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Abstract: Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In
recent years, there has been a growing global interest in analysing RTAs, specifically concerned with
analysing and modelling accident data to better understand and assess the causes and effects of
accidents. This study analysed the performance of widely used machine learning classifiers using a
real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs
for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes,
logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five
missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-
mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the
assessment involved parameter adjustment and incorporated dimensionality reduction techniques.
The empirical results and analyses show that the RF classifier, combined with multiple imputations
by chained equations, yielded the best performance when compared with the other combinations.

Keywords: machine learning; road traffic accidents; data analysis; missing data; dimensionality
reduction

1. Introduction

The rapidly increasing number of road traffic accidents (RTAs) has negatively affected
different countries by resulting in a high number of injuries and fatalities. The World
Economic Forum [1] estimates that the number of vehicles worldwide is expected to double
by 2040, putting more pressure on the transport infrastructure. According to the World
Health Organisation (WHO) [2,3], RTAs are likely to be the seventh leading cause of
death by 2030. The WHO further stipulated that RTAs cause death to vulnerable road
users because more than half (54%) of the individuals killed on the roads are cyclists,
motorcyclists, and pedestrians. An RTA can be described as an accident that occurs when
at least one road vehicle is involved in an accident which happens on an open public road,
and at least one person ends up being killed or injured [4]. The leading recorded causes of
RTAs are speeding, driving under the influence of alcohol, and distractions when using
mobile phones while driving. In 2015, the WHO reported that RTA deaths affect countries
differently: low-income countries had 24.1 deaths per 100,000 of the population; middle-
income countries had 18.4 deaths per 100,000; and high-income countries had 9.2 deaths
per 100,000 [2]. The figures thus reveal that low- and middle-income countries contribute
more than double the number of deaths than high-income countries.

RTAs remain the main source of travelling uncertainty and impose a high cost on
the transportation infrastructure [5]. Primary road accidents can result in multiple road
accidents, which are referred to as secondary accidents. In some cases, secondary road
accidents add to more lives being lost. Primary road accidents result in secondary accidents
due to delayed primary accident clearance, poor road surface and light conditions, traffic
volume, and travel time. Furthermore, secondary accidents that occur after the initial road
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accident can escalate traffic congestion, travel delays, and safety issues [3,6,7]. Secondary
accidents may account for a lower ratio as compared with initial or primary accidents.
However, despite this, they account for risks that are estimated to be six times greater than
the initial accident, resulting in multiple traumas, serious and complex injuries, as well
as overlapping injuries. The prevention of RTAs has become a priority in transportation
management. Initial and secondary accidents can be identified and investigated using
different data mining techniques that can help support transport authorities and contribute
to reducing the high number of road injuries and fatalities [6,8–11].

Data mining techniques can be globally applied in road safety to improve life-threatening
problems on the roads. Applications of data mining techniques in RTAs can help in the
modelling and better understanding of RTA data records. These records contain important
hidden patterns that RTA stakeholders and decision-makers can use to introduce better
safety policies [12,13]. Data mining techniques are available in data science and can be
used to achieve numerous outcomes such as classification, prediction, outlier analysis,
and clustering analysis. According to [12], data mining techniques are machine learning
(ML) processes. ML is described as a method that can be used to make provisions for
data analysis, decision making, and data preparation for real-life problems, and that allow
self-learning for computers without any complex coding involved [14,15]. Additionally,
ref. [16] describes ML as an approach that focuses mainly on improving computer programs’
capability of accessing data and using the data to learn for themselves. The learning begins
with the data to look for any patterns in the dataset and make future decisions involving
societal problems. ML methods are categorised as supervised, unsupervised, and semi-
supervised. ML have successfully been implemented in automated stock trading, computer
vision, health care, speech recognition, and customer services.

This study investigated widely used supervised ML methods to perform comparative
analysis using a real-life RTA dataset to present the best predictive model. The study used
data collected from Gauteng province, South Africa. The study aimed to align with the
Sustainable Development Goals (SDGs) document regarding road safety to reduce the high
number of fatalities and injuries [17,18]. The objectives of the study were as follows:

(1) To employ six traditional ML methods: naïve Bayes (NB), logistic regression (LR),
k-nearest neighbour (k-NN), AdaBoost, support vector machine (SVM), and random
forest (RF) on a real-life dataset containing primary and secondary RTA features. The
main reasons for using these specific ML classifiers are their unique characteristics
and their popularity in the literature;

(2) To include dimensionality reduction techniques, principal component analysis (PCA)
and linear discriminant analysis (LDA) were utilised to identify the relationship
between the RTA variables to improve the performance of the proposed models. The
study further implemented various missing data methods such as the mean, median,
k-NN, and multiple imputations by chained equations (MICE) to handle missing
values in the RTA dataset;

(3) To further use well-established evaluation metrics such as accuracy, root-mean-square
error (RMSE), precision, recall, and the area under the receiver operating characteristic
(ROC) curve (also referred to as the AUC—the area under the ROC) to evaluate the
performance of the classification models.

The remainder of the paper is structured as follows: Section 2, the literature review,
discusses classification and then focuses on RTA studies; Section 3 comprises the study’s
methodology; the study’s dimensionality reduction techniques are presented in Section 4;
Section 5 presents the experimental results, their discussion and comments on findings
relating to the AUC; and Section 6 provides a conclusion to the paper.

2. Literature Review

This section covers the related RTA studies conducted using both primary and sec-
ondary accident datasets. To begin with, classification is discussed.
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2.1. Classification

In statistics or ML, classification is a supervised learning method that predicts a class
of given datasets. In addition, classification modelling can approximate the mapping of
a function (f) from a given input value (x) and its discrete output value (y), as shown in
Equation (1) below [19]. According to [20], classification is a process that categorises a given
set of data into classes (also referred to as targets). Classification can be executed on both
structured and unstructured datasets. The process begins by predicting the target of a given
data point. The main idea behind classification is identifying into which of the available
classes or targets the data point will fall [21]. The most common areas in which classification
is applied include facial expression detection, image and document classification, sentiment
analysis, and speech recognition. There are famously four types of classification, namely,
binary, multi-label, multi-class, and imbalanced. Multi-class classification is employed in
studies in which the variable (y) consists of more than two targets or classes.

y = f (x), where y = class or target output (1)

2.2. Related Studies

The related studies show an increasing interest in RTAs. This section reviews some
prediction models which have incorporated traditional ML methods. The benefits of the
various prediction models are taken into consideration.

ML methods have been employed for road accident prediction using primary and
secondary road accident datasets. The most considered among these methods are SVM,
decision trees (J48 or C4.5), RF, least squares support vector machine (LSSVM) and LR.
A study by [6] modelled the occurrence of secondary accidents using LSSVM and back-
propagation neural networks (BPNNs); the investigation revealed that BPNNs performed
best in terms of the correlation coefficient (CORR) and mean squared error (MSE). A study
by [22] presented a comparative analysis of sequential minimal optimisation (SMO), J48,
and instance-based learning with k-parameter methods. The study’s findings discovered
that the SMO algorithm accurately compared with the other methods. Another study [23]
predicted traffic accident severity using supervised ML methods such as LR, NB, RF, and
AdaBoost. The study considered the freeway crash dataset, with the RF performing best
with high accuracy of 75.5%. Ref. [24] investigated road accident analysis and predicted ac-
cident severity by considering four supervised methods: k-NN, DT, AdaBoost, and NB. The
results of the study revealed that AdaBoost outperformed the other methods. Furthermore,
in [25–27], the authors investigated road accidents using real-life data considering methods
such as J48, LSSVM, and RF. Other studies used probabilistic reasoning models such as
Bayesian networks, or BNs, [28–32], with [28] performing a comparison between BNs and
regression models. The study’s results showed that BN achieved the best performance.
Artificial neural networks (ANNs), BPNNs, and multilayer perceptron (MLP) methods
were applied during road accident predictions [31,33–35]. In [33], the authors used ML
methods to compare models for incident duration prediction, obtaining promising results.
Another study [35] presented road accident detection by comparing the performance of
three methods: SVM, RF and ANN. The study showed that RF achieved the best results.
Other studies [22,24,30,32] considered k-NN and classification and regression trees (CARTs)
to predict road accidents. It was observed from the literature that there are various rea-
sons why a study uses a specific method. One such reason is the data type, which can
be categorised into primary and secondary datasets. Studies that designed a predictive
model using secondary road accident data were those of [6,29]. A study by [34] considered
using primary and secondary RTA datasets. In this study, MLP performed best during the
modelling of the traffic risk of secondary incidents.

Another study [36] proposed the importance of performing exploratory data analysis
on the road traffic accident dataset. The authors revealed which features affect road
accidents and their negative impact during the investigation. A study by [37] presented
a method of modelling and characterising traffic flow. The study employed regression
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and clustering methods, which achieved very promising results. A Bayesian network-
based framework was developed for assessing the cost of road traffic accidents [38]. This
study managed to identify which features can be incorporated into the framework to
assess different negative impacts on road accidents. The framework presented promising
results. Lastly, [39] presented a study using adaptive Kalman filtering to predict urban
road networks. The study revealed that the proposed model is capable of predicting
traffic correctly.

Most ML classifiers are influenced by the size of the dataset and capabilities to han-
dle overfitting problems and are being implemented in different environments such as
urban and rural settings and on freeways and highways. Evidence from a study by [25]
demonstrated promising results when the RF method was compared with other classi-
fiers. The study evaluated models using an out-of-bag (OOB) estimate of error rate, mean
square error (MSE) and RMSE. The RF method aims to reduce overfitting and is capable
of improving model accuracy. Other performance evaluation methods used in different
studies are precision, recall, f1 score, ROC curve, true positive rate (TPR), and false positive
rate (FPR) [27,30,33,35,36,38]. The LDA approach was implemented by [32]. This study
employed SVM, RF, LR, NB, and k-NN during the comparative analysis due, as mentioned,
to their popularity and demonstrated capabilities in the literature. Furthermore, AdaBoost
was considered even though there is no evidence of it tackling road accident problems.
AdaBoost is perceived as improving the performance of weak classifiers. It can also handle
image and text problems well.

Overall, the literature review revealed that there is no such thing as a perfect method.
Thus, with RTAs, the most appropriate approach to finding the best performing method is
to continue constantly combining and comparing various methods.

3. Methodology

This section covers ML classifiers, experimental settings, the RTA dataset, model
evaluation methods, and the study’s statistical analysis.

3.1. Machine Learning Classifiers

The ML classifiers employed during the comparative analysis are described below. Six
classifiers were used in the study: the aforementioned NB, LR, k-NN, AdaBoost, RF, and
SVM. The classifiers were considered due to their regular usage by other researchers in the
RTA domain (as highlighted in Section 2.2) to construct robust models.

3.1.1. Naïve Bayes

The NB classifier is a simple probabilistic classifier based on applying Bayes’ theorem
with strong independence assumptions among variables. The classifier uses prior knowl-
edge to compute the probabilities of sample data. NB can be easily implemented [40]. Two
algorithms were used during the model design, namely, GaussianNB and BernoulliNB, both
with their default settings.

3.1.2. Logistic Regression

LR is well-known as a classification method with mapping results of the linear func-
tions to the sigmoid functions [41,42]. Similarly to NB, implementation of the method is
easy and it can effortlessly be extended to multi-class problems. LR is well-known as one
of the simplest ML methods. The default parameter, ovr, and multinomial parameter tuning
were applied during implementation of the LR model.

3.1.3. k-Nearest Neighbour

k-NN classifiers, also known as lazy learners, are a form of instance-based method
and are among the simplest classifiers that can handle classification problems well. The
algorithm is a supervised method that employs both regression and classification. The
k refers to the number of the nearest neighbours a model can consider [43,44]. The algo-
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rithm works on similarity measures between new data and categorises the new data into
groups related to the available classes. One of the advantages of the algorithm is that it is
straightforward to implement. During the analysis, k values of 5 and 10 were used.

3.1.4. AdaBoost

AdaBoost, or meta-learning, is known to be one of the best boosting algorithms. It
uses the iterative concept to study errors of weak algorithms and turn them into robust
ones. The weak classifiers can be referred to as algorithms that perform poorly. The clas-
sifier can assist in joining two or more classifiers into one strong classifier. The AdaBoost
classifier can be used to solve classification and regression problems [24,45]. It can also
benefit poor classifiers by improving their performance. In this study, the default parame-
ters learning_rate −1 and algorithm –SAMME.R were initially applied and later optimised
to SAMME.

3.1.5. Random Forest

The RF model is ensemble learning and tree-based, which are employed to construct
predictive models. In line with its name, the classifier creates a forest that is made up of
trees; more trees mean a more robust forest. RF uses the data samples to create decision
trees to calculate each tree and select the best result using the voting approach [46,47].
The algorithm can best identify the significance of features from a set of datasets. The
parameters were set to default and later optimised to n_estimators –10 and criterion –entropy.

3.1.6. Support Vector Machine

SVM is a supervised classifier that addresses the computational problem of predicting
using kernels. SVMs can be used for classification and regression problems [48,49]. In
SVMs, data items are plotted as points in a dimensional space, with the values of each
variable being the value of specific coordinates. SVMs can be applied for variable selection,
prediction, and detection of an outlier. In this study, the Linear Support Vector Classifier
(LinearSVC) was applied because it can handle multi-class problems well. The default
setting was used for the first set of results and, later on, the multi-class parameter was
optimised to crammer_singer.

3.2. Missing Data Strategies

Handling missing data is an essential part of the pre-processing data stage that helps
ensure that absent values are dealt with sufficiently. Missing values are common problems
in RTAs and result from, for example, human error, incomplete data capturing, and system
failure [13,50]. The data were missing some random values that were dealt with using
several missing methods. In this study, missing data methods for single and multiple
imputation methods were used.

3.2.1. Mean and Median

Some methodological strategies replace the missing values for given data with the
mean or median of all the known values by adding available values and dividing their sum
with by the average [51].

3.2.2. k-Nearest Neighbour

This method uses a set of given k-NNs for each sample and then replaces the missing
data for a given variable derived by averaging through non-missing values in the neigh-
bours. The sample’s missing values are dealt with using the mean value of the k-neighbour
from the data. The k-NN imputation method assists in handling missing values present in
the dataset by finding the NN using the Euclidean distance matrix [52,53].

3.2.3. Multiple Imputations by Chained Equations (MICE)

MICE is a well-known multiple imputation method that can, in practice, be imple-
mented to generate imputations based on different sets of imputation models. Initially, the
missing values are filled in by replacing the observed values using the missing-at-random
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mechanism [51,54]. This method works better on a numerical dataset. These imputation
methods were chosen due to their traits and frequent use in related studies.

3.3. Experimental Setup

The experiments performed were comparative analyses to evaluate the performance
of the six ML classifiers described above using five performance metrics, four missing
data methods to handle missingness in the dataset, and incorporating three-dimensionality
reduction methods to reduce the feature scope of the RTA dataset. The experiments were
conducted using the Python platform. During the investigation, the results were generated
using the default setting and parameter tuning. The experiments were performed using
a real-life RTA dataset that contained primary and secondary accident parameters. As
outlined above, the applied ML classifiers were NB, LR, k-NN, AdaBoost, RF, and SVM,
and the missing data methods applied to the dataset were the mean and median, k-NN, and
MICE. The LDA and PCA were the dimensional reduction techniques used. Additionally,
as outlined, the abovementioned methods were employed in the study due to their frequent
use in related studies. The introduction of LDA and PCA methods to the study was to
observe whether they could contribute positive outcomes to constructing the RTA model.

RTA Experimental Process

This section depicts the stages of the experimental process that were followed during
the construction of the RTA model. The process consisted of five layers: type of dataset; data
pre-processing, which involved data cleaning, dimensionality reduction, and preparation;
data pre-processing was followed by sub-processes, namely, data training and testing;
comparison analysis of the ML methods; and finally, the predicted RTA model evaluated.
The process is illustrated in Figure 1 below.

Figure 1. RTAs experimental procedure.
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Table 1. RTA features and events.

No. Features Data Type Events

1. Primary Cause Categorical Major
2. Primary Sub Cause Categorical Minor
3. Secondary Cause Categorical Natural disaster
4. Wet Road Categorical None
5. No. of Travel Lanes Numeric Unknown
6. No. of Vehicles Involved Numeric -
7. Roadway Name Categorical -
8. Date Time Date time -

3.4. Dataset and Statistical Analysis

Experiments were conducted using real-life data obtained from the Gauteng Depart-
ment of Community Safety (GDCS). The collected dataset was compiled over a four-year
duration. Ethical clearance was obtained from the ethics committee and the department to
collect the historical dataset (Ref: 2020SCiiS04). The dataset included recordings of road
traffic accidents over major highways in Gauteng province. Some features were omitted
during data preparation because they contained insufficient entries. Then, features with 5%
missing values were used during the analysis and handled using missing data strategies.
Extensive data pre-processing was performed, resulting in a cleaned dataset containing
46,692 instances and 8 attributes, as shown in Table 1. The data had missing values that
were handled using several missing value methods, as discussed in Section 3.2 above.

RTA Dataset

Table 1 contains a list of features and events employed for the study. The Events
column shows that there are four classes. Due to the kind of dataset, the study was solving
a multi-class problem. Multi-class classification refers to a classification task that contains
more than two classes; it makes assumptions that each sample is assigned to only one
label [53].

During data exploration, different numbers of parameters (features) were chosen to
compute the classification model. This section of the paper statistically summarises the
dataset to observe how data were distributed among the parameters/features. Figure 2a
shows a distribution of road traffic accidents based on the Primary Cause. Stationary vehicles
were the main contributors to causing primary accidents and were followed by crashes.
This means that if the transport authorities or emergency authorities should prioritise
clearing stationary vehicles on the roads, this may significantly reduce the high number of
initial incidents. Figure 2b shows that five lanes were open when minor accidents occurred,
followed by four lanes, which mean most incidents occur when most lanes are unavailable.
The numbers in the figure are ordered according to the high number of vehicles or incidents.
This figure reveals that accidents occur when fewer lanes are open on the freeway.

Figure 2c shows that when the roads were wet, fewer accidents were recorded. The
wet road feature consists of No and Yes variables, with the No wet roads contributing
significantly more to the road accident records when compared with the Yes variable. This
means that from the obtained dataset, most of the accidents are not affected by wet roads.
Figure 2d shows the data distribution for secondary accidents. The secondary accident’s cause
is made up of seven variables, i.e., Crash, Stationary Vehicle, Road Construction, Load Lost,
Routine Road Maintenance, Police and Military, and Fire. It is observed that Crash accidents
contribute more to secondary accidents, which can be due to delayed clearance of the initial
accidents. An overall observation is that if initial accidents are cleared on time, this could
reduce the number of secondary accidents.

Figure 3 shows the distribution of the dependent (events) variables. It demonstrates
that Minor events contribute more than None, Major and Natural Disaster events. This means
that most of the contributing RTAs happen during Minor accidents. In addition, it means
Minor accidents are those which contribute to the high number of road accidents, and they
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can result in lane closures, an increase in the number of stationary vehicles, and delayed
clearance. In terms of the None event, the dataset containing this class was originally
the resulting label or class. Furthermore, the data also contained unknown or unlabelled
instances, which could be the result of capturing errors or the system being offline to
capture real-time information with labels.

Figure 2. RTA data distribution over different features: (a) primary cause; (b) no. of travel lanes; (c)
wet road; and (d) secondary cause.

Figure 3. RTA events data distribution.
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3.5. Model Evaluation

The study evaluated the performance of the classification model using accuracy, RMSE,
precision, recall, and area under the ROC curve based on the confusion matrix. A low value
for RMSE indicates that the predicted model can be considered, whereas a higher accuracy
value indicates outstanding performance [55]. Formulas for calculating the evaluation
metrics are shown in Equations (2)–(6):

The accuracy evaluation metrics in Equation (1) are calculated using the following:
true positive (TP), true negative (TN), false negative (FN), and false positive (FP). The
metrics correspond to the instances that are correctly classified [56].

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Precision and recall represent the ratio of positive instances (TP) that are correct in
the RTA dataset. High values of precision and recall indicate that the returned results are
significant. The computation formulas are captured in Equations (3) and (4):

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Model validation was carried out using the area under the ROC curve, as defined
by Equation (5). The ROC curve can assist in determining the best threshold values
produced by plotting sensitivity (TPR—true positive rate) against the specificity (FPR—
false positive rate), indicating the proportion of RTAs. The study computed the AUC, the
purpose of which is to deal with problems that contain a skewed data distribution to avoid
over-fitting to a single class. An outstanding model will achieve an AUC near 1, which
means good performance; a poor model will achieve an AUC near 0.5, which means poor
performance [57]. The AUC can be defined using Equation (5), representing the average
overall sensitivity values of FPR and TPR.

FPR =
FP

TN + FP
and TPR =

TP
TP + FN

(5)

Equation (6) shows how the RMSE formulation, which determines the difference
between the predicted and actual values, is computed as Xobs,i − Xmodel,i, with Xobs,i being
the observed value for ith and Xmodel,i being the model’s predicted value.

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i)
2

n
(6)

4. Dimensionality Reduction

In this section of the study, dimensionality reduction techniques, PCA and LDA, were
applied to the dataset. PCA was applied to the dataset to reduce its dimensionality by
identifying the most important and best-contributing features. PCA can be used as an
exploratory data analysis technique, with PC1 describing the highest variance in the RTA
data. Four datasets were used to construct Figure 4: mean, median, k-NN, and MICE.
Missing data methods were applied to the original data to handle the missingness. For the
four augmented datasets, three principal components (PCs) and linear discriminants (LDs)
were used during the experiments discussed in Section 5 and in designing the 3D graphs in
Figure 5. LDA mainly considers the response/state variable chosen by the classifier. Linear
discriminant analysis was used to reduce the different feature sets and predict RTA states
by using different features in this paper. Overall, the PC results captured the following
percentages for the datasets:
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(1) Mean missing data method: PC1—20%, PC2—17%, and PC3—13%, which explained
50% of the overall dataset;

(2) Median method: PC1—20%, PC2—16%, and PC3—14%, which explained 50%;
(3) k-NN method: PC1—27%, PC2—17%, and PC3—14%, which explained 58%;
(4) MICE method: PC1—30%, PC2—23%, and PC3—14%, which explained 67% (of the

overall dataset).

Figure 4. The proportions of variance explained for the RTA dataset.

Figure 5. Three-dimensional principle component plots using the four missing data methods: (a)
mean, (b) median, (c) k-NN, and (d) MICE.
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The MICE dataset explained more of the PCs when compared with the other PCs.
In this study, the main idea behind PCA was to identify the correlation between the
RTA features.

Figure 5 shows the 3D scatter plots for PC1, PC2, and PC3 components against four
events to better understand the data distribution. The distributions of PC1, PC2, and PC3
are represented by the colours yellow, blue and viridis, respectively. Figure 5 presents the
data variance distribution for the RTA dataset.

Figure 5a shows that PC2 was distributed more than PC1 and PC3. On the other hand,
some outliers were observed from PC3. Outliers can affect the final results of the analysis
of the study.

Figure 5b shows that PC1 and PC2 contributed most of the variance in the data
distribution, when compared with PC3. Some outliers are observed from PC2, which were
moving towards PC3 using the median RTA dataset.

Figure 5c shows that PC1 and PC3 were moving more towards PC3, which appeared
to be overlapping with PC2. It can also be observed that PC1 was moving away from PC2
and PC3, with some outliers from PC1. The figure shows some correlation between PC2
and PC3.

In Figure 5d, it can be observed that PC2 contributed more to the data points when
compared with the other PCs. PC1 shows fewer data points moving towards PC3.

5. Results and Discussion

This section discusses and presents the results of the six classifiers, namely, NB, LR,
k-NN, AdaBoost, RF, and SVM. The classification comparisons are discussed in detail to
observe which methods/algorithms best predict RTAs.

5.1. Comparison Results

Figures 6 and 7 show the results for the default and optimised model settings. The
results report the performance of the observed classifiers based on different missing data
methods. The following can be observed: the results obtained using default Figure 6a
settings for the six classifiers did not perform well across the different missing data methods
applied to the RTA dataset. However, RF (97%) performed much better in terms of all the
model evaluations. These results could be due to RF offering efficient test error estimates
without experiencing any cost and offering reliable feature importance approximation.
The AdaBoost classifier showed the lowest performance across all evaluation methods.
AdaBoost could have performed poorly because it cannot handle data with outliers well.
Figure 6b shows results obtained for RMSE where the RF model obtained the lowest value
of 0.01, which means the model had lower errors when compared to the other methods. In
terms of precision, the RF model achieved the best value of 93% when the mean and kNN
missing value methods data was used in Figure 6c. Then results presented in Figure 6d
for recall show that RF model obtained a high value of 89% when the mean missing value
data method was utilised. In addition, MICE performed well across the used classifiers
compared with the mean, k-NN, and median missing value methods.

Concerning the Figure 7 model optimisation results, the following can be observed:
Figure 7a RF performed slightly better overall than the other classifiers across all the
evaluation methods with an accuracy of 97%. One possible reason is that RF can handle
thousands of inputs without deleting any variables. The RF settings were tuned to entropy
and n_estimators = 10. The RF results show that parameter tuning did not improve the
results, as shown in Figure 7a. Furthermore, LR and SVC performed poorly when compared
with the other classifiers. In terms of RMSE in Figure 7b, RF model obtained 0.12, which
mean the model has low errors compared to the others. Figure 7c shows precision results,
which revealed that the RF performed well by obtaining 93% when mean missing value
data was considered. Finally, Figure 7d shows that RF achieved the best value of 89%
compared with the other methods such as SVC, NB, kNN, LR and AdaBoost. In general,
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RF obtained promising results when compared with the other classifiers. The following
graphs present results for PCA and LDA.

Figure 6. Default settings performance results.

Figure 7. Model optimisation performance results.
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Figures 8 and 9 contain graphical results computed using the RTA dataset. They
include PCA and LDA dimensionality reduction techniques, which means reducing a large
number of features to a smaller number of PCs. The results report the performance of the
six classifiers based on four different missing data methods. The following is observed
from the results: in the PCA results in Figure 8a, the RF classifier performed reliably and
much better with accuracy (93%), precision and recall performance metrics when using
MICE data. The MICE imputation method performed better compared with the other
missing value methods because, as pointed out in Section 4, it captured 67% of the overall
dataset. With a high RMSE, the AdaBoost classifier is the most poorly performing classifier.
Figure 8b shows the results of the RMSE for all the augmented datasets and the results
revealed that RF obtained a very low RMSE value of 0.27 compared to the other methods.
Figure 8c show that the RF models achieved the best results in terms of precision, with
MICE imputation methods achieving 93%. Then in Figure 8d, the graph presents recall
results, which revealed that RF in terms of mean and median obtained 84%.

The LDA results in Figure 9a indicate that the RF (94%) and k-NN (94%) classifiers
performed comparatively better than the other classifiers and the PCA results. AdaBoost
(82%) was the classifier with the lowest performance results across all the evaluation metrics.
In Figure 9b, the results show that kNN and RF methods best performed by achieving
0.22; in terms of the RMSE metric, the lowest values were obtained by RF and kNN when
MICE imputation data is utilised. Figure 9c presents precision results with RF obtaining
the best performance across all missing value methods compared to the others. Lastly, the
Recall results graph in Figure 9d shows that RF, in terms of the mean missing value method,
achieved the best value of 86%. The results mean that the LDA reduction method dataset
obtained much better results when compared with the PCA technique. Furthermore, LDA
performed best in multi-class classification problems. The LDA technique, when compared
with the PCA, considers dependent variables during the creation of the LDs.

Figure 8. PCA performance results.
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Figure 9. LDA performance results.

The results in Figures 8 and 9 show that the application of PCA and LDA positively
changed the performance of the classifiers. The RF model remained the best performing
in terms of the overall results. This is in addition to the fact that Figures 6 and 7 present a
lower RMSE when compared with the Figure 8 and 9 results.

5.2. ROC Curve (AUC)

The area under the ROC curve is the ratio between 0.5 and 1, where values close to
0.5 indicate poor results, whereas values of 1 mean the best performance. The AUC is
mainly implemented to evaluate and validate how robust the ML model is. In this study,
the AUC for the MICE data performed better throughout the investigation compared with
other missing data methods. The RF model, as seen in Figure 10, showed a performance of
99%; better than the other classifiers. Additionally, as shown in Figure 10, the AUC gives
certainties of excellent classifications of the RF model.

Figure 10. Comparison of the AUC results.
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6. Conclusions

This study investigated the strength of widely used ML classifiers for road traffic
accident problems. The classifiers were NB, k-NN, AdaBoost, SVM, LR, and NB. These
were evaluated with four missing data methods: MICE, k-NN, mean and median, and two-
dimensionality reduction methods: PCA and LDA. Accuracy, RMSE, precision, recall, and
the ROC curve (AUC) were the five performance metrics used to evaluate the ML models.
The overall results revealed that RF performed marginally better across the experiments
in terms of accuracy, precision, recall, and ROC (AUC) when compared with the other
classifiers. RF had the lowest RMSE compared with all the other classifiers, indicating a
better fit for the RF model. Overall findings of the study on this particular RTA dataset are
as follows:

(1) Statistical analysis included two-dimensionality reduction methods, with LDA obtain-
ing promising results compared with PCA. In terms of missing data methods, MICE
achieved good results;

(2) A wide range of ML methods was applied due to their popularity and characteristics.
It was observed from the empirical analysis that RF performed best when compared
with the rest;

(3) Furthermore, the AUC evaluation method was introduced to validate the classification
results once the evaluation performance was assessed using accuracy, precision,
and recall.

Some apparent limitations of the study are as follows: only a dataset from Gauteng
province was utilised during the comparative analysis. The dataset contained a certain
number of features for the specific area of interest, excluding other features that could
have been beneficial to improving the model’s performance. The data only contained four
events/targets for possible scenarios to incorporate subclasses into the data.

For future work, further hyperparameter tuning could improve the SVC model results
because the classifier is more strongly influenced by proper parameter tuning. Future
research could test other ML classifiers such as artificial neural networks and deep learning,
testing similar methods with different datasets or provincial metro and expanding the data
in years. The approach itself is a contribution that benefits RTA stakeholders such as model
developers and researchers, and inform policymakers and transportation safety designers
in terms of actions relating to modern traffic safety control and actual predictive models,
which will help develop the field of transportation.
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