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Abstract—There is a growing interest in applying machine
learning methods on large amounts of data to solve complex
problems, such as prediction of events and disturbances in
the power system. This paper is a comparative study of the
predictive performance of state-of-the-art supervised machine
learning methods. The event prediction models are trained and
validated using high-resolution power quality data from measur-
ing instruments in the Norwegian power grid. The recorded event
categories in the study were voltage dips, ground faults, rapid
voltage changes and interruptions. Out of the tested machine
learning methods, the Random Forest models indicated a better
prediction performance, with an accuracy of 0.602. The results
also indicated that rapid voltage changes (accuracy = 0.710) and
voltage dips (accuracy = 0.601) are easiest to predict among the
tested power quality events.

Index Terms—Machine Learning, Power system, Power Qual-
ity Analysis, Fault Prediction, Predict Faults, Predictive Models,
Power Quality Measurements

NOMENCLATURE

AHA Automatic Event Analysis

ANN Artificial neural network

AUC Area under the curve

DDG Dynamic dataset generator

DSO Distribution system operator

MCC Matthews correlation coefficient

ML Machine learning

PQ Power quality

PQA Power quality analysers

RF Random forest

RMS Root mean square

RNN Recurrent neural network

ROC Receiver operating characteristics

RVC Rapid voltage change

SVM Support vector machines
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dustry partners for the support in writing this paper under project 268193/E20
EarlyWarn.

TSO Transmission system operator

V Voltage

V12 Line voltage between phase 1 and 2

I. INTRODUCTION

A. Motivation and Background

In a world that is increasingly dependent on electricity,

providing a stable power delivery to end-users is of utmost

importance. Trends such as the introduction of variable re-

newable energy sources, changing consumer behavior and loss

of rotational inertia leads to a more transient grid operation.

In order to maintain a high level of security of supply, a

development in the tools used for power systems operations is

needed. One such potential tool is the utilisation of machine

learning techniques to predict unwanted events in the power

grid. Such tools may give sufficient warning horizon for

mitigation actions to be taken, thus avoiding the potential

detrimental consequences of the unwanted event.

B. Relevant literature

Previous studies conducted in this research area have mostly

been focusing on classification of disturbances in the electrical

power grid rather than prediction, such as [1]–[4]. Despite

this, methods used in classification problems are assumed

applicable for prediction problems as well. Some studies that

focus on fault prediction have been found in research literature,

such as [5]–[8]. However, none of them include a comparison

study of the predictive performance of the state-of-the-art

machine learning (ML) algorithms. In addition, none of them

are using high-resolution power quality (PQ) data from power

quality analysers (PQAs) to train and validate the ML model.

C. Contributions and Organisation

The research gap presented in the previous section is

addressed in this paper. Thus, in this study, ML methods used

for power system event prediction are examined. Specifically,

multiple supervised machine learning models that take real
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high-resolution voltage measurement data from PQAs as input

are developed, and their predictive performance is compared.

There are some central questions addressed in this paper,

and they build on top of each other. Firstly, the paper investi-

gates which attributes (often called features) from power qual-

ity (PQ) measurements are most suited for predicting events in

the power grid. Secondly, different machine-learning methods

are compared for their relative predictive performance based

on these attributes. Lastly, the paper investigates the predictive

capability of the best-performing method on different types of

events in the dataset. It is the hope of the authors that the work

in this paper will inspire other teams to utilise these methods

in their work to bring forth a more robust power operation for

the future.

II. DATA

The authors have been granted conditional access to power

quality data for the majority of the Norwegian distribution grid

by a group of distribution system operators (DSO) and the

Norwegian transmission system operator (TSO). The overall

database spans the period from January 2009 to early March

2020, and the nominal line voltages at the 49 locations where

the measuring instruments were installed varied from 10 to

420 kV. A total of roughly 270 years of PQ time series

has been collected from the 49 measurement nodes. This

gives an average of 5-6 years of historical data from each

node, although the number of years of available data varied

significantly from node to node. Of the 49 measurement nodes,

15 were used in this study.

1) Data sources: This paper exploits data from power

quality analysers in an attempt to quantify the probability for

events occurring in the distribution and transmission grids.

The data analysed originates from Elspec PQAs, which con-

tinuously sample voltage and current waveform at a sampling

frequency of up to 50 kHz. Data is being compressed before

stored in a centralised database for analysis. The operational

PQA devices collect and compress many events and distur-

bances each year, and some nodes have been online for over

15 years. To properly manage and extract value from such a

massive dataset, two software packages have been developed.

The Automatic Event Analysis (AHA) program is used to

automatically detect and report lists of events and disturbances

in the recorded time series [9]. The tool can identify and

classify interruptions, ground faults, voltage dips and rapid

voltage changes (RVC). These are annotated with event type,

start time and end time for each event. A majority of applica-

tions and algorithms within machine learning requires labeled

datasets for exploitation of patterns and signals in the data, and

these labels are extracted using the AHA software. To detect

explanatory signals for predictive purposes, one also need the

power quality data leading up to the error. For this purpose,

the Dynamic Dataset Generator (DDG) software has been

developed [10], [11]. This software takes an event as input and

extracts time series of desired resolution and duration for user-

specified parameters, such as voltages and current waveforms,

harmonics and RMS values, as output.

In combination, the AHA and DDG software provide

datasets of labelled time series to be used for training and

testing data-driven predictive methods. The method for gener-

ation of labelled datasets is illustrated in Fig. 1.

Fig. 1. Method for generation of labelled datasets

2) Data pre-processing: When presented with the data, the

most appealing approach is to leverage algorithms that are

tailored for time series forecasting, and use the raw data as

explanatory variables. This approach is investigated in [9]–

[12].

Various events, such as voltage dip, ground fault, power

interruption, and RVC, were detected from historical time

series data. It was assured that the given time before the event

did not include any other event. This meant that recurring or

sequential events did not give indications of artificially high

predictive ability. In total, 2285 events were detected. Of these,

1124 were voltage dips, 1008 were ground faults, 76 power

interruptions, and 116 RVC. A balanced time series dataset of

all the events and non-events were generated with a duration

of 50 minutes, having a resolution of one sample per second.

This paper presents multiple feature engineering methods

that aggregate time series of harmonic frequencies in high-

resolution voltage data. The aggregation method used were

mean-, minimum-, maximum- and standard deviation-values.

The resulting dataset contained samples of 386 features each,

without any temporal dimension. This was further reduced

to 162 features per sample by ranking the most important

features. The features were combined with Support Vector

Machines, Random Forests and multiple Neural Network ar-

chitectures, with the aim of predicting events with a 10-minute

prediction horizon. The proposed event prediction model,

which includes dataset generation, data pre-processing and

training/validation of the machine learning model, is illustrated

in Fig. 2.

It is important to arrange the data appropriately for any data-

driven methods in order to enable the methods to be trained

well by the parameters that are presented to them. This needs

to be seen in connection with the meta-parameters chosen for

each method. Each method is described further in Section

III, where such data-arranging is outlined. A variation over

different approaches has been made during the development

of this paper.

III. METHODS

Although the literature on data-driven methods is vast,

and these methods are starting to become commonplace

in the industry, a brief introduction to the major methods

used for the comparative work in this paper is given. The
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Fig. 2. Illustration of the proposed event prediction model

performance metrics used in the paper are also discussed, as

they are crucial to understanding the relative performance of

the methods utilised.

A. Machine learning methods

This section introduces the different machine learning meth-

ods used in this paper. All models were developed in Python

3.6 using the packages Scikit-Learn and Keras.

1) SVM: Support Vector Machines (SVM) is a machine

learning method that has been widely used in classification

problems. It operates by finding the hyperplane in a multi-

dimensional space that separates the given classes with the

largest margin between the hyperplane and the nearest sample

[13].

2) Random Forest: Random Forest (RF) is an extension

to Decision Trees, creating an ensemble of Decision Trees

on different subsets of the total dataset and aggregating their

outputs to get a more robust prediction model. The Decision

Tree is a machine learning method for classification problems

that works by inferring rules for splitting the dataset into

multiple subsets based on the properties of the data [14].

3) Feed-forward Neural Network: Feed-forward Neural

Networks, also known as artificial neural networks (ANN),

consist of layers of nodes and weights combined as a weighted

sum, with an added non-linear function applied element-

wise for each output of a layer. The so called hidden layers

defines the mapping that transforms the input to the output. To

optimise the performance of a neural network, a set of labeled

samples is run through the network to generate predictions.

The output of the network is then compared to the labels

of the samples, which is regarded as the ground-truth label

of each sample. A loss measure can then be calculated by

the use of a comparison function to calculate the total error

of the network for the given samples. By using the gradient

descent algorithm, the weights in the network are adjusted to

reduce the total loss. This is done by propagating the error

layer-by-layer backwards through the network and calculating

the individual contribution to the loss for each weight in the

network [15].

4) Recurrent Neural Network: One of the most popular

ways to deal with sequential data is Recurrent Neural Net-

works (RNN). RNNs are neural networks that not only feed the

output values forward to the next layer, but also use the values

as an input into itself in the next time step. There are multiple

implementations of RNNs, among which the Long Short-Term

Memory (LSTM) is particular popular. RNNs have internal

memory, making it capable of remembering previously seen

inputs from a sequence. This helps increasing the accuracy of

prediction, as RNNs can utilise the entire input-sequence to

generate its output [15].

B. Metrics

There are multiple ways to compare the performance be-

tween machine learning models. It is important to choose a

metric or set of metrics that measures the predictive ability

of the evaluated methods realistically and representatively for

the intended use of the methods. This requires insight into the

domain where the predictive method is intended to be used.

1) Matthews Correlation Coefficient: Matthews Correlation

Coefficient (MCC) is a measure of model performance in a

binary classification problem [16]. It takes into account the

true positive rate, true negative rate, false positive rate and

false negative rate, and is regarded as a robust measure for

classification problems with an unbalanced dataset [17]. The

MCC takes on values in the interval [-1, 1], where a value

of -1 means there is perfect negative correlation between the

input variable and the dependent output variable, a value of

0 means the two variables are uncorrelated, and a value of 1

means there is a perfect correlation between the two.

2) Receiver Operating Characteristic curves: A Receiver

Operating Characteristic (ROC) curve is a plot showing the

ability of an estimator to discriminate between true positive

and false positive outcomes by changing the threshold needed

for classifying a sample as positive [18].

The Area Under the Curve (AUC) is the total area under

the ROC curve, and is often used as a way to describe and

compare ROC curves without drawing the actual curves for

comparison. An AUC value of 1 means the model is able to

perfectly classify all samples.

IV. METHOD APPLICATION AND RESULTS

In order to answer the questions outlined in the introduction,

four tests have been performed. They are briefly summarised

below in the sequence they were conducted.

A. Attribute selection

The first test investigated the important features of the

dataset created by Feature extraction. This test used a Random

Forest model to rank the feature importance of each individ-

ual feature. The identified features as illustrated in Table I

provided a foundation for model creation in the later tests.

The time step features were selected from the harmonic

components of the three-phase voltage signal. The attributes

used for each of the line- and phase voltages were described

in Section II.
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From the result, the aggregation methods of maximum

and standard deviation have an overall higher importance,

but there is no clear difference between phase- and line

voltage harmonic components. All harmonic components up

to the 256
th component were investigated. Out of the 120

most important features, all were aggregates of harmonic

components below the 16
th order. It was therefore concluded

that no harmonic component above the 15
th order would add

significant predictive capability to the models.

B. Benchmarking of the models

In this test, the machine learning models were benchmarked

against each other. The models’ hyperparameters were tuned

using a validation set before testing the performance on a test

set.

Table II presents the results for all models and the hyper-

parameters used. The results show that the Random Forest

model performs slightly better than the rest, while the recurrent

neural network has the lowest overall performance. Figure 3

shows the ROC curves of the performance of the benchmarked

machine learning models. Only some variations in the ROC

curve can be observed between the models, however the RNN

curve is found to be markedly worse than the other.

C. Predictive capability relative to event type

The best-performing model from the benchmarking test was

selected to investigate whether a model can give an indication

on the predictive capabilities on the different event types.

The Random Forest model was trained on the entire training

dataset, including all event types as in the benchmarking test,

and then the performance was tested on test sets for each

event type. From this, the generally trained model’s ability to

predict a given type of event was compared using the accuracy

of prediction for each type of event. Table III summarises the

results.

D. Event specific model training

The Random Forest model was trained on a dataset made up

of events of the same category, and predicted on a test set of

the same event category. This was done in order to investigate

the effect of the predictive performance of the models when

specifically trained on a subset of the data containing only

TABLE I
THE 10 MOST IMPORTANT FEATURES IN THE DATASET, RANKED BY A

RANDOM FOREST

Rank
Harmonic

number

Time step

feature

Line /

Phase

Aggregation

method

Impor-

tance

1 Harmonic 10 Minimum V1 Maximum 0.00772
2 Harmonic 14 Minimum V3 Maximum 0.00692
3 Harmonic 10 Minimum V31 Maximum 0.00686
4 Harmonic 10 Minimum V2 Maximum 0.00656
5 Harmonic 10 Minimum V3 Maximum 0.00631

6 Harmonic 4 Minimum V31
Standard
deviation

0.00611

7 Harmonic 14 Minimum V1 Maximum 0.00607
8 Harmonic 10 Minimum V12 Maximum 0.00600

9 Harmonic 14 Minimum V2
Standard
deviation

0.00599

10 Harmonic 14 Minimum V1
Standard
deviation

0.00592

TABLE II
ACCURACY, MATTHEWS CORRELATION COEFFICIENT AND AREA UNDER

THE CURVE SCORES FOR THE MODELS TESTED IN SECTION IV-A,
DISPLAYED TOGETHER WITH HYPERPARAMETERS USED.

Model Hyperparameters Accuracy MCC AUC

SVM
Kernel = Radial basis function
Penalty multiplier = 10

0.572 0.185 0.627

RF

Max depth = 15
Number of trees = 100
split criterion = entropy

0.602 0.213 0.642

ANN

First layer size = 128
Second layer size = 64
Third layer size = 64
Optimizer = Adam
Loss function = Cross-entropy
Batch size = 128
Number of epochs = 300

0.600 0.213 0.618

RNN

First GRU state size = 64
Second GRU state size = 32
Attention layer size = 32
Fully-connected layer size = 32
L2-regularization = 0.01
Optimizer = Adam
Loss function = Cross-entropy
Batch size = 128
Number of epochs = 300

0.585 0.175 0.586

TABLE III
THE ACCURACY OF THE RANDOM FOREST MODEL SELECTED BASED ON

THE BENCHMARKING WITHIN EACH EVENT CATEGORY IN SECTION IV-C.

Sample category Accuracy

Voltage dip 0.580
Ground fault 0.671
RVC 0.526
Interruption 0.444
No events 0.588

TABLE IV
ACCURACY, MATTHEWS CORRELATION COEFFICIENT (MCC) AND AREA

UNDER THE CURVE (AUC) SCORES ACHIEVED WHEN TRAINING AND

PREDICTING ON SINGLE CLASSES OF EVENTS.

Event type Accuracy MCC AUC

Voltage dip 0.601 0.242 0.690
Ground fault 0.589 0.188 0.630
RVC 0.710 0.393 0.782
Interruption 0.500 0.0 0.531

one type of events (in addition to the non-event data). The

test investigated whether machine learning models focusing

on a single type of event are better at predicting these specific

events, or if the type of event have little impact on overall

performance.

Table IV presents the results from predicting single class

events. From this, samples with RVC and voltage dip appear

to be easier to predict, while samples with power interruptions

are more challenging. The ROC curves in Figure 4 show the

model’s sensitivity to the setting of the threshold. Note that by

separating the overall dataset into subsets according to event

type results in fewer samples to train and test on. This gives

ROC curves that have large jumps, as can be seen for the RVC

and power interruption curves.
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Fig. 3. ROC curves of (top left) SVM, (top right) Random Forest, (bottom left) Feed-forward Neural Network, and (bottom right) Recurrent Neural Network
from the benchmarking tests.
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Fig. 4. ROC curves for a Random forest trained and tested on (top left) voltage dips, (top right) ground faults, (bottom left) rapid voltage changes, and
(bottom right) power interruptions. These are results from models trained on subsets of the data containing specific event types and not on the combined
dataset of all event types.

© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other  

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

This is the accepted version of a paper published in 2020 International Conference on Smart Energy Systems and Technologies - SEST 

http://dx.doi.org/10.1109/SEST48500.2020.9203025



E. Discussion

As noted above, the sub-setting of the data has caused

some subsets to be rather sparse for applying these methods.

It is therefore plausible that the high AUC score for the

event-specific Random Forest model for RVC in Table IV is

artificially high. This is supported by the lack of smoothness

in the ROC curve for this model in Figure 4. It is, however,

interesting to see that the model for voltage dip and for ground

fault show a small but significant vertical initial step in the

ROC curve in the event-specifically trained models compared

to the models trained on the general dataset. This indicates

that these models are capable of predicting a small portion

of these events with high confidence and a low level of false

positive. This is encouraging for further work.

The fact that these tests have only utilised balanced datasets

must be further investigated by the application of the models

on more realistic unbalanced datasets. In such an application,

the importance of a low level of false positives will become

pronounced.

The application of the models are made more challenging by

the fact that all events are not preceded by any other event. In

an operational setting, events will often cluster in time. Thus,

the occurrence of some events, such as ground faults, can be

used as a parameter for predicting other events, such as power

interruptions. As a consequence, the conditions under which

these models have been tested may be too strict to realistically

judge their true predictive capabilities in an operational setting.

V. CONCLUSION AND FURTHER WORK

In this paper, a comparison of fault prediction models based

on different supervised machine learning methods was con-

ducted. The machine learning models were trained using high-

resolution power quality measurements from the Norwegian

power grid. The predictive models were trained to predict four

different event categories; namely voltage dips, ground faults,

rapid voltage changes (RVC) and interruptions. The results

from the comparison of the Random Forest model, the Support

Vector Machine model, the Feed Forward Neural Network

model and the Recurrent Neural Network model show that

the Random Forest model is performing marginally better

than the other models, with an accuracy of 0.602. However,

the performance is so far not at a level where operational

deployment would be feasible. Both the false-positive rate and

the false-negative rate are too high for such a step. It is also

observed that there are differences in performance between the

different types of events that the models are trained on. The

results indicate that rapid voltage changes, with an accuracy of

0.710, and voltage dips, with an accuracy of 0.601, are easiest

to predict among the tested PQ events.

It would be beneficial to the research within this area if

this work could be carried on by investigating the effects of

application to unbalanced datasets. This would give a more

realistic reflection of the potential usefulness of these models

in an operational setting. Furthermore, applying the models to

time series that contain events in the analysed time window

would also give a more realistic judgement of operational

usefulness.

As with all other data-driven methods, performance is

expected to improve with data volume. It is expected that

having more training data would improve the performance of

the models. It is also expected that the combination of PQA

data with other data sources, such as weather data, power

flow data or systems configuration data, would improve the

predictive capability.

REFERENCES

[1] R. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad,
“Recognition of Power-Quality Disturbances Using S-Transform-Based
ANN Classifier and Rule-Based Decision Tree,” IEEE Transactions on

Industry Applications, 2015.
[2] E. Balouji, I. Y. Gu, M. H. Bollen, A. Bagheri, and M. Nazari, “A

LSTM-based deep learning method with application to voltage dip
classification,” Proceedings of International Conference on Harmonics

and Quality of Power, ICHQP, vol. 2018-May, pp. 1–5, 2018.
[3] K. Manivinnan, C. L. Benner, B. Don Russell, and J. A. Wischkaemper,

“Automatic identification, clustering and reporting of recurrent faults in
electric distribution feeders,” in 2017 19th International Conference on

Intelligent System Application to Power Systems, ISAP 2017, 2017.
[4] F. L. Grando, A. E. Lazzaretti, M. Moreto, and H. S. Lopes, “Fault

Classification in Power Distribution Systems using PMU Data and
Machine Learning,” 2019 20th International Conference on Intelligent

System Application to Power Systems, ISAP 2019, 2019.
[5] J. L. Viegas, S. M. Vieira, R. Melicio, H. A. Matos, and J. M. Sousa,

“Prediction of events in the smart grid: Interruptions in distribution
transformers,” Proceedings - 2016 IEEE International Power Electronics

and Motion Control Conference, PEMC 2016, pp. 436–441, 2016.
[6] R. Eskandarpour and A. Khodaei, “Machine Learning Based Power Grid

Outage Prediction in Response to Extreme Events,” IEEE Transactions

on Power Systems, vol. 32, no. 4, pp. 3315–3316, 2017.
[7] R. Fainti, M. Alamaniotis, and L. H. Tsoukalas, “Three-phase line

overloading predictive monitoring utilizing artificial neural networks,”
in 2017 19th International Conference on Intelligent System Application

to Power Systems, ISAP 2017, 2017.
[8] R. A. Shuvro, P. Das, M. M. Hayat, and M. Talukder, “Predicting

Cascading Failures in Power Grids using Machine Learning Algorithms,”
51st North American Power Symposium, NAPS 2019, no. 1541148, pp.
0–5, 2019.

[9] V. Hoffmann, K. Michalowsa, C. A. Andresen, and B. N. Torsæter,
“Incipient Fault Prediction in Power Quality Monitoring,” in 25th

International Conference on Electricity Distribution, CIRED 2019, no.
June, Madrid, 2019.

[10] K. W. Høiem, “Predicting Fault Events in the Norwegian Electrical
Power System using Deep Learning - A Sequential Approach,” MSc

Thesis, 2019.
[11] V. M. Santi, “Predicting faults in power grids using machine learning

methods,” MSc Thesis, 2019.
[12] C. A. Andresen, B. N. Torsæter, H. Haugdal, and K. Uhlen, “Fault

Detection and Prediction in Smart Grids,” in 9th IEEE International

Workshop on Applied Measurements for Power Systems, AMPS 2018 -

Proceedings, 2018.
[13] A. M. Andrew, “An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods,” 2001.
[14] A. Liaw and M. Wiener, “Classification and Regression with Random

Forest,” R News, 2002.
[15] A. C. Ian Goodfellow, Yoshua Bengio, “The Deep Learning Book,” MIT

Press, vol. 521, no. 7553, p. 785, 2017.
[16] D. M. W. Powers and Ailab, “Evaluation : From Precision , Recall and

F-Factor to ROC , Informedness , Markedness & Correlation,” Journal

of Machine Learning Technologies, 2007.
[17] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for

imbalanced data using Matthews Correlation Coefficient metric,” PLoS

ONE, 2017.
[18] M. H. Zweig and G. Campbell, “Receiver-operating characteristic

(ROC) plots: A fundamental evaluation tool in clinical medicine,”
Clinical Chemistry, vol. 39, no. 4, pp. 561–577, 4 1993. [Online].
Available: https://academic.oup.com/clinchem/article/39/4/561/5646806

© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other  

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

This is the accepted version of a paper published in 2020 International Conference on Smart Energy Systems and Technologies - SEST 

http://dx.doi.org/10.1109/SEST48500.2020.9203025

https://academic.oup.com/clinchem/article/39/4/561/5646806

