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Abstract - Analog-to-digital converters (ADCs) for high 

sampling frequencies have parallel-type architectures, where 

the output of the comparators is the so-called “thermometer 

code”. The digital part of such ADCs can be just an encoder 

from the thermometer code to binary code; however, 

different types of error correction can be implemented to 

enhance the ADC overall performance. In this paper we 

compare three different types of encoders: without error 

correction; with 1
st
 order error correction; with n

th
 order 

error correction. These encoders are compared with respect 

to the yield of the ADC with the different encoders, assuming 

the use of an identical analog part. The yield is defined by 

four different criteria: monotonicity, absence of missing 

codes, and either integral or differential nonlinearity below 

a specified value.

Keywords - Analogue-to-digital converters, Parallel ADCs, 

Thermometer code-to-binary Encoders, Digital error 

correction. 

1. INTRODUCTION 

High-speed ADCs with sampling frequencies in the tens (or 

hundreds) of MHz have parallel-type architectures. The full-

parallel architecture is the most used architecture when speed 

is the most important requirement, although this architecture 

requires a large number of comparators (2
N
-1 for N bits), 

which leads to large area and power consumption [1]. Due to 

this constraint and also to the comparators’ offset voltage, the 

resolution is usually limited to 8 bit. Alternatives to the full-

parallel architecture are the two-step and the pipeline 

architectures [1], where full-parallel ADCs with a reduced 

number of bits are used as sub-circuits. 

The comparators’ offset voltage (V
OS

) is of particular 

importance because it is responsible for the static nonideal 

performance: it imposes limits on the integral and differential 

nonlinearity and may originate missing codes or even be 

responsible for non-monotonic behaviour [1].  V
OS  

, due to 

mismatches, is a random variable which is assumed to have a 

normal distribution [1]. Although, V
OS

 can be reduced by 

circuit design techniques, this usually leads to an increase of 

power consumption and area.  The latched comparators 

output is the so-called thermometer code (“…000111…”)

and the offset voltage of the comparators can cause “bubbles”

(e.g., “…010111…”) in this thermometer code originating 

errors in the output code. The encoders can be designed to 

correct large errors, that appear as non-monotonicity of the 

transfer characteristic of the ADC or as missing codes, or 

even to reduce large nonlinearity errors, using digital 

correction schemes. 

We have divided the encoders into three different classes: 

without error correction; with 1
st
 order error correction, 

where simple bubbles can be corrected with a minor 

modification to the basic encoder; and with n
th
 order error 

correction, where n
th
 order bubbles can be corrected. 

The n
th
 order error correction encoders considered are the 

Mangelsdorf [2], the bit swapping [3], and the Wallace tree

[4] encoders. The first two use a thermometer code corrector, 

between the comparators and the encoder input to make the 

correction of the thermometer code. A different approach is 

used by the Wallace tree method: instead of correcting the 

thermometer code the number of “1s” is evaluated. 

These different classes of encoders are compared for the 

cases N=8 bits and N=4 bits. These are practical values, 

respectively, for full-parallel ADCs and for sub-converters in 

a two-step architecture. The expected yields of an ADC are 

compared, for different encoders, using as criteria the 

requirement of monotonicity, absence of missing codes, and 

either integral or differential nonlinearity below a specific 

value.

2. PARALLEL-TYPE ADCS

In a full-parallel ADC (Fig. 1) the input voltage v
I
 is applied 

to a bank of latched comparators, where it is compared with 
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the equally spaced reference voltage levels obtained from the 

resistor ladder.  The reference voltage levels are the 

transition voltage levels in the transfer characteristic of an 

ideal ADC (Fig. 1). All the comparators with reference 

voltage below v
I
 exhibit a logic level and all the comparators 

with reference voltage above v
I
 exhibit the complementary 

logic level resulting in the so called thermometer code 

(“…0001111…”). This code is encoded to binary form by an 

encoder block. 

The full-parallel ADC uses 2
N
-1 comparators (hence large 

area and high power consumption); alternative architectures 

like two-step parallel (Fig.2), are used to reduce the number 

of comparators. Two-step or multi-step architectures usually 

use full-parallel ADC sub-circuits.  

The subject of ADC characterization is still under discussion. 

In this paper we will consider that the ideal ADC transfer 

characteristic has equal code bin widths, and the static 

parameters used are defined as follows [5]: 
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Fig. 1-  Full-parallel ADC and transfer characteristic.
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Fig. 2- Two-step parallel ADC. 

Monotonic ADC: the output codes do not decrease (increase) 

for a uniformly increasing (decreasing) input signal, 

disregarding random noise. 

Missing Code (MC): a code that does not occur for any value 

of the input signal. 

Integral nonlinearity (INL): Maximum difference between 

the ideal and the actual code transition levels after correcting 

for gain and offset. 

Differential nonlinearity (DNL): Maximum difference 

between the ideal and the real code bin width. 

3. DIFFERENT TYPES OF ENCODERS 

(1) Basic Encoder 

The simplest circuit to convert the thermometer code to 

binary code uses a decoder with XOR gates to detect the 

0�1 transition in the thermometer code and then address a 

ROM for the proper binary encoding (Fig. 3). The ROM can 

be implemented with NMOS transistors and pull-up devices 

(pull-up resistors are represented in Fig. 4). This encoder 

does not perform any error correction, so a bubble in the 

thermometer code will cause that at least three lines are 

addressed in the ROM, resulting in the AND of the 

corresponding three output codes. This will cause a non-

monotic transfer characteristic for the ADC and the existence 

of a missing code. 

(2) Encoder with 1
st
 Order Error Correction 

By using 3-input XOR gates, instead of the 2-input XOR 

gates in the simple encoder just presented, 1
st
 order errors 

(bubbles) in the thermometer code can be partially corrected, 

thus avoiding the addressing of several lines in the ROM: a 

non-monotonic transfer characteristic is avoided but a 

missing code may occur. 
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Fig. 3 - Basic Encoder. 

Fig. 4 - NMOS ROM with pull-up resistors. 
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(3) Encoder with n
th

  Order Error Correction 

A higher order error correction encoder using the 

Mangelsdorf [2], the bit swapping [3] or the Wallace tree [4] 

methods can improve the correction, with respect to the 

previous correction scheme, and can perform correction of 

higher order bubbles, depending on the method chosen.

(a) Mangelsdorf  method 

The Mangelsdorf method corrects the thermometer code 

before encoding. The output of each comparator is compared 

with the outputs of the two adjacent comparators and 

changed if it is different from both. Each comparator 

corrected output is T’
N
:

1111 +−+− ⋅+⋅+⋅=′
NNNNNNN TTTTTTT

where T
N
: is a comparator output without correction. This 

method corrects one digit bubble in any position (e.g., 

“…000100111…”) but not bubbles that are more than one 

digit long (e.g., “…00011001111…”). 

(b) Bit swapping method 

The bit swapping method also corrects the thermometer code 

and then uses a basic encoder. The logic operation 

represented in Fig.5 is performed between each two 

consecutive comparators and bubbles in the thermometer 

code descend if they are “1s” or ascend if they are “0s”.

A1 A2 Q1 Q2 

0 0 0 0 

0 1 1 0 

1 0 1 0 

A2
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Q2
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1 1 1 1 

Fig. 5 - Bit swapping latching element and truth table.  

In order to perform correction of n
th order bubbles it is 

necessary to use n columns of bit swapping latches, and 

therefore the order of error correction to be performed should 

be carefully evaluated. 

(c) Wallace tree method

If the bit swapping method is implemented with its 

maximum order (2
N
) the algorithm is equivalent to counting 

the number of “1s”. The Wallace tree method implements 

the same algorithm directly, without moving the “1s”

through the thermometer code (this method is used to 

implement high speed multipliers in computer arithmetic 

units). The Wallace tree method is different from the 

previous; instead of correcting the thermometer code and 

then using a basic encoder, it uses a single block where both 

operations are performed. An example for a three bit 

encoder is presented in Fig.6 where the basic cell is a 

summing circuit of “1´s”. The truth table of this basic cell is 

presented in Table 1 where a, b and c, are the bits to be 

summed, S is the sum result and C is the “carry”. If  the 

result is presented with the format “CS” then it represents the 

number of ones at the input in binary form.  
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Fig.6: Wallace Tree Encoder  (example for 3 bit). 

Table I - Summing block truth  table. 

abc 000 001 010 011 100 101 110 111 

CS 00 01 01 10 01 10 10 11 

The tree structure means that there is an increase in the 

number of stages with the number of bits; however the 

internal nodes are all low capacitance node ensuring a fast 

response. 

4. COMPARATIVE STUDY 

To compare the three classes of encoders we have simulated 

two full-parallel ADCs (with N= 8 bit and N= 4 bit) imposing 

an offset at each transition point of the transfer characteristic. 

This offset is a random variable with normal distribution [1], 

and models the offset voltage of the latched comparator 

which is assumed to have zero mean and to be independent 

for different comparators. The most significant results are 

presented in Fig. 7, where the yield is the percentage of 

ADCs that meet the specific criteria. The results for the 

monotonicity criterion are obtained from 2000 samples; for 

the missing code and INL ≤ 1.5 LSB criteria the results are 

obtained after discarding the samples that have failed the 

monotonicity criteria.
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The results plotted for “n
th
 order error correction encoder”

correspond to the highest order correction (2
N
) level.  

Our comparative study leads to the following general 

conclusions: 

I. The non-monotonic behaviour can be totally eliminated by 

the use of an n
th
 order error correction encoder. For the 

basic and the 1
st
 order error correction encoders the yield 

reduction due to non-monotonicity is significant, even for 

very low values of the offset voltage. 

II. The missing code criteria shows that the n
th
 order error 

correction encoder can again be very effective in 

improving the yield. The basic encoder can be apparently 

better than the encoder with 1
st
 order error correction, but 

it should be noted that we have only considered the yield 

due to absence of missing codes after excluding the non-

monotonic ADCs. 

III. The results concerning INL and DNL lead to the same 

general conclusions. For nonlinearity lower than 1 the n
th

order error correction encoder shows a slight improvement 

over the other encoders, but it should be noted that these 

results are based on the samples that have passed the 

monotonicity criterion; for nonlinearity greater than 1, the 

n
th
 order error correction encoder shows a significant 

improvement over the other encoders, and this 

improvement is more important for higher resolution or 
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Fig.7 - ADCs Yield for (a) N=8 bit, Monotonicity; (b) N=4 bit, Monotonicity; (c) N=8 bit, Missing codes; (d) N=4 bit, Missing codes; (e) N=8 bit,

INL ≤ 1.5 LSB; and (f) N=4 bit, INL ≤ 1.5 LSB
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higher σ(V
OS

)/V
LSB

.

These conclusions show that is desirable to use a 1
st
 order 

error correction encoder, a Mangelsdorf encoder, or a low 

order bit swapping encoder, because the yield is significantly 

enhanced without a high cost with respect to the simple 

encoder. The Wallace tree encoder or a higher order bit 

swapping encoder improve the ADC Yield for all the criteria 

and can be justifiable when the resolution increases (lower 

V
LSB 

 and higher number of transition levels), or when the 

offset voltage increases. The choice between these two 

encoders depend on the order of error correction. If higher 

order error correction is needed the Wallace tree encoder is 

the most suitable, but it may be too costly for high 

resolutions. In this case, a medium (3
rd

 or 4
th
 order) order 

error correction using the bit swapping encoder can be the 

best solution, since it is a good compromise between 

efficiency and added circuitry. 

5. CONCLUSIONS 

In this paper we consider three types of thermometer-to-

binary code encoders: without error correction; with 1
st
 order 

error correction and with n
th
 order error correction. These 

encoders are studied and compared with respect to the 

expected yield of the ADC, with the different encoders, 

defined by four different criteria: monotonicity, absence of 

missing codes, and either integral or differential nonlinearity 

below a specific value. 

The results show that low order error correction produces a 

significant increase in yield with a small increase in circuitry. 

For medium resolution ADCs, the Wallace tree is the most 

effective because it leads to an increase of performance (not 

only of the yield) with acceptable added circuitry. For higher 

resolution ADCs the Wallace tree encoder can become too 

costly and the use of a medium order error correction using 

bit swapping can be a compromise between improved 

performance without to much added circuitry. 
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