indicators were presented, and the
composition of the emitted exhaust gases was examined. AVL BOOST’s software was used
in the analysis of the results.

After conducting the experiment on an IC engine by comparing D100 data with
HVO100 and HVO–butanol blends, which were volumetrically prepared at three different
proportions (HVOB5, HVOB10 and HVOB20), the performance (Bf, BSFC and BTE) and
emission (CO2, NOX, HC and Smoke) characteristics were obtained. The in-cylinder
pressure values obtained from the experimental investigation were then used for the
numerical analysis of combustion parameters (pressure rise and ROHR). After carefully
analysing the obtained results, the following conclusions are drawn:

1. The blending of HVO and Butanol greatly complemented each other’s properties,
and they had a great influence on increasing the performance and decreasing the
emissions. Upon increasing the butanol concentration by 5% and 20% (from HVOB5
to HVOB10 and HVOB20), there appeared to be a 2- and 4-fold increase in the oxygen
content. At the same time, with an increase in butanol content, the CN was found to
decrease by ~3.5%, and the value was more than doubled to ~7.4% when the butanol
content increased further to 20%.

2. HVO, with its high CN, had the shortest ignition delay, but the combustion duration
period was longer. With the rise in butanol percentage, the CN was reduced following
the delay order, with diesel fuel ranking last, while the combustion duration period
was extended due to butanol. BSFC, which is determined by the fuel LHV and the
combustion process, is found to decrease with an increasing butanol concentration.
The BSFC of D100 can be matched with HVOB5 and HVOB10.

3. There is a comparatively small difference in BTE of all the fuels, with diesel being the
highest. At lower loads, the fuel blends with HVO100 are ~0.5–1% lower than that of
diesel, and at higher loads, the difference is found to be ~1–1.5%. The decrease in BTE
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is due to the longer combustion process caused by decreasing the calorific value of
the fuel by increasing the concentration of butanol in the mixture with HVO fuel.

4. Due to the low C/H ratio of HVO100, B100 and its blends, CO2 emissions are reduced
by approximately ~4–6% at any given load. A stable reduction of ~10–15% in NOX
emissions was observed at all loads for all the fuel mixtures with HVO100. Due
to its high CN (which is ~50% higher than that of D100) and a lower combustion
intensity during the premixing phase, HVO100 is found to have a consistent decrease
in nitrogen emissions at all loads. With an increase in butanol content, the CN of
the fuel blends was reduced, thereby increasing their NOX emissions. HVO100 was
found to have the lowest emissions of HC, with an average reduction of ~31% at all
loads compared to D100. With an increase in butanol, the HC emissions were found to
increase due to prolonged combustion. Furthermore, with an increase in O2 content
and a decrease in the C/H ratio with an increasing butanol concentration, the smoke
levels were found to decrease at a minimum of ~30%.
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CNG Compressed Natural Gas
LNG Liquid Natural Gas
HVO Hydro-treated Vegetable Oil
BTE Brake Thermal Efficiency
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ROHR Rate of Heat Release
ECU Electronic Control Unit
SOI Start of Injection
bTDC before Top Dead Centre
CO2 Carbon Dioxide
CO Carbon Monoxide
HC Hydro Carbons
NOx Nitrogen Oxides
PM Particulate Matter



Sustainability 2022, 14, 7324 14 of 16

References
1. Di Blasio, G.; Agarwal, A.K.; Belgiorno, G.; Shukla, P.C. Introduction to Clean Fuels for Mobility. In Clean Fuels for Mobility;

Energy, Environment, and Sustainability; Di Blasio, G., Agarwal, A.K., Belgiorno, G., Shukla, P.C., Eds.; Springer: Singapore, 2022;
pp. 3–7. ISBN 9789811687471.

2. Mizik, T. Sustainable Fuels in Private Transportation–Present and Future Potential. In Clean Fuels for Mobility; Energy, Environ-
ment, and Sustainability; Di Blasio, G., Agarwal, A.K., Belgiorno, G., Shukla, P.C., Eds.; Springer: Singapore, 2022; pp. 9–26.
ISBN 9789811687471.
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36. Hunicz, J.; Mikulski, M.; Shukla, P.C.; Gęca, M.S. Partially Premixed Combustion of Hydrotreated Vegetable Oil in a Diesel
Engine: Sensitivity to Boost and Exhaust Gas Recirculation. Fuel 2022, 307, 121910. [CrossRef]

37. Labaj, J.; Barta, D. Unsteady Flow Simulation and Combustion of Ethanol in Diesel Engines. Komunikácie 2006, 8, 27–37. [CrossRef]
38. Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Mieszkalski, L.; Wichłacz, J. Low Emissions Resulting from Combustion of Forest

Biomass in a Small Scale Heating Device. Energies 2020, 13, 5495. [CrossRef]
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