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Abstract: A comparative study is performed to design an optimal PID controller for an automatic
voltage regulator system using different optimization techniques. The presented approaches are
referred to as particle swarm optimization (PSO) algorithm, cuckoo search optimization (CSO)
algorithm, moth flame optimization (MFO) algorithm, water cycle optimization (WCO) algorithm,
teaching–learning-based optimization (TLBO) algorithm, and hill climbing optimization (HCO)
algorithm. Transient response parameters, which are rise time Tr, settling time Ts, and percentage
overshoot Mp, are used as comparison criteria. The integral time absolute error ITAE is the used
performance index. All the proposed optimization techniques improved the transient response of the
AVR system in a different way and gave good preliminary results.

Keywords: optimization techniques; AVR system; PID tuning

1. Introduction

In an electrical power system, the AVR is used to maintain the terminal voltage magni-
tude of a generator [1]. Controlling the generator excitation keeps the magnitude of this
voltage at a specific level. In general, traditional tuning methods such as Ziegler–Nichols
(ZN) and gain-phase margin make it difficult to find optimal controller parameters [2].
As a result, several optimization techniques for tuning controller parameters have been
proposed. Some of these optimization techniques which used as tuning methods to improve
the performance of the (PID) controller are particle swarm optimization (PSO) [3,4], cuckoo
search optimization (CSO) algorithm [5,6], moth flame optimization (MFO) algorithm [7,8],
water cycle optimization (WCO) algorithm [9,10], teaching–learning-based optimization
(TLBO) [11–13]. Hill climbing optimization (HCO) algorithm [14] is tested for the first
time in the AVR system in this work. Fractional order PID (FOPID) [15], PID-acceleration
(PIDA) [16], gray PID (GPID) [17], and fuzzy logic PID (FLPID) [18] are some of the other
controller types used to improve the dynamic response of AVR systems in the literature.

The rest of this paper is organized as follows. Section 2 describes the AVR system
and its block diagram model with the used values. Section 3 describes the implementation
of the proposed optimizations techniques and provides comparison of the results of the
numerical simulations. Section 4 concludes the paper with a summary of the research’s
main findings.

2. AVR System

The primary consumer demand in the power system is the quality of electrical energy.
In addition, the majority of equipment is designed to operate at predetermined voltage and
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frequency levels, since the interaction between voltage control and frequency control in
a power generation system is usually weak enough that they can be analyzed separately.
Moreover, a small variation in voltage can result in a significantly large variation in reactive
power flow, which can result in massive power loss and, as a result, economic loss. To avoid
this, the automatic voltage regulator (AVR) system is used in power generation sites to
ensure voltage stability at the generator terminal via the excitation system. An AVR system
and its model are shown in Figure 1.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 6 
 

 

2. AVR System 
The primary consumer demand in the power system is the quality of electrical energy. 

In addition, the majority of equipment is designed to operate at predetermined voltage 
and frequency levels, since the interaction between voltage control and frequency control 
in a power generation system is usually weak enough that they can be analyzed sepa-
rately. Moreover, a small variation in voltage can result in a significantly large variation 
in reactive power flow, which can result in massive power loss and, as a result, economic 
loss. To avoid this, the automatic voltage regulator (AVR) system is used in power gen-
eration sites to ensure voltage stability at the generator terminal via the excitation system. 
An AVR system and its model are shown in Figure 1. 

 

 

(A) (B) 

Figure 1. (A) AVR system. (B) Block diagram of the AVR system. 

∆Vref(s), ∆Vs(s), ∆Ve(s), and ∆Vt(s) are the reference input voltage, sensor output volt-
age, error voltage, and generator terminal voltage, respectively. Table 1 shows the 
boundary values of AVR system components as well as the values used in the AVR sys-
tem. 

Table 1. Boundary values of the AVR system. 

Model Parameter Ranges Used Values in AVR System 

Amplifier 
10 ≤ Ka ≤ 40 

0.02 ≤ Ta ≤ 0.1 
KA = 10 
TA = 0:1 

Exciter 
1 ≤ Ke ≤ 2 

0.4 ≤ Te ≤ 1 
Ke = 1 

Te = 0:4 

Generator 
1 ≤ Kg ≤ 2 
1 ≤ Tg ≤2 

Kg = 1 
TG = 1 

Sensor 
Kr = 1 

0.001 ≤ Tr ≤ 0.006 
KR = 1 

TR = 0:01 

The uncontrolled system transfer function is: 

4 3 2
0.1 10( )

0.0004 0.0454 0.555 1.5 11
sG s

s s s s
+=

+ + + +   
 

(1)

Although stable, the AVR system’s step response is extremely oscillatory without a 
controller, as illustrated in Figure 2. 

Figure 1. (A) AVR system. (B) Block diagram of the AVR system.

∆Vref(s), ∆Vs(s), ∆Ve(s), and ∆Vt(s) are the reference input voltage, sensor output
voltage, error voltage, and generator terminal voltage, respectively. Table 1 shows the
boundary values of AVR system components as well as the values used in the AVR system.

Table 1. Boundary values of the AVR system.

Model Parameter Ranges Used Values in AVR System

Amplifier 10 ≤ Ka ≤ 40
0.02 ≤ Ta ≤ 0.1

KA = 10
TA = 0:1

Exciter 1 ≤ Ke ≤ 2
0.4 ≤ Te ≤ 1

Ke = 1
Te = 0:4

Generator 1 ≤ Kg ≤ 2
1 ≤ Tg ≤2

Kg = 1
TG = 1

Sensor Kr = 1
0.001 ≤ Tr ≤ 0.006

KR = 1
TR = 0:01

The uncontrolled system transfer function is:

G(s) =
0.1s + 10

0.0004s4 + 0.0454s3 + 0.555s2 + 1.5s + 11
(1)

Although stable, the AVR system’s step response is extremely oscillatory without a
controller, as illustrated in Figure 2.
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Figure 2. Step response of AVR system in the absence of a controller.

Table 2 summarizes the transient response parameters of the AVR system in the
absence of the controller.

Table 2. Transient performance of the AVR system without controller.

Rise Time (s) Tr Settling Time
2% (s) Ts

Overshoot Mp
(%)

Steday State Error
Ess

0.261 6.99 65.7 0.091

These results show that by utilizing a PID controller, the transient response of the AVR
system can be improved and the steady state error can be removed.

3. Implementation of Proposed Optimization Techniques

The primary goal of this work is to design and construct a high-performance PID
controller for AVR systems in synchronous generators. The design challenge is stated as
an optimization control problem, and the proposed optimization algorithms are used to
find optimal controller parameters. Particle swarm optimization (PSO), cuckoo search
optimization (CSO), moth flame optimization (MFO), water cycle optimization (WCO),
teaching–learning-based optimization (TLBO), and hill climbing (HCO) have been tested,
and a comparison has been carried out. The integral time absolute error (ITAE) is the
performance index used in this work to examine and build the suggested OA-PID controller,
which is given as

T

Integral time absolute error ITAE =
∫

0
t|e(t)|dt (2)

The block diagram of the AVR system with the proposed OA-PID controller is shown
in Figure 3.
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Table 3 shows the adjusted and optimal PID controller settings acquired by proposed
optimization techniques and the transient response analysis results after the simulation
procedure.

Table 3. Optimized PID parameters and transient response analysis results.

Optimization
Technique

Controller Parameters
Kp–Ki–Kd Tr: 0.1→0.9 Ts + 2% Mp (%)

PSO-ITAE 0.7027–0.5471–0.37852 0.1969 1.3466 1.718

CSO-ITAE 0.6999–0.54672–0.37904 0.1967 1.3498 1.7266

MFO-ITAE 1.5643–1.0713–0.5132 0.1319 0.7518 22.7511

WCO-ITAE 1.4802–1.0153–0.4809 0.1386 0.7769 21.2312

TLBO-ITAE 1.2298–1.8472–0.3944 0.1623 0.8533 16.3603

HCO-ITAE 0.5900–0.4200–0.2000 0.3272 0.5131 0

The comparative simulation results obtained for the terminal voltage step response of
the AVR system with the different optimization techniques are shown in Figure 4.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 4 of 6 
 

 

 
Figure 3. AVR system with proposed OA-PID Controller. 

Table 3 shows the adjusted and optimal PID controller settings acquired by proposed 
optimization techniques and the transient response analysis results after the simulation 
procedure. 

Table 3. Optimized PID parameters and transient response analysis results. 

Optimization 
Technique 

Controller Parameters  
Kp–Ki–Kd Tr: 0.1→0.9 Ts + 2% Mp (%) 

PSO-ITAE 0.7027–0.5471–0.37852 0.1969 1.3466 1.718 
CSO-ITAE 0.6999–0.54672–0.37904 0.1967 1.3498 1.7266 
MFO-ITAE 1.5643–1.0713–0.5132 0.1319 0.7518 22.7511 
WCO-ITAE 1.4802–1.0153–0.4809 0.1386 0.7769 21.2312 
TLBO-ITAE 1.2298–1.8472–0.3944 0.1623 0.8533 16.3603 
HCO-ITAE 0.5900–0.4200–0.2000 0.3272 0.5131 0 

The comparative simulation results obtained for the terminal voltage step response 
of the AVR system with the different optimization techniques are shown in Figure 4. 

Figure 4. Terminal voltage response curves of the AVR system with various optimization tech-
niques. 

Figure 4. Terminal voltage response curves of the AVR system with various optimization techniques.



Eng. Proc. 2022, 14, 21 5 of 6

It is evident from Figure 4 and Table 3 that the MFO, WCO, and TLBO techniques
delivered a response with a high percentage overshoot and quicker rise time than the
PSO, HCO, and CSO methods. On the other hand, the HCO technique yielded a system
with no oscillation and rapid settling time compared to the other optimization techniques.
Furthermore, the PSO and CSO performances are almost the same, producing a response
with little overshoot and long settling time. The HCO tuned PID controller with the ITAE
fitness function generates a superior control performance in terms of improved overshoot
and settling time.

4. Conclusions

The main goal of this study is to design an optimal PID controller parameter for the
AVR system using different optimization techniques. A comparison based on integral time
absolute error ITAE performance index and transient response parameters was carried out.
The most obvious finding to emerge from this study is that all optimization techniques have
improved the system performance compared to the uncontrolled case. The second major
finding was that each optimization algorithm improves some parameters and, at the same
time, deteriorates another one. However, it is worth noting that the hill climbing (HCL)
technique yields generally better results in terms of percentage overshoot and settling
time. Finally, the current study has only examined one performance index and focused on
transient analysis. A natural progression of this work is to analyze the system performance
based on other objective functions and other stability criteria and consider a hybridization
between best optimization techniques.
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