

Comparative Study of Complexities of Breadth-
First Search and Depth-First Search Algorithms

using Software Complexity Measures

Akanmu T. A., Olabiyisi S. O., Omidiora E. O. ,Oyeleye C. A., Mabayoje M.A. and Babatunde A. O.

Abstract: In this study, two different software
complexity measures were applied to breadth-first
search and depth-first search algorithms. The
intention is to study what kind of new
information about the algorithm the complexity
measures (Halstead’s volume and Cylomatic
number) are able to give and to study which
software complexity measure is the most useful
one in algorithm comparison. The results clearly
show that with respect to Program Volume,
breadth-first search algorithm is best
implemented in Pascal language while depth-first
search is best implemented in C language. The
values of Program Difficulty and Program Effort
indicate that both the algorithms are best
implemented in Pascal language. Cyclomatic
number is the same for both algorithms when
programmed in Visual BASIC (i.e. 6).

Keywords: Search algorithms, software
complexity, breadth-first search, depth-first
search.

Akanmu T. A. is with the Department of Computer
Science, Osun State Polytechnic,Iree, P.M.B. 301, Iree,
Nigeria. (e-mail: funmi_kunle@yahoo.com).
Olabiyisi S. O. is with the Department of Computer Science
and Engineering, Ladoke Akintola University of
Technology, P.M.B. 4000, Ogbomoso, Nigeria
(corresponding author, phone no: +2348036669863; e-
mail: tundeolabiyisi@hotmail.com).
Omidiora E. O. is with the Department of Computer
Science and Engineering, Ladoke Akintola University of
Technology, P.M.B. 4000, Ogbomoso, Nigeria. (e-mail:
omidiorasayo@yahoo.co.uk).
Oyeleye C. A. is with the Department of Computer Science
and Engineering, Ladoke Akintola University of
Technology, P.M.B. 4000, Ogbomoso, Nigeria (e-mail:
letuskii@yahoo.com).
Mabayoje M. A. and Babatunde A. O. are both with the
Department of Computer Science, University of Ilorin,
Ilorin Nigeria.

I. INTRODUCTION
A programmer usually has a choice of

data structures and algorithms to use. Choosing
the best one for a particular job involves, among
other factors, 2 important measures:
Time complexity: How much time will the
program take?
Space complexity: How much storage will the
program need?

A programmer will sometimes seek a
tradeoff between space and time complexity. For
example, a programmer might choose a data
structure that requires a lot of storage in order to
reduce the computation time. There is an element
of art in making such tradeoff, but the
programmer must make the choice from an
informed point of view. The programmer must
have some verifiable basis on which the selection
of a data structure or algorithm complexity
analysis provides such a basis.

Complexity is a measure of the resources that
must be expended in developing, implementing
and maintaining an algorithm. Productivity is
chiefly a management concern while reliability is
a quality factor directly visible to users of
software systems. These externally visible
attribute of software processes and products are
strongly influenced by engineering attributes of
software such as complexity. Well-designed
software exhibits a minimum of unnecessary
complexity, unmanaged complexity leads to
software difficult to use, maintain and modify. It
caused increased development costs and overrun
schedules.

Algorithms are frequently assessed by the
execution time and by the accuracy or optimality
of the result. For practical use an important
aspect is the implementation complexity. An
algorithm, which is complex to implement,
require skilled developers, longer

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

implementation complexity time and has a higher
risk of implementation errors. Moreover,
complicated algorithms tend to be highly
specialized and they do not necessarily work well
when the problem changes [1].

Algorithms can be studied theoretically or
empirically. Theoretical analysis allow
mathematical proofs of the execution time of
algorithm but can typically by used for worst-case
analysis only. Empirical analysis is often
necessary to study how an algorithm behave with
typical input [2].

[3] listed criteria for the comparison of
heuristic algorithm that in addition to execution
time include ease of implementation, flexibility
and simplicity. Controlling and measuring
complexity is a challenging engineering,
management and research problem. Metric have
been created for measuring various aspect of
complexity such as sheer size, control flow, data
structure and intermodule structure. Complexity
measure can be used to predict critical
information about reliability and maintainability
of software system from automatic analysis of
source code.

Complexity measures also provide
continuous feedback during software project to
help control the developmental process. During
testing and maintenance they provide detailed
information about software modules to help
pinpoint areas of potential instability.

II. SOFTWARE COMPLEXITY
MEASURES

Software complexity is one branch of
software metric that is focused on direct
measurement of software attributes, as opposed to
indirect software measure such as project
milestone status and reported system failures.
Military program emphasize non- complexity
metric that track project management information
about schedules, cost and defects. While such
project tracking measures are necessary to any
substantial software engineering effort, they lack
predictive power and are thus inadequate for risk
management. Complexity measures can be used
to predict critical information about reliability
and maintainability of software system from
automatic analysis of the source code.
Complexity measures also provide continuous
feedback during a software project to help control
the development process. During testing and
maintenance, they provide detailed information

about software modules to help pinpoint areas of
potential instability.

Many of the factors affecting software
quality that have been identified by researcher
can be seen in part as function of the complexity
and size of the program and the capabilities of
the programmers and managers. This will
include, but is not limited to testability,
efficiency, legibility and structuredness.

There are number of ways to quantify
complexity in a program. The best-known
metrics, which provide such features, are [4]
Cyclomatic number and [5] Halstead’s volume.
These metrics have been extensively validated
and compared [6]-[10].

Halstead’s Complexity Measures

Halstead argued that algorithms have
measurable characteristics analogous to physical
laws. His model is based on four different
parameters: the number of distinct operators
(instruction types, and keywords) in a program,
called nl; the number of distinct operands
(variables and constants), n2; the total number of
occurrences of the operators, N1 and the total
number of occurrences of the operands, N2. The
sum of n1 and n2 is denoted as n while the sum
of N1 and N2 is called N. From those four
counts, a number of useful measures can be
obtained. The number of bits required to specify
the program is called the volume V of the
program and is obtained through the equation.

V = N log2 n
The program level, which is the difficulty of
understanding a program, is calculated by:

 L = (2n2)/(n1 N2)

and the intelligence content of a program is given
by:

 I = L x V
In an attempt to include the psychological

aspects of complexity in the measures, Halstead
studied the cognitive processes related to the
perception and retention of simple stimuli. As
reported in [11], [12] and [14], the mean number
of mental discriminations per second in an
average human being, also called the Stroud
number, is between 5 and 20.
[5] uses 18 as a reference point for his studies. In
his model, the number of discriminations made
in the preparation of a program, called effort, is
given by:

 E = V/L

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

all of these measures are valid under the
assumption that the program is “pure,” i.e., free
of so-called “poor programming practices.”
Halstead defines six classes of impurities, among
them, synonymous operands, unfactored
expressions and common sub expressions. The
complete description of these and other impurities
is beyond the scope of this study. However, for
the programs used for this study, all recognizable
impurities were eliminated prior to obtaining the
corresponding Halstead measures.

Cyclomatic Complexity Measures

Cyclomatic complexity is the most widely
used member of a class of static software metrics.
Cyclomatic complexity may be considered a
broad measure of soundness and confidence for a
program. Introduced by [6], it measures the
number of linearly independent paths through a
program module. This measure provides a single
ordinal number that can be compared to the
complexity of other programs. Cyclomatic
complexity is often referred to simply as program
complexity, or as McCabes’ complexity. It is
often used in concert with other software metrics.
As one of the more widely-accepted software
metrics, it is intended to be independent of
language and language format [6]. Cyclomatic
complexity has also been extended to encompass
the design and structural complexity of a system
([13], [11], and [12].

The Cyclomatic complexity of a software
module is calculated from a connected graph of
the module (that shows the topology of control
flow within the program):
Cyclomatic complexity (CC) = E – N + p
where,
E = The number of edge of the graph.
N = The number of nodes of the graph.
P = The number of connected components.

To actually count these elements requires
establishing a counting convention (tools to count
Cyclomatic complexity contain these
conventions). The complexity number is
generally considered to provide a stronger
measure of a program’s structural complexity
than is provided by counting lines of code. Figure
1 below is a connected graph of a simple program
with a Cyclomatic complexity of seven. Nodes
are the numbered locations, which correspond to
logic branch points; edges are the lines between
the nodes.

Fig 1: connected graph of a simple program

III. EXPERIMENT WITH BREADTH-

FIRST SEARCH ALGORITHM
Breadth-first search is an algorithm

that begins at the root node and explores all
the neighboring nodes. Then for each of
those nearest nodes, it explores their
unexplored neighbour nodes, and so on, until
it finds the goal.

From the standpoint of the algorithm,
all child nodes obtained by expanding a node
are added to a First in First out (FIFO) queue.
In typical implementations, nodes that have
not yet been examined for their neighbours
are placed in some container (such as a queue
or linked list) called “open” and then once
examined are placed in the container
“closed”.

Experiment With Depth-First Search
Algorithm
 Depth-first search (DFS) is an algorithm
for traversing or searching a tree, tree structure,
or graph. Intuitively, one starts at the root
(selecting some node as the root in the graph
case) and explores as far as possible along each
branch before backtracking.
 Formally, DFS is an uninformed search
that progresses by expanding the first child node
of the search tree that appears and thus going
deeper and deeper until a goal node is found, or
until it hits a node that has no children. Then the
search backtracks, returning to the most recent
node it has not finished exploring. In a non-
recursive implementation, all freshly expanded

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

nodes are added to a Last in-first out (LIFO) stack
for expansion.

For the experiment, we used the complexity
finder machine designed in [11] to calculate the
complexity measures. To do so, the following
actions were taken:

a. The studied algorithm was coded using C,
C++, Pascal and Visual BASIC resulting
in three programs for each algorithm

b. The same programming style (modular
programming) was employed in the
coding.

c. All the programs were run on the same
computer.

d. Operands, operators, keywords and
identifiers were similarly defined for all
the programs.

IV. RESULTS AND DISCUSSION

Table 1 presents complexity measure of

different implementation languages for breadth-
first search algorithm.

Table 2 presents complexity measure of
different implementation languages for depth-first
algorithm.

Figure 2 presents the graph of Program
volume for different implementation languages
for breadth-first search algorithm.

Figure 3 presents the graph of Program
Difficulty for different implementation languages
of the breadth-first search algorithm.

Figure 4 presents the graph of Program
Effort for different implementation language for
the breadth-first search algorithm. While figure 5
presents the graph of Cyclomatic Number for
different implementation language for the
breadth-first search algorithm.

Figure 6 presents the graph of Program
Volume for different implementation languages
for depth-first algorithm.

Figure 7 presents the graph of Program
Difficulty for different implementation languages
of the depth-first algorithm.

 Figure 8 presents the graph of Program
Effort for different implementation language for
the depth-first algorithm. While figure 9 presents
the graph of Cyclomatic Number for different

implementation language for the depth-first
search algorithm.

There are interesting points to observe
about these graphs. Figure 2 shows that breadth-
first search has the lowest and highest Program
volume when coded in Pascal language and
Visual BASIC language respectively. By
implication, the graph shows that breadth-first
search algorithm is best implemented in Pascal
language followed by C language, C++ language
and Visual BASIC language in that order.

Figure 3 indicates that if Program
Difficulty is considered, breadth-first search
algorithm implemented in Pascal language is the
best while breadth-first search algorithm
implemented in C++ language is the worst.

In figure 4, It was discovered that
considering the Program Effort, breadth-first
search algorithm is best implemented in Pascal
language and worst implemented in C++
language.

Cyclomatic number has the least value in
Pascal and the highest value in Visual BASIC
language. Its value in C and C++ languages are
the same (i.e., 6) as it can be seen in figure 5.

Figure 6 shows that if Program Volume is
considered, depth-first search algorithm is best
implemented in C and worst implemented in
Visual BASIC language.

It is discovered in figure 7 that
considering the Program Difficulty, depth-first
search algorithm implemented in Pascal
language is the best while depth-first search
algorithm implemented in C language is the
worst.

Depth-first search algorithm is also best
implemented in Pascal language and worst
implemented in Visual BASIC language as can
be shown in Program Effort graph in figure 8.

The values of the Cyclomatic number are
the same (i.e. 5) for C, C++ and Pascal
languages, but it is 6 for Visual BASIC language
as can be seen in figure 9.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Table 1: Breadth-First Search Algorithm Complexity Measures By Different Implementation Languages
Results of Implementation Universal Machine for Complexity

Algorithm Name Language
Program
Vol(V)

Program
Difficulty(D)

Program
Effort(E)

Cyclomatic No
V(G)

Breadth-First Search C 733 20 14660 5

Breadth-First Search C++ 998 17 16966 5
Breadth-First Search Pascal 640 9 5760 3
Breadth-First Search Visual BASIC 1197 10 11970 6

Table 2: Depth-First Search Algorithm Complexity Measures By Different Implementation Languages
Results of Implementation Universal Machine for Complexity

Algorithm Name Language
Program
Vol(V)

Program
Difficulty(D)

Program
Effort(E)

Cyclomatic No
V(G)

Depth-First Search C 491 16 7851 5

Depth-First Search C++ 515 18 9270 5

Depth-First Search Pascal 539 8 4312 5

Depth-First Search Visual BASIC 1069 9 9627 6

0

200

400

600

800

1000

1200

1400

1 2 3 4

Language

P
ro

gr
am

 V
ol

um
e(

V
)

C C++ Pascal Visual BASIC

Fig.2: Graph of Program Volume(V) for different

Implementation of Breadth-First Search Algorithm.

0

5

10

15

20

25

1 2 3 4

Language

Pr
og

ra
m

 D
if

fi
cu

lty
(D

)

C C++ Pascal Visual BASIC

Fig.3: Graph of Program Difficulty(D) for different
Implementation of Breadth-First Search Algorithm.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4

Language

P
ro

gr
am

 E
ff

or
t(

E
)

C C++ Pascal Visual BASIC

Fig.4: Graph of Program Effort(E) for different
Implementation of Breadth-First Search Algorithm.

0

1

2

3

4

5

6

7

1 2 3 4

Language

C
yc

lo
m

at
ic

 n
o(

G
)

C C++ Pascal Visual BASIC

Fig.5: Graph of CyclomaticV(G) Number for different
Implementation of Breadth-First Search Algorithm.

0

200

400

600

800

1000

1200

1 2 3 4

Language

P
ro

gr
am

 V
ol

um
e(

V
)

C

Pasca Visual C++

Fig.6: Graph of Program Volume(V) for different
implementation of Depth-First search algorithm

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

Language

P
ro

gr
am

 D
if

fi
cu

lt
y(

D
)

C C++ Pascal Visual BASIC

Fig.7: Graph of Program Difficulty(D) for different
implementation of Depth-First search algorithm

0

2000

4000

6000

8000

10000

12000

1 2 3 4

Language

P
ro

gr
am

 E
ff

or
t(

E
)

C C++ Pascal Visual BASIC

Fig.8: Graph of Program Effort(E) for different
implementation of Depth-First search algorithm

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

1 2 3 4

Language

C
yc

lo
m

at
ic

 n
o

V
(G

)

C C++ Pascal Visual BASIC

Fig.5: Graph of Cyclomatic Number V(G) for different
implementation of Depth-First search algorithm

V. CONCLUSION
This research has considered software

complexity measure experiment with breadth-
first search and depth-first search algorithms.
Both the breadth-first search and depth-first
search algorithms were studied by computing
the Program Volume(V), the Program Effort
(E), the Program Difficulty (D) and the
Cyclomatic Number V(G) using different
implementation languages.

Software complexity measures might
help practitioners to choose, out of a large
number of alternatives, the algorithms that best
match their needs. Understanding the trade- off
between implementation and performance
would give a firmer basis to decision- making.

REFERENCES

[1] Akkanen, J and Nurminen, J.K.(2000). Case- Study of
the Evolution of Routing Algorithms in a Network
Planning tool. J. Syst. Software, 58: 181-198

[2] Sedgewick, R.,(1995). Algorithm in C++. Reading
[3] Ball, M. and Magazine,M. (1981). The Design and

Analysis of Heuristics Network, 11: 215-219.
[4] McCabe, T.J, (1976). A Complexity Measure, IEEE

Trans Software ENG., 2(4) 308-320.
[5] Halstead, and Maurice,H. (1977). Element of

Software Science, Elsevier North- Hollland , New
York.

[6] Aggarwal, K., Singh, K. Y. and Chhabra J.K. (2002).
An Integrated Measure of Software maintainability. In
proceeding Annual Reliability and Maintainability
Symposium, IEEE.

[7] Ramil, J.F and Lehman, M.M, (2000). Metrics of
Software Evolution as Effort Predictors: A Case Study
In Proceeding International Conference Software
Maintenance, IEEE.

[8] Bezier, B. (1984). Software System Testing and
Quality Assurance, Van Nostrand Reinhold, New
York.

[9] Curtis, B. (1981). The Measurement of Software
Quality and Complexity, Software Metrics, Perils A.
et al., (Eds.) MIT Press, Cambridge.

[10] Schneidewind, N.F. and Hoffman, M. (1979). An
Experiment in Error Data Collection and Analysis.
IEEE. Trans. Software Eng , 5(3): 276-286

[11] Olabiyisi, S.O.(2006). Universal Machine for
Complexity Measurement of Computer Programs.
Ph.D Thesis Ladoke Akintola Unversity of
Technology Ogbomoso.

[12] Olabiyisi, S.O., Ganiyu, R.A., Ekundayo, M.O.,
Okediran, O.O., and Oderinde, O.O (2007). Using
Software Complexity Measure to Analyze Algorithm-
An Experiment with Selection Sort Algorithm, Ghana
J sci C.S.I.R.-INSTI.

[13] McCabe, J., Thomas and Charles B., (1989). Design
Complexity Measurement and Testing. Common
ACM, 32:1415-1425.

[14] Akanmu, T.A.(2009). An Exploratory Study of
Software Complexity Measures of Breadth-First
Search Algorithm. Journal of Pure and Applied
Sciences (JOPAS) Volume 7 (1&2)

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

