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In this work, we compare the results of molecular dynamics
simulations involving the application of three generalized Born
(GB) models to 10 different proteins. The three GB models, the Still,
HCT, and modified analytical generalized Born models, were im-
plemented in the computationally efficient cRomacs package. The
performance of each model was assessed from the backbone rms
deviation from the native structure, the number of native hydro-
gen bonds retained in the simulation, and the experimental and
calculated radius of gyration. Analysis of variance (ANOVA) was
used to analyze the results of the simulations. The rms deviation
measure was found to be unable to distinguish the quality of the
results obtained with the three different GB models, whereas the
number of native hydrogen bonds and radius of gyration yielded
a statistically meaningful discrimination among models. Our re-
sults suggest that, of the three, modified analytical generalized
Born yields the best agreement between calculated and experi-
mentally derived structures. More generally, our study highlights
the need both to evaluate the effects of different variables on the
results of simulations and to verify that the results of molecular
dynamics simulations are statistically meaningful.

analysis of variance | molecular dynamics

M olecular dynamics (MD) simulations are widely used in the
study of protein structure and functions (1, 2). The results
of a given simulation depend on a number of factors, such as the
quality of the molecular force field, the treatment of solvent,
the timescale of the simulation, and the sampling efficiency of
the simulation protocol. There has been an enormous invest-
ment in the underlying technology in each of these areas, and the
range of application of MD simulations has expanded greatly
since the method was first introduced (3). However, by their very
nature, MD simulations are not easy to compare to experiment.
Simulations of protein systems involve a considerable amount of
computer time, and the results in general cannot be directly
compared with the experimental observables without additional
processing. When such comparisons are made, the results are
often very encouraging, but, given the multiplicity of parameters
and computational methodologies that are used, it is hard to
know whether the success of a particular protocol, e.g., using one
of the available force fields, indicates that all other force fields
will yield results of comparable quality. Fortunately, the growth
in available computer power combined with the development of
highly optimized computer code has made careful comparison of
methods more feasible and, in addition, should make it increas-
ingly possible to test whether a particular result is robust in terms
of its sensitivity to the parameters of the calculation. Moreover,
it would be highly desirable to know whether a particular
methodology or combination of parameters is best suited to a
particular application and to understand the reasons for perfor-
mance differences, to the extent that they exist. This goal
requires that different methods be compared so that their
strengths and weaknesses can be critically evaluated.

The most straightforward validation of MD simulations of
proteins is based on comparisons between experimentally
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determined structures and the conformations that are gener-
ated in a simulation that uses the experimental structure as an
initial condition. However, there are a number of complica-
tions in even this kind of test. The most accurate experimental
structures are obtained from x-ray crystallography, but most
simulations do not mimic crystalline conditions. Comparisons
with NMR structures obtained in solution would appear more
appropriate, but NMR structures tend to be less accurate than
x-ray structures and are more sensitive to the energy model
(e.g., force field) used in generating coordinates. Much re-
mains to be done in comparing theory and experiment and in
comparing the one theoretical approach to another. An issue
that naturally arises in such comparisons is whether a partic-
ular conclusion is statistically meaningful. Has a large enough
data set been used, has the simulation been run for a long
enough time, and have appropriate statistical tests been ap-
plied to the output of the simulations?

In this article, we address some of these issues by using a
comparison of continuum solvent models as an example. Spe-
cifically, we evaluate the ability of three generalized Born (GB)
models, used in conjunction with the GROMOSY6 force field (4, 5)
and stochastic dynamics (SD) (6) simulations, to reproduce
experimentally determined protein structures. The three models
are those of Still and coworkers (7), the HCT model from the
Cramer/Truhlar group (8), and a modified AGB (mAGB)
model of Levy and coworkers (9) developed in our laboratory
(10). The three models have been implemented in the GROMACS
3.0 package (11-13). Five-nanosecond simulations using each of
the three models were carried out on 10 different proteins (Table
1), and the structural properties averaged over the last 1 ns of
each simulation were compared with the corresponding prop-
erties obtained from the experimentally determined structures.
The extent to which differences in the results obtained from
different GB modes were statistically meaningful was deter-
mined through analysis of variance (ANOVA). Our analysis
reveals that some structural measures are better than others in
their ability to discriminate among models, and, in addition, it
emphasizes the importance of applying statistical analysis to the
results of MD simulations. Proper analysis also requires the use
of a sufficiently large data set, something that is no longer a
problem given the computational efficiency of modern MD
technologies and the availability of large-scale computational
resources.

The results reported here and in a previous study (10) indicate
that there are important differences between GB models. In
addition, model performance is found to depend on simulation
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Table 1. Proteins used in the simulations

PDB Description Exp. Resol. Nres N, Ng Ncharge
1afi Reduced form of MERP, mercuric transport protein NMR — 72 22 22 3
1ail N-terminal fragment of Nsl, RNA-binding protein X-ray 1.9 70 60 0 2
1ctf C-terminal domain of the ribosomal protein L7/L12 X-ray 1.7 68 39 19 -2
1lea Lex A repressor DNA binding domain NMR — 72 36 6 2
1pgb B1 domain of protein G X-ray 1.9 56 14 30 -4
1shg Src homology 3 (SH3) domain X-ray 1.8 57 3 28 1
Ttuc Src homology 3 (SH3) domain, circular permutant cut X-ray 1.8 61 3 25 0
at S19-P20
Tubi Ubiquitin X-ray 1.8 76 16 33 0
2bby DNA-binding domain from human Rap30 NMR — 69 32 12 3
2ci2 Chymotrypsin inhibitor 2 X-ray 2.0 63 13 22 -1

PDB, PDB ID code (two N-terminal residues of 2ci2 have been removed); Exp., experimental method for determining the protein
structure; Resol., structural resolution for x-ray structures; Nres, number of residues in the protein; N,, number of helical residues as
defined in the PDB file; Ng, number of strand residues as defined in the PDB file; Ncharge, Net charge of the protein at pH 7.0.

protocol; for example, the friction coefficient used in a simula-
tion or initial conditions. Some of the implications of our results
are discussed below.

Methods

Protein Data Set. Table 1 provides information about the 10
proteins used in the simulations. Seven of the structures were
solved with x-ray crystallography, and seven were solved with
NMR. For the latter, the first structure in each PDB file was
used, except for 1llea, for which only one energy-minimized
average structure is available. All 10 proteins are small (between
56 and 76 residues), have no disulfide bonds, and have different
compositions of secondary structure elements.

Model Implementation. The HCT, modified analytical generalized
Born (mAGB), and Still models were implemented in the
GROMACS 3.0 package (11-13). The precision of the implemen-
tation was examined by evaluating both energies and forces. The
energy calculation was tested through a comparison with values
obtained from the same models within the GROMOS package.
The force was tested by comparing the GB force calculated from
analytic derivatives with that obtained from finite interpolation.
In finite interpolation, the energy change upon a perturbation in
a coordinate should approach the analytic derivative when the
perturbation is sufficiently small. A coordinate increment of 0.01
A was used, and the protein 1pgb was tested. The nonpolar
solvation term, estimated from an analytical surface-area term
calculation (10, 14, 15), was combined with each GB model
(GB/surface area model, GB/SA model) to represent the
complete solvent potential of mean force. It should be empha-
sized that the nonpolar term used in the original AGBNP model
(9) has been replaced in the mAGB implementation (10) by a
simpler surface-based term for convenience of comparison
between methods.

Simulation Methodology. The GROMOSY force field (4, 5) was used
in all simulations. All ionizable amino acids were assumed to be
in protonation states appropriate to a pH of 7 assuming standard
pK,. Each GB/SA model was combined with a SD algorithm (6)
to represent the effect of the solvent. Bound ions and crystal
waters were removed, and no counter ions were added to
neutralize the protein/implicit solvent systems. All protein struc-
tures were first optimized through steepest descent energy
minimization and then subjected to 10 ps of positionally re-
strained dynamics with a force constant of 2.4 kcal/molA2. Then,
5-ns SD simulation with each GB/SA model was performed. The
equations of motion were integrated with a leapfrog SD scheme
and a time step of 0.002 ps. The temperature was kept at 300 K,
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and, except where noted (see below), the friction coefficient was
set to 10 ps~!. Covalent bonds were constrained with the LINCS
algorithm (16). Nonbonded interactions were calculated every
step without cutoffs. The nonpolar surface-area term and its
derivative were updated every 10 time steps. The surface coef-
ficient o was set to 0.005 kcal/molA2 for all atom types except
for sulfur (—0.005 kcal/molA?) and polar hydrogens (0.0 kcal/
molA2) (10, 15).

Three additional 5-ns simulations were performed on 1pgb by
using different initial atomic velocities, resulting in a total of four
runs for this protein. Another four simulations by using other-
wise identical conditions were performed on 1pgb by using a
friction coefficient of 50 ps~—!. All simulation trajectories were
analyzed with tools in the GROMACS3.0 package. Different prop-
erties were extracted from the trajectories and averaged over the
last period (1 ns) of the simulation. These average properties
were subjected to the statistical analysis.

ANOVA. ANOVA (17) is a statistical technique that can evaluate
the significance of differences between two or more groups.
Two-way ANOVA is appropriate to cases where there are two
independent variables. The “null hypotheses” to be tested are
that the effect of the first (or second) variable is not significant
and that the two variables are not correlated. In this work, the
GB model and the protein correspond to the two independent
variables, and the null hypothesis of interest is that three GB
models are equivalent. ANOVA will calculate the probability (P)
of the null hypothesis being true. A sufficiently low P value
indicates that a particular property can differentiate among the
GB models. A high P value suggests that the property in question
should not be used to infer differences in model quality.
ANOVA results are valid only when the samples are normally
distributed. This conclusion was confirmed through an analysis
of residual. Detailed descriptions of ANOVA can be found
online or in most statistics textbooks. We used a LINUX version
of the statistical package, R (Www.r-project.org) for ANOVA and
validation tests.

Results

rms Deviation (RMSD) of Backbone Atoms. Table 2 lists the RMSDs
of the backbone of secondary structures averaged over the last
1 ns of a given simulation. The RMSDs are in the range observed
for previously reported explicit (15, 18) and implicit (15, 19-26)
solvent simulations. Many of the values are <2 A, and for only
one protein (1pgb) is the RMSD close to 3 A. Table 2 (multiple
simulations, 10-ps™! friction coefficient) shows results for the
four sets of simulations carried out on 1pgb with different initial
velocities. The first of these simulations corresponds to the one
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Table 2. The backbone RMSD of secondary structure elements
Multiple simulations of 1pgb
with a 50-ps~" friction
coefficient,* A

Multiple simulations of 1pgb
with a 10-ps—' friction
coefficient,* A

Simulations with a 10-ps~" friction coefficient
for selected PDB entries, A

1afi  1ail  1ctf 1lea 1pgb 1shg 1tuc 1ubi 2bby 2ci2 1 2 3 4  Avg. 1 2 3 4 Avg.

HCT 1.5 2.5 1.7 2.0 3.3 1.6 1.0 1.4 2.3 14 33 21 14 28 24 - = = — —
mAGB 1.8 1.6 1.3 2.2 2.7 1.3 1.1 1.0 1.2 16 27 26 18 23 24 1.1 16 22 1.2 1.5
Still 1.6 20 1.8 1.1 2.9 1.1 1.8 0.9 2.0 27 29 19 23 28 2.5 - = = = —

The RMSD is calculated with respect to the experimental structure and averaged over the last 1-ns simulation. The value in each cell is the backbone RMSD
of the secondary structures (as defined in the PDB file). For 1shg, we used the definition in the PDB file of 1aef because there is no definition in the 1shg PDB
file, and 1shg and 1aef are the same protein. The lowest values for each protein are shown in bold. HCT, RMSD calculated from the SD simulation with the HCT
GB/SA model; mAGB, RMSD calculated from the SD simulation with the mAGB GB/SA model; Still, RMSD calculated from the SD simulation with the Still GB/SA
model.

*Results from four simulations on 1pgb with each of the three GB models and a 10-ps~! friction coefficient and four simulations with the mAGB model and a

50-ps~" friction coefficient.

also listed in column 6. As can be seen, the RMSDs for the three
additional simulations are lower than for the first. The average
RMSD of the 10 proteins is 1.9, 1.6, and 1.8 A for the HCT,
mAGB, and Still models, respectively. The lowest RMSD for
each protein (marked in bold) is scattered among the three GB
models, and visual inspection does not identify a best performing
GB model.

Two-way ANOVA confirms this conclusion; the probability of
the null hypothesis being true (i.e., that the three GB models are
equivalent) is 0.32, which indicates that differences among
models detected by RMSD results are not statistically significant.
This finding suggests that RMSD is not a useful discriminator of
model quality in the current study. Although we have not
analyzed the effect of the protein on the results in detail, it is of
interest to consider whether there are differences between
proteins that lead to different RMSDs. Possible factors include
the location of salt bridges for which the subtle balance of
relevant forces (e.g., Coulomb and desolvation) is difficult to
calculate or, perhaps, the energetics of secondary structure
formation.

Number of Native Hydrogen Bonds. We evaluated all hydrogen
bonds involving residues that are part of secondary structure
elements. Tables 3 lists the number of native hydrogen bonds
observed in the experimentally determined structures, the av-

erage number of these hydrogen bonds in the last 1 ns (obtained
by averaging the number seen in each snapshot), and the relative
deviation of the two values (DEV). DEV is defined as Qgim/Qexp
— 1, where Qgin is the value for a particular quantity obtained
from the calculation and Qe is the value of the same quantity
obtained from the experimental structure. [The mAGB model is
seen to have the lowest deviations for every protein except 1pgb,
where, based on the results shown in Table 3 (multiple simula-
tions with a 10-ps™! friction coefficient), the performance of all
three models is essentially the same.] The average value of DEV
for the 10 proteins is —0.368, —0.245, and —0.331 for the HCT,
mAGB, and Still models, respectively. The HCT simulations, in
particular, tend to lose a relatively large number of native
hydrogen bonds. Two-way ANOVA indicates that the probabil-
ity of the null hypothesis being correct is 1.8 X 1074, suggesting
that differences among model performance, as measured by the
number of native hydrogen bonds, are statistically significant.

Radius of Gyration. Table 4 lists the radius of gyration obtained
from the experimental structures and from different simulations
together with the corresponding DEV values. All GB models
yield comparable values with a maximal deviation from the
experiment of 0.5 A. The average DEV value for the 10 proteins
is —0.016, 0.001, and 0.012 for the HCT, mAGB, and Still
models, respectively. The lowest DEV values, indicated in bold

Table 3. No. of native hydrogen bonds involving secondary structure elements

Multiple simulations
of 1 pgb with a
10-ps—" friction

Multiple simulations
of 1pgb with a
50-ps~' friction

Simulations with a 10-ps—" friction coefficient for selected PDB entries, A coefficient,* A coefficient,* A

1afi 1ail 1ctf 1lea 1pgb 1shg Ttuc 1ubi 2bby 2¢i2 1 2 3 4 Avg. 1 2 3 4 Avg
EXP 29 49 41 25 31 19 16 22 21 17 —_—_——— = = = = = -
HCT 18 31 28 18 14 12 11 16 11 11 14 19 22 16 18 — — — — —
-0.379 -0.367 —-0.317 —-0.280 -0.548 -0.368 -0.312 -0.273 -0.476 —0.353
mAGB 19 40 34 20 14 15 14 19 16 12 14 18 18 22 18 25 23 24 24 24
—0.345 -0.184 -0.171 -0.200 —-0.548 -0.210 -0.125 -0.136 —0.238 -0.294
Still 18 37 28 20 15 13 10 18 12 11 15 21 21 177 18 — — — — —

-0.379 -0.245 -0.317 -0.200 -0.516 -0.316 —0.375 -0.182 —-0.429 -0.353

The number of native hydrogen bonds involved in the secondary structures retained in the simulation is calculated and averaged over the last 1-ns simulation.
The native hydrogen bonds are defined as those in the experimental structure (given by EXP). In HCT, mAGB, and Still, the first line gives the number of nature
hydrogen bonds, and the second line gives their relative deviation (DEV) from the experimental value. The lowest deviations among simulations are shown in
bold. A hydrogen bond is considered to exist if the donor-hydrogen-acceptor angle is <60° and the distance between the hydrogen and the acceptor is <2.5
A. EXP, value calculated from the experimental structure; HCT, value and DEV calculated from the SD simulation with the HCT GB/SA model; mAGB, value and
DEV calculated from the SD simulation with the mAGB GB/SA model; Still, value and DEV calculated from the SD simulation with the Still GB/SA model.
*Results from four simulations on 1pgb with each of the three GB models and a 10-ps~! friction coefficient and four simulations with the mAGB model and a

50-ps~" friction coefficient.
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Table 4. Radius of gyration

Simulations with a 10-ps—" friction coefficient for selected PDB entries, A

Multiple simulations of
1pgb with a 10-ps~!
friction coefficient,* A

Multiple simulations of
1pgb with a 50-ps—'
friction coefficient,* A

1afi 1ail 1ctf 1lea 1pgb 1shg  Ttuc Tubi

EXP 10.9 12.8 11.2 11.4 10.6 10.3 10.9 11.7
HCT  11.1 12.5 10.9 11.1 10.5 104 10.5 1.7
0.018 —0.023 —0.027 —-0.026 —-0.009 0.010 —0.037 0.0
mAGB 11.4 12.8 11.2 11.5 10.5 10.6 10.8 11.7
0.046 0.0 0.0 0.009 -0.009 0.029 -0.009 0.0
Sstill - 11.3 13.0 11.3 11.5 10.5 10.6 11.2 11.8
0.037 0.016 0.009 0.009 —0.009 0.029 0.028 0.008

2bby 2ci2 1 2 3 4 Avg. 1 2 3 4  Avg.
20 112 @ — - - - - - - — — —
11.6 108 10,5 104 105 105 105 — — — — —
—0.033 —0.036
1.7 109 10.5 10.6 10.6 10.5 10.6 10.6 10.6 10.5 10.6 10.6
—0.025 —0.027
11.8 11.3 105 10.7 106 105 106 — — — — —
—0.017  0.009

The radius of gyration is calculated and averaged over the last 1-ns simulation. The first HCT, mAGB, and Still line gives the average radius of gyration, and
the second line gives the relative deviation from the experimental value (given by EXP). The lowest deviations among simulations are shown in bold. EXP, value
calculated from the experimental structure; HCT, value and DEV calculated from the SD simulation with the HCT GB/SA model; mAGB, value and DEV calculated
from the SD simulation with the mAGB GB/SA model; Still, value and DEV calculated from the SD simulation with the Still GB/SA model.

*Results from four simulations on 1pgb with each of the three GB models and a 10-ps~" friction coefficient four simulations with the mAGB model and a 50-ps~'

friction coefficient.

in the table, are evenly distributed and do not indicate a
preference for a particular model. Nevertheless, two-way
ANOVA reveals that the probability of the null hypothesis being
correct is 9.5 X 107>, suggesting that the radius of gyration is a
good discriminator of GB models. Indeed, the data in Table 4
suggest that the HCT model tends to make proteins slightly too
compact and that the Still model tends to make them expand
slightly, whereas mAGB exhibits no particular preference and
has the smallest average deviations from experimental values.

Friction Coefficient. Four simulations using the mAGB model and
a friction coefficient of 50 ps~! were performed on 1pgb with
different initial atomic velocities. (Results are presented in the
last five columns of Tables 2-4.) The average RMSD is reduced
from 2.4 to 1.5 A when the larger friction coefficient is used
(Table 2). More native hydrogen bonds are retained (24 instead
of 18; Table 3), but the radius of gyrations is not affected (Table
4). The results suggest that the structural deviations (RMSDs)
observed in the simulations, in particular the large deviation of
1pgb, may be strongly influenced by the simulation protocol
(e.g., the friction coefficient) and not just changes in the
interaction function, in this case the GB model. The improved
agreement with experiment of course does not imply that the GB
model performs better with a higher fiction coefficient. The
friction coefficient affects only dynamic properties of a system,
not thermodynamic properties such as the equilibrium structure.
In this case, increasing the friction coefficient reduces the
structural deviation by restricting the mobility of the protein,
thus lowering the sampling efficiency.

Discussion

Criteria for Model Evaluation. Despite the wide use of RMSD as a
measure of the success of a particular set of parameters in
applications to proteins, two-way ANOVA indicates that RMSD
is in fact a poor discriminator of different GB models. Strictly
speaking, this result is valid only for the comparison of the GB
models used in this study, but its reduced sensitivity relative to
factors such as the number of native hydrogen bonds or radius
of gyration is noteworthy. Although this result does not prove
that RMSD will always fail to discriminate among models, the
calculated RMSD clearly results from a combination of factors
that may reduce the amount of useful information this measure
provides.

In addition to RMSD, MD studies of protein dynamics often
report structural features such as radius of gyration, hydrophilic
and hydrophobic solvent-accessible surface area, hydrogen
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bond, and the number of residue-residue contacts. Our results
suggest that some of these properties are more sensitive to
changes in the energy function than RMSD. Indeed, ANOVA
indicates that hydrophilic and hydrophobic surface areas also
provide significant tests of GB models. In contrast, the number
of residue-residue contacts was not sensitive to the model
differences. It may well prove to be the case that different tests
are appropriate to different questions about the energy function.
For example, hydrogen bonding is clearly sensitive to solvent
model and, thus, is likely to be affected by changes in the GB
model. In contrast, it may well be the case that the number of
residue-residue contacts will provide a useful means of evalu-
ating van der Waals potentials.

Evaluation of GB Models. In a previous study, we compared the
Still, HCT, mAGB, and GBMV2 models in terms of their ability
to reproduce Born radii obtained from the Poisson equation
(DELPHI, refs. 27 and 28). We also compared the effectiveness of
each model, used in conjunction with the GROM0OS96 force field
(4,5), in the ab initio folding of two peptides. The GBMV2 model
(29, 30) (which is computationally more demanding than the
other three models) was found to be most effective in repro-
ducing the DELPHI results, but the Still and mAGB models were
most effective in the peptide folding, yielding some trajectories
that produced native-like structures without the use of enhanced
sampling techniques. This finding was attributed to the fact that
the latter two models allowed for more efficient sampling even
though they are somewhat less accurate in their ability to
reproduce the results of a rigorous continuum model. This study
also finds that mAGB is the most successful of the three fast GB
models. In particular, mAGB maintains the largest number of
native hydrogen bonds and yields radii of gyration in best
agreement with experiment. In a previous study we found that,
of the three models considered here, mAGB was the most
effective in reproducing DELPHI-derived Born radii. In our
implementation, mAGB is between 10% and 15% slower than
the Still and is faster than HCT by about the same factor.

General Implications. Continuing improvements in access to com-
puter resources and algorithms (programs) are enabling MD
simulations of biomolecular systems to approach experimentally
relevant time and length scales. With these factors, it is becoming
increasingly possible to rigorously evaluate the available com-
putational methodology against experimental data. In this pa-
per, we have described the results of SD simulations on 10
proteins with the specific goal of evaluating the performance of
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three fast GB models. A second goal was to demonstrate the
importance of using statistical techniques in the analysis of the
results of MD simulations. The more general purpose of both
aspects of this study is to help establish standards that enable the
comparison and validation of parameters used in the simula-
tions. A number of our findings clearly indicate the need to go
beyond the consideration of just individual molecules and/or
well chosen test cases. Instead, we must strive to employ data sets
that are sufficiently large and diverse to enable rigorous statis-
tical analysis. For example, the B1 domain of protein G (1pgb)
has been used as a model system in a variety of simulations.
However, in our study, the results obtained for this protein
appear atypical, and, indeed, agreement with calculated struc-
tural parameters appears better for other proteins in our test set.

A second finding of our study is the value of using statistical
analysis in assessing the significance of conclusions that are
derived from simulations. For example, we find that, despite its
wide use in evaluating the relative quality of different simula-
tions, RMSD does not appear to be an optimal measure for
discriminating among different GB models. In contrast, the
number of native hydrogen bonds and the radius of gyrations
appear to be better discriminators of GB solvent models. We
note in passing that the number of native hydrogen bonds that
are maintained in our simulations is significantly lower than the
number observed experimentally. The situation appears to im-
prove when a larger friction coefficient is used, simply highlight-
ing the need to carefully evaluate the performance of a particular
simulation protocol before specific conclusions are drawn. Still,
the extent to which hydrogen bonds are broken raises concerns
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