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Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be
effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has
been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared.
The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain
by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the
VMD-DWT approach outperforms the conventional EMD–DWT. In addition, a non-local means approach used as a reference technique
provides better results than the VMD-DWT approach.
1. Introduction: The electrocardiogram (ECG) signal is widely
used to measure and to diagnose cardiac activity and arrhythmia
in clinical environments. Thus, it is an important tool for the
diagnosis of cardiac abnormalities to monitor urgent treatments.
However, ECG signal can be corrupted by unwanted interference
such as power line interference, electrode contact noise, motion
artefacts, muscle contraction, baseline drift, ECG signal
amplitude modulation with respiration, instrumentation noise and
electrosurgical noise [1].

Several approaches have been proposed in the literature to
denoise ECG signal with the purpose of obtaining a denoised
ECG that facilitates easy and accurate interpretation. The proposed
approaches include filter banks [2], independent component ana-
lysis [3, 4], adaptive filtering [5, 6], discrete wavelet transform
(DWT) [7–9] and empirical mode decomposition (EMD) [10–13].
When compared with other approaches, the denoising methods
based on EMD and wavelet are found to be more effective in redu-
cing noise from the ECG signals [12]. Indeed, a hybrid EMD–DWT
approach has been proposed in the literature [11, 12, 14] to achieve
accurate denoising performance for the ECG signal. For instance,
the DWT is a suitable tool for isolating transient (non-stationary)
changes in a time series by combining the time-domain and
frequency-domain analysis [15]. In addition, the advantage of the
DWT is that the windows vary, and it has an infinite set of possible
basis functions [13]. Particularly, the basic wavelet transform starts
with a basis function, the mother wavelet, and decomposes a signal
into components of different time and frequency scales; longer time
intervals are used to obtain low-frequency information and shorter
intervals are used to obtain high-frequency information. Besides,
the EMD [16] is an adaptive and data-driven technique used for pro-
cessing non-linear and non-stationary signals in addition to station-
ary signals. The EMD decomposes a given signal into a finite sum
of components plus a residue. The components are called intrinsic
mode functions (IMF) and are local and auto-adaptive. Low order
IMF represent fast oscillation or high-frequency modes, and high
order IMF represent slow oscillation (low-frequency) modes. As a
result, the EMD is well suited for biomedical signal analysis [13].
Owing to the effectiveness of the hybrid EMD–DWT model, it
was also successfully applied to other signal processing problems
including denoising of electrostatic signals [17], ultrasonic images
[18] and hyperspectral images [19].

However, the EMD algorithm suffers from a lack of exact math-
ematical model, interpolation choice, and sensitivity to both noise
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and sampling [20]. Very recently, as an alternative to the EMD al-
gorithm, Dragomiretskiy and Zosso [20] proposed an entirely non-
recursive variational mode decomposition (VMD) model, where the
modes are extracted concurrently. In particular, the VMD model
searches for a number of modes and their respective centre frequen-
cies, such that the band-limited modes reproduce the input signal
exactly or in least-squares sense [20]. Using simulated harmonic
functions, Dragomiretskiy and Zosso [20] found that the VMD as
a denoising approach outperforms the EMD.

This Letter is therefore aimed to compare two hybrid systems for
the purpose of ECG denoising; namely the conventional EMD–
DWT and the VMD-DWT model. Indeed, we investigate whether
the VMD can outperform the EMD in denoising the ECG signal.
In addition, we also evaluate the performance of these methods
against the non-local means (NLM) approach [21], which was re-
cently found to be effective in denoising ECG signals.

In this Letter, three approaches are investigated in denoising the
original ECG signal, which is corrupted with additive Gaussian
noise. In the first approach, the EMD is applied to the noisy ECG
signal for decomposition purposes to obtain IMF. Then, the
DWT-based thresholding technique is applied to each obtained
IMF. Indeed, thresholding the wavelet coefficients is the most
straightforward way of distinguishing information from noise in
the wavelet domain [22]. In this Letter, the optimal threshold
value is determined by minimising Stein’s unbiased risk estimator
(SURE) [23] called SureShrink and was proposed by Donoho and
Johnstone [24]. The SURE was chosen because it is more accurate
as more data are available [22]. Finally, the denoisied ECG signal is
reconstructed by summing up the denoised IMF. In the second ap-
proach, the VMD is applied to the noisy ECG signal for decompos-
ition purpose to obtain variational modes. Similar to the EMD–
DWT denoising approach, the DWT-based thresholding technique
is applied to each obtained variational mode. Then, the denoised
ECG signal is reconstructed by summing up the denoised variation-
al modes. In the third approach; which is also used for comparison
purposes; the non-local means approach is applied to the noisy ECG
signal to obtain the denoised one. For all the experiments, the well
known signal-to-noise ratio (SNR) and mean of squared errors
(MSE) are adopted as the main performance measures. In
summary, our work contributes to previous works found in the lit-
erature [11, 12, 14, 25] by comparing the conventional hybrid
EMD–DWT with the new VMD-DWT approach and adopting
the NLM technique as a reference model.
Healthcare Technology Letters, 2014, Vol. 1, Iss. 3, pp. 104–109
doi: 10.1049/htl.2014.0073

mailto:
mailto:
mailto:
mailto:
mailto:


The remainder of this Letter is organised as follows; Section 2
presents the methods, Section 3 applies these methods to ECG
signals and presents the experimental results, and finally, conclu-
sions are provided in Section 4.

2. Methods: The EMD [16] decomposes a signal into a sum of
functions. Each of these functions has the same number of zero
crossings and extrema, and is symmetric with respect to its local
mean. These functions are called IMF and are found at each scale
going from fine to coarse by an iterative procedure called sifting
algorithm. Finally, the signal s(t) can be expressed as follows

s(t) =
∑N
j=1

IMFj(t)+ rN (t) (1)

where N is the number of IMF, which are nearly orthogonal to each
other, and all have nearly zero means; and rN(t) is the final residue,
which is the low-frequency trend of the signal s(t). Usually, the
standard deviation (SD) computed from two consecutive sifting
results is used as criteria to stop the sifting process by limiting
the SD size as follows

SD(k) =
∑T

t=0 dk−1(t)− dk (t)
∣∣ ∣∣2∑T

t=0 d
2
k−1(t)

, 1 (2)

where k is the index of the kth difference between the signal s(t) and
the envelope mean e(t). The term ε is a pre-determined stopping
value.
The purpose of the VMD [20] is to decompose an input signal

into k discrete number of sub-signals (modes), where each mode
has limited bandwidth in the spectral domain [20]. Thus, each
mode k is required to be mostly compact around a centre pulsation
ωk determined along with the decomposition [20]. The VMD algo-
rithm to assess the bandwidth of a one-dimensional signal is as
follows [20]: (i) for each mode uk, compute the associated analytic
signal by means of the Hilbert transform to obtain a unilateral fre-
quency spectrum, (ii) for each mode, shift the mode’s frequency
spectrum to baseband by mixing with an exponential tuned to the
respective estimated centre frequency and (iii) estimate the band-
width through Gaussian smoothness of the demodulated signal,
for example, the squared L2-norm of the gradient. Then, the con-
strained variational problem is given by [20]

min
uk , vk

=
∑
k

∂t d(t)+ j

pt

( )
∗ uk (t)

[ ]
e−jvk t

∥∥∥∥
∥∥∥∥
2

{ }
(3)

Subject to

∑
k

uk = f (4)

where f is the signal, u is its mode, ω is the frequency, δ is the Dirac
distribution, t is the time script, k is the number of modes and *
denotes convolution. The mode u with high-order k represents the
low-frequency components.
In general, wavelet thresholding involves three steps. First, the

signal (e.g. the ECG signal) is processed with a DWT [26] for de-
composition purposes. As a result, the signal is decomposed into
low–low, low–high, high–low and high–high sub-bands. Then, a
non-linear thresholding is performed on each DWT sub-band coef-
ficient. In particular, if the DWT coefficient is smaller than the
threshold it is set to zero. Otherwise, it is kept or modified.
Finally, an inverse DWT is performed to recover the denoised
signal. Donoho and Johnstone [24] proposed an approach to deter-
mine the optimal threshold value based on the minimisation of
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SURE denoted by Rs(t), which is given by

Rs(t) = N + g(y)
∥∥ ∥∥2+2∇y · g(y) (5)

where g is a function in ℜ, y = [y0, y1,…, yM − 1] and

∇y · g(y) =
∑N−1

i=0

∂gi
∂yi

(6)

Using the standard soft-thresholding function, the selected thresh-
old ts is given by

ts = argmin
t[{y0,y1,...,yN−1}

Rs(t) (7)

The NLM denoising approach estimates the denoised signal snlm(t)
for a given sample s as a sum of values at other points t that are
within some search neighbourhood N(s) as follows [21]

snlm(s) =
1

z(s)

∑
t[N (s)

w(s, t) v(t) (8)

where z(s) and weights w(s, t) are given by [22, 27]

z(s) =
∑
t

w(s, t) (9)

w(s, t) ; exp − d2(s, t)

2LDl
2

( )
(10)

where λ is a bandwidth parameter, Δ is a local patch of samples sur-
rounding s containing LΔ samples, d2 denotes the summed, squared
point-by-point difference between samples in the patches centred
on s and t [21]. Finally, each patch in (10) is averaged with itself
with weight w(s, s) = 1 [21], and a centre patch correction is
applied to achieve a smoother result. It is given by [21]

w(s, s) = max
t[N (s),t=s

w(s, t) (11)

Finally, to evaluate the effectiveness of each ECG signal denoising
approach, the SNR, which is expressed in decibel and the MSE are
computed. The SNR and MSE are given by

SNR = 10 log10

∑N
n=1 y n[ ] − x n[ ]∣∣ ∣∣2∑N
n=1 xr n[ ] − x n[ ]∣∣ ∣∣2

( )
(12)

MSE = 1

N

∑N
n=1

x n[ ] − xr n[ ]( )2
(13)

where x[n] denotes the original ECG signal, y[n] is the noisy ECG
signal, xr[n] is the obtained denoised ECG signal and N is the ECG
signal length.

3. Experimental results: For our experiments, five different ECG
signals were randomly selected from PhysioNet MIT-BIH
Arrythmia Database [27] to evaluate the efficacy of the EMD–
DWT, VMD-DWT and NML denoising approach. For each ECG
signal, 1000 samples were chosen to conduct our study. The
original ECG signal is added with Gaussian noise of variance 10
and 20 to obtain two noisy ECG signals. For the DWT
thresholding-based approach, we considered the Daubechies-4
(DB4) and Symlet-4 (Sym4) as mother wavelets, and second and
third level of decomposition [28]. For the simplicity of
computations, the level of decomposition is set to five for both
EMD and VMD. Fig. 1 illustrates an example of the original
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Figure 1 Example of original ECG signal and added Gaussian noise

Figure 2 EMD results of the original ECG signal corrupted with noise
variance set to 10

Figure 3 VMD results of the original ECG signal corrupted with noise
variance set to 10

Figure 4 Denoising results using the DB4 wavelet of the original ECG
signal corrupted with noise variance = 10

Figure 5 Denoising results using the Sym4 wavelet of the original ECG
signal corrupted with noise variance = 10

Table 1 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: first ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD–DB4 SNR 3.2753 3.2753 3.2753
EMD–DB4 MSE 30828.5930 30828.1368 30828.0466
VMD-DB4 SNR 23.5503 23.5597 23.5474
VMD-DB4 MSE 289.3658 288.7396 289.5618
ECG signal and the same signal corrupted with a Gaussian noise
with variance 10, and 20, respectively. Figs. 2 and 3 illustrate,
respectively, some of the IMF and variational modes obtained by
106
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EMD and VMD of the original ECG signal shown in Fig. 1
corrupted with noise variance 10. Finally, Figs. 4 and 5 show the
obtained denoised ECG signals when using DB4 and Sym4
wavelets, respectively.

Tables 1–20 provide the SNR and MSE values obtained by each
approach. For better denoising performance, the SNR should be
high, while the MSE should be low. The SNR values obtained
with the NLM technique are given in Table 21. According to
SNR and MSE values provided in Tables 1–20, the VMD-DWT
outperforms the standard EMD–DWT model by using both DB4
and Sym4 wavelets in denoising the original ECG signal when it
is affected with Gaussian noise of variance 10 and 20. In addition,
these findings are confirmed at all DWT decomposition levels.
Healthcare Technology Letters, 2014, Vol. 1, Iss. 3, pp. 104–109
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Table 2 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: first ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-Sym4 SNR 3.2753 3.2753 3.2753
EMD-Sym4 MSE 30828.5871 30828.2766 30828.1463
VMD-Sym4 SNR 23.5495 23.5598 23.5501
VMD-Sym4 MSE 289.4219 288.7344 289.3812

Table 3 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: first ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-DB4 SNR 2.8907 2.8906 2.8906
EMD-DB4 MSE 33683.2170 33683.3671 33683.6512
VMD-DB4 SNR 15.3692 15.3736 15.3739
VMD-DB4 MSE 1903.5285 1901.5999 1901.4763

Table 4 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: first ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-Sym4 SNR 2.8907 2.8906 2.8906
EMD-Sym4 MSE 33683.0990 33683.4726 33683.4988
VMD-Sym4 SNR 15.3706 15.3744 15.3748
VMD-Sym4 MSE 1902.9217 1901.2602 1901.0757

Table 5 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: second ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-DB4 SNR 5.0057 5.0058 5.0058
EMD-DB4 MSE 20696.9580 20696.5336 20696.5801
VMD-DB4 SNR 21.2452 21.2548 21.2550
VMD-DB4 MSE 491.9994 490.9134 490.8844

Table 6 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: second ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-Sym4 SNR 5.0057 5.0058 5.0058
EMD-Sym4 MSE 20697.0722 20696.5657 20696.5026
VMD-Sym4 SNR 21.2421 21.2535 21.2539
VMD-Sym4 MSE 492.3405 491.0562 491.0080

Table 7 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: second ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-DB4 SNR 4.9510 4.9511 4.9511
EMD-DB4 MSE 20959.4596 20959.0742 20958.9975
VMD-DB4 SNR 19.2211 19.2249 19.2270
VMD-DB4 MSE 784.1001 783.4102 783.0280

Table 8 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: second ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-Sym4 SNR 4.9510 4.9510 4.9511
EMD-Sym4 MSE 20959.6115 20959.2916 20959.1142
VMD-Sym4 SNR 19.2205 19.2241 19.2262
VMD-Sym4 MSE 784.2097 783.5511 783.1767

Table 9 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: third ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-DB4 SNR 1.5224 1.5224 1.5224
EMD-DB4 MSE 93050.8652 93050.4269 93050.3656
VMD-DB4 SNR 20.8326 20.8575 20.8519
VMD-DB4 MSE 541.0246 537.9388 538.6231

Table 10 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: third ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-Sym4 SNR 1.5224 1.5224 1.5224
EMD-Sym4 MSE 93050.6676 93050.2675 93050.1997
VMD-Sym4 SNR 20.8324 20.8545 20.8389
VMD-Sym4 MSE 541.0549 538.3017 540.2384

Table 11 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: third ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-DB4 SNR 1.5329 1.5328 1.5328
EMD-DB4 MSE 93275.1847 93274.6451 93274.6000
VMD-DB4 SNR 17.0451 17.0455 17.0471
VMD-DB4 MSE 1294.1005 1293.9791 1293.5158

Table 12 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: third ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-Sym4 SNR 1.5329 1.5328 1.5328
EMD-Sym4 MSE 93275.0055 93274.5262 93274.3113
VMD-Sym4 SNR 17.0457 17.0460 17.0487
VMD-Sym4 MSE 1293.9227 1293.8423 1293.0246

Table 13 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: fourth ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-DB4 SNR 3.0218 3.0218 3.0218
EMD-DB4 MSE 131418.6073 131418.5735 131418.5741
VMD-DB4 SNR 28.7612 28.7595 28.5845
VMD-DB4 MSE 87.1689 87.2021 90.7890
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Table 21 SNR and MSE values based on the NLM technique

ECG
signals

Performance
metric

Noise variance = 10 Noise variance = 20

1st SNR 28.27660 22.12515
1st MSE 97.45846 401.75795
2nd SNR 28.23162 22.42448
2nd MSE 98.47328 375.00076
3rd SNR 28.34325 22.28176
3rd MSE 95.97435 387.52915
4th SNR 28.50518 22.65744
4th MSE 92.46176 355.41536
5th SNR 28.18979 22.46675
5th MSE 99.42625 371.36861

Table 17 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: fifth ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-DB4 SNR 10.9169 10.9169 10.9169
EMD-DB4 MSE 809421.5499 809421.3385 809421.2257
VMD-DB4 SNR 22.5746 22.5966 22.5719
VMD-DB4 MSE 362.2579 360.4261 362.4816

Table 18 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: fifth ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-Sym4 SNR 10.9169 10.9169 10.9169
EMD-Sym4 MSE 809421.3898 809421.0519 809421.2054
VMD-Sym4 SNR 22.5717 22.5914 22.5722
VMD-Sym4 MSE 362.4999 360.8572 362.4583

Table 19 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: fifth ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-DB4 SNR 10.9942 10.9942 10.9942
EMD-DB4 MSE 823954.7781 823954.5903 823953.3942
VMD-DB4 SNR 14.7856 14.7963 14.7915
VMD-DB4 MSE 2177.3058 2171.9394 2174.3733

Table 14 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: fourth ECG signal with noise variance 10

Level 1 Level 2 Level 3

EMD-Sym4 SNR 3.0218 3.0218 3.0218
EMD-Sym4 MSE 131418.5666 131418.5632 131418.6665
VMD-Sym4 SNR 28.7581 28.7673 28.7417
VMD-Sym4 MSE 87.2300 87.0465 87.5612

Table 15 SNR and MSE values depending on the DWT decomposition
level using the DB4 wavelet: fourth ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-DB4 SNR 3.0546 3.0545 3.0545
EMD-DB4 MSE 132414.4638 132;414.2288 132413.9752
VMD-DB4 SNR 16.0172 16.0406 16.0194
VMD-DB4 MSE 1639.6700 1630.8619 1638.8607

Table 16 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: fourth ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-Sym4 SNR 3.0546 3.0546 3.0546
EMD-Sym4 MSE 132414.5087 132414.3851 132414.4224
VMD-Sym4 SNR 16.0206 16.0383 16.0268
VMD-Sym4 MSE 1638.3949 1631.7233 1636.0790

Table 20 SNR and MSE values depending on the DWT decomposition
level using the Sym4 wavelet: fifth ECG signal with noise variance 20

Level 1 Level 2 Level 3

EMD-Sym4 SNR 10.9942 10.9942 10.9942
EMD-Sym4 MSE 823955.0717 823954.9560 823954.7459
VMD-Sym4 SNR 14.7846 14.7969 14.7925
VMD-Sym4 MSE 2177.8341 2171.6420 2173.8296
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Compared to non-local means denoising approach, the SNR and
MSE values obtained and presented in Table 21 show that the
NLM technique performs better than the EMD–DWT and
VMD-DWT approaches for both types of noise levels. However,
it is worth noting that, according to Figs. 4 and 5, the NLM and
VMD-DWT achieved comparable performances.
4. Conclusion: A number of studies have taken advantage of the
hybrid EMD–DWT approach for ECG signal enhancement. In
such an approach, the EMD is employed as an adaptive technique
for ECG decomposition, whereas the DWT is used for denoising
based on a given thresholding criterion. Recently, the VMD has
been proposed as an adaptive multiresolution technique to
overcome some of the limits of the EMD such as sensitivity to
noise. This Letter compared the EMD–DWT against the
VMD-DWT approach in denoising a real ECG signal, corrupted
with three levels of Gaussian noise. Indeed, this Letter is the first
to apply VMD in the problem of ECG signal denoising. We
relied on adaptive multiresolution techniques (EMD, VMD) for
ECG decomposition because of their ability to adjust to unknown
signal characteristics varying over time. For comparison purposes,
the non-local means algorithm is used for denoising a noisy ECG
signal. Five ECG signals obtained from PhysioNet were chosen
to conduct our study. Experimental results evaluated by using
SNR and MSE showed that the best performance was obtained
by the NLM technique followed by the VMD-DWT approach.
However, they achieved comparable performances. The
conventional EMD–DWT techniques performed the worst.

Our study can be extended in future work by considering differ-
ent values used to determine the number of variational modes used
to obtain results. Indeed, the VMD is still faced with the difficulty
of parameter choice, which will be our further research avenue for
the application and improvement of the VMD-DWT technique. As
this Letter presents a preliminary study, future work will also con-
sider other types of biological signals.
5. Acknowledgments: The authors thank the authors in [20] for
providing codes to run the VMD algorithm.
Healthcare Technology Letters, 2014, Vol. 1, Iss. 3, pp. 104–109
doi: 10.1049/htl.2014.0073



6 References

[1] Friesen G.M., Jannett T.C., Jadallah M.A.: ‘A comparison of the
noise sensitivity of nine QRS detection algorithms’, IEEE Trans.
Biomed. Eng., 1990, 37, (1), pp. 85–98

[2] Leski J.M., Henzel N.: ‘ECG baseline wander and power line interfer-
ence reduction using nonlinear filter bank’, Signal Process., 2004, 35,
(4), pp. 781–793

[3] Barros A.K., Mansour A., Ohnishi N.: ‘Removing artifacts from elec-
trocardio-graphic signals using independent components analysis’,
Neurocomputing, 1998, 22, pp. 173–186

[4] He T., Clifford G., Tarassenko L.: ‘Application of ICA in removing
artefacts from the ECG’. Neural Processing Letters, 2006, pp.
105–116

[5] Hamilton P.S.: ‘A comparison of adaptive and non adaptive filters for
reduction of power line interference in the ECG’, IEEE Trans.
Biomed. Eng., 1996, 43, (1), pp. 105–109

[6] Ziarani A.K., Konrad A.: ‘A nonlinear adaptive method of elimin-
ation of power line interference in ECG signals’, IEEE Trans.
Biomed. Eng., 2002, 49, (6), pp. 540–547

[7] Alfaouri M., Daqrouq K.: ‘ECG signal denoising by wavelet trans-
form thresholding’, Ame. J. Appl. Sci., 2008, 5, (3), pp. 276–281

[8] Poornachandra S.: ‘Wavelet-based denoising using subband depend-
ent threshold for ECG signals’, J. Digital Signal Process., 2008, 18,
pp. 49–55

[9] Poornachandra S., Kumaravel N.: ‘A novel method for the elimin-
ation of power line frequency in ECG signal using hyper shrinkage
function’, J. Digital Signal Process., 2008, 18, pp. 116–126

[10] Blanco-Velasco M., Weng B., Barner K.E.: ‘ECG signal denoising
and baseline wander correction based on the empirical mode decom-
position’, Comput. Biol. Med., 2008, 38, (1), pp. 1–13

[11] Li N., Li P.: ‘An improved algorithm based on EMD-wavelet for
ECG signal de-noising’. Proc. Int. Joint Conf. on Computational
Sciences and Optimization, 2009, pp. 825–827

[12] Kabir M.A., Shahnaz C.: ‘Denoising of ECG signals based on noise
reduction algorithms in EMD and wavelet domains’, Biomed. Signal
Process. Control, 2012, 7, pp. 481–489

[13] Suchethaa M., Kumaravel N.: ‘Empirical mode decomposition
based filtering techniques for power line interference reduction
in electrocardiogram using various adaptive structures and
Healthcare Technology Letters, 2014, Vol. 1, Iss. 3, pp. 104–109
doi: 10.1049/htl.2014.0073
subtraction methods’, Biomed. Signal Process. Control, 2013, 8,
pp. 575–585

[14] Kopsinis Y., McLaughlin S.: ‘Development of EMD-based denoising
methods inspired by wavelet thresholding’, IEEE Trans. Signal
Process., 2009, 57, (4), pp. 351–1362

[15] Clifford G.D., Azuaje F., McSharry P.E.: ‘Advanced methods and
tools for ECG data analysis’ (Artech House, Boston/London, 2006)

[16] Huang N.E., Shen Z., Long S.R., ET AL.: ‘The empirical mode com-
position and the Hilbert spectrum for nonlinear and non-stationary
time series analysis’. Proc. of the Royal Society London, 1998,
Vol. A 454, pp. 903–995

[17] Yan Y., Zhanzhong C.: ‘Noise and zero excursion elimination of elec-
trostatic detection signals based on EMD and wavelet transform’.
IEEE Int. Congress on Image and Signal Processing, 2009, pp. 1–5

[18] Sun M., Shen Y., Zhang W.: ‘A wavelet threshold denoising method
for ultrasonic signal based on EMD and correlation coefficient ana-
lysis’. Proc. IEEE Third Int. Congress on Image and Signal
Processing, 2010, pp. 3992–3996

[19] Demir B., Ertürk S., Güllü K.: ‘Hyperspectral image classification
using denoising of intrinsic mode functions’, IEEE Geosci. Remote
Sens. Lett., 2011, 8, (2), pp. 220–224

[20] Dragomiretskiy K., Zosso D.: ‘Variational mode decomposition’,
IEEE Trans. Signal Process., 2014, 62, pp. 531–544

[21] Tracey B.H., Miller E.L.: ‘Nonlocal means denoising of ECG
signals’, IEEE Trans. Biomed. Eng., 2012, 59, (9), pp. 2383–2386

[22] Luisier F., Blu T., Unser M.: ‘A new SURE approach to image
denoising: interscale orthonormal wavelet thresholding’, IEEE
Trans. Image Process., 2007, 16, pp. 593–606

[23] Stein C.: ‘Estimation of the mean of a multivariate normal distribu-
tion’, Ann. Stat., 1981, 9, pp. 1135–1151

[24] Donoho D.L., Johnstone I.M.: ‘Adapting to unknown smoothness via
wavelet shrinkage’, J. Ame. Stat. Assoc., 1995, 90, pp. 1200–1224

[25] Kabir M.A., Shahnaz C.: ‘Comparison of ECG signal denoising algo-
rithms in EMD and wavelet domains’, IJRRAS, 2012, 11, pp.
499–516.

[26] Daubechies I.: ‘Ten lectures on wavelets’ (Society of Industrial and
Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 1992)

[27] http://www.physionet.org/physiobank/database/mitdb/
[28] Van De Ville D., Kocher M.: ‘SURE-based nonlocal means’, IEEE

Signal Process. Lett., 2009, 16, (11), pp. 973–976
109
& The Institution of Engineering and Technology 2014

http://www.physionet.org/physiobank/database/mitdb/
http://www.physionet.org/physiobank/database/mitdb/
http://www.physionet.org/physiobank/database/mitdb/
http://www.physionet.org/physiobank/database/mitdb/
http://www.physionet.org/physiobank/database/mitdb/

	1 Introduction
	2 Methods
	3 Experimental results
	4 Conclusion
	5 Acknowledgments

