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Abstract: The article presents the results of comparative research on the physicochemical characteris-
tics and catalytic activity of copper oxide supported on synthetic SiO2 and SiO2 (RH) from rice husk.
SiO2 (RH) is more hydrophobic compared to SiO2, which leads to the concentration of copper oxide
on its surface in the form of a “crust”, which is very important in the synthesis of low-percentage
catalysts. According to SEM, XRD, and TPR-H2, the use of SiO2 (RH) as a carrier leads to an increase
in the dispersion of copper oxide particles, which is the active center of ethanol dehydrogenation.
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1. Introduction

Acetaldehyde is one of the most important chemicals. It can be used as a raw material
for the production of acetic acid, butanol, 1,3-butylene glycol, acetic anhydride, ethyl
acetate, butylaldehyde, crotonaldehyde, pyridine, and many other products [1–3]. In
addition, it is widely used in industries, including the food industry, the plastic industry, as
well as in the pharmaceutical and cosmetic industries in the production of materials [4–6].

The main industrial method for producing acetaldehyde is the oxidation of valuable
ethylene in the presence of aqueous solutions of expensive palladium and copper chloride.
This technology is characterized by the formation of a number of toxic organochlorine
by-products, including acetic acid and croton aldehyde, dissolved in large amounts of
water. Recently, against the background of tightening requirements for environmentally
friendly technologies and the desire to shift away from oil dependence, interest in the
synthesis of acetaldehyde by ethanol dehydrogenation has again increased [7].

Ethanol is very attractive due to its availability and safety during storage and han-
dling [8,9]. In addition, ethanol is relatively inexpensive, it is easy to transport, it has
low toxicity, and it does not contain catalytic poisons such as sulfur, chlorine, etc. More
importantly, ethanol can be produced from renewable raw materials by the fermentation of
biomass, as well as from agro-industrial waste, residues of timber, and the organic fraction
of municipal solid waste. Ethanol thus produced is called bioethanol, which is a mixture
of ethanol and water with a molar ratio of 1:13 (about 12 wt.% ethanol) [10,11]. It should
be noted that since biomass absorbs carbon dioxide from the atmosphere for its growth,
the processing of ethanol obtained from biomass does not contribute to global warming.
Two gas-phase processes of ethanol conversion to acetaldehyde are known [12,13]: selec-
tive catalytic oxidation with oxygen or air and non-oxidative catalytic dehydrogenation.
The non-oxidative dehydrogenation of ethanol to acetaldehyde in comparison with the
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oxidative dehydrogenation method has obvious advantages such as no oxidant, its partial
oxidation to acetic acid and carbon dioxide, and that the resulting acetaldehyde is easily
separated from the reaction by-products. In addition, the non-oxidative dehydrogenation
of ethanol is inherently safe, while the mixture of ethanol and oxygen presents a serious
problem due to the explosive nature of large-scale industrial processes [2,14]. To create a
competitive technology for the production of acetaldehyde from ethanol, it is necessary
to develop an efficient catalyst. The activity and selectivity of catalysts depend on the
physical and chemical characteristics of the active components. As a general rule, catalysts
for the dehydrogenation of alcohol to acetaldehyde can be mainly divided into two types:
metal (Cu, Ag, Pd, Au, etc.) and metal oxides (CuO, ZnO, MgO, Cr2O3, etc.) [15–25].
Among these catalysts, copper-based catalysts are very active and highly selective against
acetaldehyde, partly because Cu can split C–C and C–O bonds at much lower speeds than
other transition metals (Pd and Pt) [26]. However, the main problem of copper catalysts is
their rapid deactivation. Therefore, special attention is paid to preventing copper sintering
and extending the life of the catalyst. Bueno et al. [27] found that the selectivity to acetalde-
hyde in ethanol dehydrogenation is related to the dispersion of copper. Cassinelli and
co-workers [28,29] reported that Cu+ cations are more active in ethanol dehydrogenation,
while other groups of authors [29] found that Cu metal particles are responsible for the
activity of ethanol dehydrogenation. The catalytic activity and stability of the catalyst in
ethanol dehydrogenation also depend on the nature of the support. A good carrier should
provide the necessary dispersion of the active phase (Cu), possibly stabilizing it during the
high-temperature reaction [30]. As a carrier for copper, the following have been studied:
silicon oxide (SiO2) [31,32] mesoporous carbon [33], silicon carbide (SiC) [34], coated with
a carbon layer of SiO2 [35], etc.

In our work, synthetic (commercial) silicon oxide (SiO2) and silicon oxide synthesized
from rice husk (SiO2 (RH)) were examined as a carrier for copper oxide. Rice husks are
a cheap, predominant by-product in the process of grinding uncooked grains of rice in
agriculture [36]. Usually, it is burned or thrown away, which leads not only to the depletion
of resources but also to environmental pollution. RH has great potential to develop various
ceramic materials such as refractories, glass, household appliances, oxide, and non-oxide
ceramics, silicate airgel, and other composites [37].

The authors [38,39] note that rice husks are used as a binder and additive to concrete
in construction, in the production of animal feed and fertilizer, as well as in the production
of biofuels. Rice husks are also used to produce silica [40]. In addition, many studies have
analyzed the application of RH to wastewater treatment.

Comparative studies have been carried out on the influence of the nature of silicon
oxide on the activity and selectivity of copper oxide in the process of obtaining acetaldehyde
by non-oxidative dehydrogenation of ethanol. The physicochemical characteristics of the
developed catalysts were analyzed by the methods of XRD, SEM, TGA, FTIR, TPR-H2, and
TPD-ammonia.

2. Materials and Methods
2.1. Reagents and Materials

Chemicals such as copper nitrate (Cu(NO3)2·6H2O; T4163-68), synthetic silicon oxide
(SiO2 carrier), technical ethanol 95%, (Talgar alcohol LLP), Argon (Ar) (IhsanTechnogaz
LLP), and Helium (He) (IhsanTechnogaz LLP) were used as starting materials.

2.2. Synthesis of Catalysts

A detailed procedure for obtaining silicon dioxide SiO2 (RH) from rice husks is de-
scribed in [41]. Catalysts supported on synthetic silicon oxide (3–5 wt.% CuO/SiO2) were
prepared by the capillary impregnation of silicon oxide SiO2 according to its moisture
capacity with an aqueous solution of copper nitrate salt (Cu(NO3)2·6 H2O, 99%, T4163-68,
Minsk, Belarus). Catalysts on silicon oxide from rice husk (3–5 wt.% CuO/SiO2 (RH)) were
also prepared by the capillary impregnation of silicon oxide (RH) according to its moisture
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capacity with an aqueous solution of copper nitrate salt (Cu(NO3)2·6H2O, 99%, T4163-68,
Minsk, Belarus). After that, the catalysts were dried at 150 ◦C for two hours and calcined at
350 ◦C for three hours in a stream of air at atmospheric pressure.

2.3. Characterization

The carriers and catalysts were characterized by a complex of modern physicochemical
methods. The morphology of the samples was studied using a low-vacuum scanning
electron microscope complete with energy-dispersive X-ray microanalysis system (JSM-
6490 LA, Jeol, Tokyo, Japan). The main electron beam is generated by a heated tungsten
filament or field ejection gun and is typically accelerated by applying a voltage of 1–30 kV.
The presence of electromagnetic lenses leads to the focusing of the beam on the sample to
a spot size in the nanometer range. The study of the surface morphology of the obtained
samples was carried out by analyzing the data of the secondary electron detector.

The phase composition and crystal structure of the obtained samples were studied with
an X-ray diffractometer (XRD, X′ Pert Pro MPD, Malvern Panalytical, Almelo, Netherlands)
with Cu-Kα radiation (α = 0.154 nm).

The reducibility of the prepared catalyst was studied using the method of temperature-
programmed hydrogen reduction (TPR-H2) on a chemisorption analyzer (UNISIT, USGA-
101, Moscow, Russia). The setup consists of a gas treatment system, a tube furnace flow
reactor (internal diameter 4 mm), and a thermal conductivity detector. The samples (0.063 g)
were firstly pretreated by Ar at 400 ◦C for 40 min, then cooled down to room temperature,
and followed by turning the flow of 5 vol.% H2 and 95 vol.% Ar into the system with a flow
rate of 30 mL/min. The samples were heated from room temperature to 950 ◦C at a rate
of 10 ◦C/min. The change in the hydrogen concentration was monitored using a thermal
conductivity detector.

The temperature-programmed desorption of ammonia (TPD-NH3) was carried out
on the a chemisorption analyzer (UNISIT, USGA-101, Moscow, Russia). Ammonia (NH3)
was used as probe molecules to determine the acidity of catalysts. To carry out the analysis,
the sample was previously saturated with the analyzed substance, the weakly bound
molecules were blown off, then linear heating was started in the inert gas current. At
a certain temperature, which depends on the force of the interaction between the probe
molecule and the active center, the substance is desorbed from the composite material. To
carry out TPD-ammonia, the sample (0.06 g) was first treated (pretreatment), i.e., heated at
a temperature of 500 ◦C, holding for 40 min in a helium flow (25 mL/min), cooling to a
temperature of 60 ◦C, saturation with ammonia at this temperature for 15 min, then blowing
weakly bound ammonia in a helium flow at 100 ◦C and cooling to 60 ◦C. In the second
stage, the temperature was raised from 5 ◦C/min to 800 ◦C in the helium of 30 mL/min.
Then, a trap was used in case of water release from the sample; further, there was cooling
in the furnace up to 100 ◦C.

Thermogravimetric analysis and differential thermal analysis (TGA and TG-DTA) was
carried out on a simultaneous thermal analyzer (NETZSCH STA 409 PC/PG, 6000 device,
Perkin Elmer, Inc., Waltham, MA, USA) in a nitrogen atmosphere. The temperature range
of the study ranged from 50 to 950 ◦C with a heating rate of 10 ◦C/min−1.

The FTIR spectrometer (Bruker Optik GmbH, VERTEX 70, Ettlingen, Germany) was
used to explore functional groups of molecules and compounds. The FTIR spectra were
recorded using a VERTEX 70 equipped with a PIKE MIRacle ATR single-disturbed internal
total reflection prefix with a germanium crystal in the range of 4000–500 cm−1. The results
were processed according to the OPUS 7.2.139.1294 program.

2.4. Testing of Catalysts in Ethanol Conversion

Tests of the activity of carriers and catalysts in the non-oxidative dehydrogenation of
ethanol were carried out on an automated flow-through catalytic setup. The installation
includes a gas flow regulator, a liquid pump, a reactor, an evaporator, a switch, and a
separator (Figure 1).
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Figure 1. Flow-through catalytic setup of high pressure. 1—reactor; 2—catalyst; 3—furnace; 4—
reactor thermocouple; 5—gas flow regulator; 6—liquid pump; 7—evaporator; 8—commutator;
9—analysis on the GC-1000 chromatograph; 10—separator; 11—collection of liquid fractions.

The stainless steel reactor was located vertically. The flow from the evaporator was fed
upwards and passed through the container and the reactor pipe (length 335 mm, diameter
12.5 mm) containing the catalyst. Gases from the reactor’s outlet entered the separator,
where part of the flow was channeled through the metering valve and the heated line
into the chromatograph for analysis. Catalytic tests were carried out with a space velocity
(WHSV) in the range of 0.5–1.5 h−1 and a temperature range of 150–400 ◦C. The ethanol
flow rate was 0.02 mL/min and the experiments were carried out without inert gas. Ethanol
conversion and product selectivity were calculated according to the equations:

Ethanol conversion (mol.%) =
[Ethanol]inlet− [Ethanol]outlet

[Ethanol]inlet
× 100% (1)

Acetaldehyde selectivity (mol.%) =
[Acetaldehyde]outlet

[Ethanol]inlet− [Ethanol]outlet
× 100% (2)

2.5. Analysis of Reaction Products

The reaction products were identified on “CHROMOS GC-1000” using absolute cali-
bration and thermal conductivity detectors. The reaction products H2, N2, and O2 were
determined using a column with a sorbent CaA, column length l = 2 m, column diame-
ter d = 3 mm, and T = 350 ◦C. To determine CO, CO2, and CH4 used a column with the
HP/Plot Q speed of the carrier gas (H2)—20 mL/min, temperature column—T = 250 ◦C.
For the determination of ethanol, acetaldehyde, dietoxyethane, etc., a capillary column
with an XSEP sorbent was used. The length of the column is 25 m, and the diameter of the
column is d = 0.32 mm. The maximum operating temperature is 250 ◦C.

3. Results
3.1. Characterization

The structures of SiO2 and SiO2 (RH) molecules were studied by FTIR spectroscopy.
Figure 2a shows the FTIR spectra for fresh SiO2 and SiO2 (RH) samples in the range of
750–4500 cm−1. In the spectrum of SiO2, absorption bands are observed at 794 cm−1,
1049 cm−1, and in the intervals, 2700–3620 cm−1 and 1500–1790 cm−1. Absorption bands at
794 cm−1 and 1049 cm−1 are typical for silicon oxide; the absorption bands are associated
with the vibration of the Si–O bond and the asymmetric valence vibration of the siloxane
bonds (Si-O-Si), respectively. The broad absorption band in the range of 2700–3620 cm−1
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refers to the valency vibrations of the water molecule. Absorption bands were in the range
of 1500–1790 cm−1 to deformation vibrations of the water molecule [42]. The absorption
bands 795 and 1049 cm−1, characteristic of silicon oxide, are also observed on the SiO2 (RH)
sample, indicating the presence of a Si–O and Si–O–Si bond [43]. The SiO2 (RH) sample also
exhibits absorption bands characteristic of silicon oxide at 795 and 1049 cm−1, indicating
the presence of Si–O and Si–O–Si bonds [43]. The FTIR spectrum SiO2 (RH) does not have
an absorption band of the valence and deformation molecules of the water, which may
indicate the hydrophobicity of SiO2 (RH) compared to SiO2.
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Figure 2b shows the FTIR spectra of SiO2 and SiO2 (RH) after testing them in the
non-oxidative dehydrogenation of ethanol. It is seen from the figure that SiO2 (RH) retains
the absorption bands characteristic of the Si–O and Si–O–Si bonds, and a new absorption
band appears at 900 cm−1, which can be attributed to the Si–O–C bond [44]. In addition,
a broad peak appears in the region of 3200–3700 cm−1, which is associated with the O–H
valence vibration of the alcohol bond.

After testing SiO2 in the non-oxidative dehydrogenation of ethanol, the bonds char-
acteristic of silicon oxide are not observed on the FTIR spectrum, which may indicate the
destruction of the structure of silicon oxide under the influence of temperature, as well as
ethanol and its decomposition products.
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Morphological properties of carriers and catalysts were studied by scanning electron
microscopy. Micrographs of carriers and catalysts are shown in Figure 3. Figure 3a,b shows
that synthetic SiO2 and silicon oxide obtained from rice husks differ greatly in morphology.
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The morphology of SiO2 (RH) is more dispersed compared to SiO2. The SiO2 sample
consists of aggregates of different shapes and sizes. The support of 3 wt.% copper oxide
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to the carrier leads to an increase in the dispersion of particles, compared with 5 wt.%
CuO, as in the case of SiO2 (RH) and SiO2. On the surface of 3 wt.% CuO/SiO2 (RH), more
amorphous copper oxide particles are observed (Figure 3c), which are distributed more
evenly, compared with 5 wt.% CuO/SiO2 (RH).

Consequently, an increase in the content of copper oxide on a CuO/SiO2 (RH) sample
(up to 5 wt.%) leads to poor dispersion due to volume agglomeration of CuO [45]. Figure 4
shows X-ray diffraction patterns of the fresh catalysts and carriers. The SiO2 (RH) and SiO2
carriers have a wide peak at 2θ = 22, which refers to the silicon oxide phase [46–48]. The
X-ray diffraction patterns of 3 wt.% CuO/SiO2 (RH) and 5 wt.% CuO/SiO2 (RH) catalysts
showed diffraction peaks, indicating the formation of relatively small crystalline CuO
particles (2θ = 35, 38) [49,50]. For samples of 3 wt.% CuO/SiO2 and 5 wt.% CuO/SiO2, there
were no clear peaks of copper oxide, despite the fact that copper catalysts based on SiO2
and SiO2 (RH) were prepared by the capillary impregnation of the carrier according to its
moisture capacity. Probably, detected by us with the FTIR method, the high hydrophilicity
of SiO2 compared with SiO2 (RH) affected the distribution of copper oxide over the entire
volume of the SiO2 carrier. Therefore, the XRD profiles of 3 wt.% CuO/SiO2 and 5 wt.%
CuO/SiO2 were not found to have clear peaks related to copper oxide [51]. Due to the
hydrophobicity of SiO2 (RH), copper oxide concentrated on the surface of the carrier in
the form of «crust» [52,53], therefore on the XRD profiles of 3 wt.% CuO/SiO2 (RH) and
5 wt.% CuO/SiO2 (RH), catalysts show diffraction peaks of CuO particles (2θ = 35, 38). The
different hydrophilicity and hydrophobicity of SiO2 (RH) and SiO2 silicon oxides led to
different distributions of copper oxide on these carriers.

1 
 

 
Figure 4. XRD diffractograms of the samples. (1) SiO2; (2) SiO2 (RH); (3) 3 wt.% CuO/SiO2; (4) 5 wt.%
CuO/SiO2; (5) 3 wt.% CuO/SiO2 (RH); (6) 5 wt.% CuO/SiO2 (RH).

Thermogravimetric analysis and differential thermal analysis (TGA and TG-DTA) of
SiO2 (RH) and SiO2 are shown in Figure 5a. Temperature heating for silicon oxides and
catalysts ranges from room temperature to 800 ◦C at 10 ◦C/min. The weight loss of SiO2
(RH) at a peak temperature of 69.7 ◦C is 5.2%, which is due to physically adsorbed water
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and CO2. The SiO2 sample also has a gradual mass loss at a peak temperature of 96.3 ◦C,
which is 8.5%. These data may be indicative of the hydrophobicity of SiO2 (RH) and the
hydrophilicity of SiO2 relative to each other [54].
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For catalysts on synthetic media of 3 wt.% CuO/SiO2 and 5 wt.% CuO/SiO2, the mass
loss line has the same character; the mass loss up to 200 ◦C is 6.6 and 6.7%, respectively.
The weight loss of samples 3 wt.% CuO/SiO2 (RH) and 5 wt.% CuO/SiO2 (RH) are 3.4 and
5.6%, respectively. The temperature peaks of the weight loss of the samples are in the range
of 60–105 ◦C; this interval is associated with the loss of physically adsorbed water and CO2.

The reduction characteristics of the samples were investigated by the TPR-H2 method.
Figures 6 and 7 show the TPR-H2 curves for all samples. The TPR profiles of SiO2 and
SiO2 (RH) did not show a clear H2 absorption signal. On the TPR profile of the catalyst
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(Figure 6) 3 wt.% CuO/SiO2, two peaks are observed with maxima T1
max = 314 ◦C and

T2
max = 475 ◦C, the amount of adsorbed hydrogen is A1 = 130 µmol/g and A2 = 22 µmol/g.

It is known [45] that pure copper oxide not supported on the carrier is reduced at a
temperature of 250–260 ◦C. However, depending on the nature of the carrier and the state
of the supported copper oxide, the catalyst reduction temperature can be shifted both to the
high-temperature and to the low-temperature region. For a catalyst of 5 wt.% CuO/SiO2,
two peaks are observed on the TPR-H2 curves with maxima of hydrogen absorption
temperatures T1

max = 255 ◦C, A1 = 269 µmol/g, T2
max = 344 ◦C, and A2 = 152 µmol/g [55].

The existence of two peaks in the TPR profile of 5 wt.% CuO/SiO2 is associated with the
reduction in copper oxide with different dispersity. The first peak can be attributed to the
reduction in a highly dispersed CuO nanocluster; the second peak refers to the reduction in
crystalline CuO. Similar data were obtained in [56,57].
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catalysts.

The TPR profile (Figure 7) of a 3 wt.% CuO/SiO2 (RH) sample presents two peaks of
different intensity at T1

max = 263 ◦C, A1 = 198 µmol/g and T2
max = 433 ◦C, A2 = 75 µmol/g.

The support of 3 wt.% of copper oxide on a SiO2 (RH) carrier leads to an increase in intensity,
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and also a decrease in the reduction temperature of the peak related to dispersed copper
oxide from 314 to 263 ◦C and the peak related to the reduction in crystalline CuO from 475
to 433 ◦C. Increasing the copper oxide content to 5 wt.% leads to a change in the TPR profile
of the catalyst. On the TPR profile of the sample 5 wt.% CuO/SiO2 (RH) is present an
intense peak of T1

max = 283 ◦C, A1 = 863 µmol/g. With an increase in the content of copper
oxide from 3 to 5 wt.%, the T1

max increases from 263 to 283 ◦C, which is associated with the
consolidation of copper oxide particles. It is known [58] that a decrease in the reduction
temperature of copper oxide indicates an increase in the dispersion of its particles.

The acid characteristics of the samples were studied by the TPD-ammonia method
(Figures 8 and 9, Table 1). According to the literature [12,59], the ammonia desorption peak
at low temperatures (100–200 ◦C) refers to weak acid sites, the desorption peak at moderate
temperatures (200–400 ◦C) corresponds to medium acid sites, and the desorption peak at
high temperatures (>400 ◦C) corresponds to strong acid sites. It follows from the analysis of
the obtained profiles of the samples (SiO2 (RH), 3 wt.% CuO/SiO2 (RH), 5 wt.% CuO/SiO2
(RH)) (Figure 8) that SiO2 (RH) has several weak intensity peaks. Peaks with maxima
T1

max = 105 ◦C and T2
max = 168 ◦C in the range of 100–170 ◦C are associated with the

presence of weak acid sites. The peak with a maximum at T3
max = 348 ◦C refers to acid sites

with medium strength. The presence of peaks above 400 ◦C, with maxima at 438, 672, and
734 ◦C, refers to strong acid centers. A quantitative comparison of the desorbed ammonia
shows that medium acid sites prevailed in the composition of SiO2 (RH). The support of
copper oxide to the SiO2 (RH) carrier leads to an increase in the concentration of weak and
medium acid sites. At the same time, the number of weak acid sites is significantly higher
by 5 wt.% CuO/SiO2 (RH) compared to 3 wt.% CuO/SiO2 (RH).
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Figure 8. TPD profiles of fresh SiO2 (RH) and 3 wt.% CuO/SiO2 (RH) and 5wt.% CuO/SiO2 (RH)
catalysts.

On the TPD profile of samples of SiO2, 3 wt.% CuO/SiO2, and 5 wt.% CuO/SiO2,
intense peaks are observed in the region of 100–450 ◦C and weak intensity peaks in the
region of 500–750 ◦C. Two peaks with maxima at 214 ◦C and 632 ◦C are observed on
synthetic SiO2, which confirms the presence of weak and strong acid sites. With the support
of copper oxide on silicon oxide and with an increase in the content of copper oxide, the
total acidity of the samples increases both in the case of catalysts on SiO2 and on SiO2 (RH)
(Table 1).

It follows from the results of TPD-ammonia (Table 1) that synthetic silicon oxide and
catalysts based on it have weak and strong acid sites. The total acidity of the samples
increases from 482 to 968 µmol/g with the support of copper oxide on the carrier and
an increase in its concentration on the carrier. In contrast to synthetic silicon oxide and
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catalysts based on it, the carrier obtained from rice husks and the catalysts supported on it
have additionally medium acid sites. As can be seen from Table 1, the highest concentration
of average acid sites of 34 µmol/g is observed on a sample of 3 wt.% CuO/SiO2 (RH). The
total acidity of the samples increases from 78 to 161 µmol/g also with the support of copper
oxide to the carrier and an increase in its concentration.
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Table 1. Acid characteristics of samples.

Sample Weak Acid
Sites, µmol/g

Medium Acid
Sites, µmol/g

Strong Acid
Sites, µmol/g Total, µmol/g

SiO2 (RH) 11 15 52 78
3 wt.% CuO/SiO2 (RH) 107 34 12 153
5 wt.% CuO/SiO2 (RH) 121 6 34 161

SiO2 400 - 82 482
3 wt.% CuO/SiO2 802 - 46 848
5 wt.% CuO/SiO2 934 - 34 968

3.2. Catalytic Performance for Non-Oxidation of Ethanol

SiO2 (RH), SiO2 carriers, and the synthesized catalysts 3–5 wt.% CuO/SiO2 (RH),
3–5 wt.% CuO/SiO2 were studied in the non-oxidative dehydrogenation of ethanol to
acetaldehyde in the range of 150–400 ◦C with a volume rate of ethanol (WHSV) in the range
of 0.5–1.5 h−1. The results of comparative tests showed that among the copper-containing
catalysts, the most efficient and selective in relation to acetaldehyde is the 3 wt.% CuO/SiO2
(RH) catalyst. On this catalyst, the highest selectivity for acetaldehyde is 47% at 350 ◦C
and an ethanol volumetric flow rate (WHSV) of 0.5 h−1. A further increase in the reaction
temperature to 400 ◦C leads to a decrease in the selectivity for acetaldehyde by 39% due to
an increase in the concentration of ethanol decomposition products (CO, CO2, CH4, H2) in
the reaction products (Scheme 1).

Among the carriers, SiO2 (RH) is effective, and the selectivity for acetaldehyde is
28%. For further discussion of the results obtained, we selected 3–5 wt.% CuO/SiO2 and
3–5 wt.% CuO/ SiO2 (RH).

The comparative results obtained at the most effective reaction temperature of 350 ◦C
and an ethanol flow rate of 0.5 h−1 are shown in Table 2.
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Scheme 1. Transformation of ethanol on CuO/SiO2 (RH) catalyst.

Table 2. Conversion of ethanol and selectivity of reaction products at a reaction temperature of
350 ◦C, WHSV = 0.5 h−1.

Samples XEtOH, % C2H4,
C2H6

AA CH4 CO CO2 H2 H2O
Other Products
(Dietoxyethane,

n-Butanol)

SiO2 30 14 2 25 30 11 17 2 -

SiO2 (RH) 42 0.3 28 13 12 10 30 4.3 2.0 (DEE), 0.4 (But)

3 wt.% CuO/SiO2 63 6 22 13 22 10 25 2 -

3 wt.% CuO/SiO2 (RH) 70 0.4 47 0.2 0.1 0.1 50 - 2.2 (DEE)

5 wt.% CuO/SiO2 74 1 31 8 10 9 38 3 -

5 wt.% CuO/SiO2 (RH) 85 - 42 0.2 0.2 0.1 51 - 5.5(DEE), 1(But)

The non-oxidative dehydrogenation of ethanol on SiO2 and SiO2 (RH) carriers leads to
the formation of ethylene, acetaldehyde, and gas products such as methane, carbon oxides,
and hydrogen, due to the reaction of the dehydration, dehydration, and decomposition of
ethanol, respectively [60–62] (Scheme 1).

On SiO2 (RH), in addition to the above reactions, ethanol reacts with acetaldehyde to
diethoxyethane. Acetaldehyde is further deformed to form butanol [12,63]. The support of
copper oxide on the SiO2 and SiO2 (RH) carriers leads to an increase in the selectivity of
the dehydrogenation reaction to acetaldehyde and hydrogen, which indicates that copper
oxide is an active site for ethanol dehydrogenation. The activity of the samples in ethanol
conversion increases symbatically with an increase in the total acidity of the samples.
The activity and selectivity of the 3 wt.% CuO/SiO2 (RH) catalyst in the non-oxidative
dehydrogenation of ethanol to acetaldehyde is higher than that of 3 wt.% CuO/SiO2, which
may be associated with an increase in the dispersion of active sites and the existence of
medium acid sites; the data are consistent with the results of SEM, TPR-H2, and TPD-NH3.
Ethanol conversion and acetaldehyde selectivity increase with rising copper oxide content
on the carrier, regardless of the nature of the support. According to the literature [15,16],
when ethanol is dehydrogenated, an equimolar amount of acetaldehyde and hydrogen is
formed. However, in our case, the number of acetaldehyde formed is less than the amount
of hydrogen. It has to do with the fact that gas reaction products such as methane and
carbon oxides are formed not only as a result of the decomposition of ethanol but also
from acetaldehyde. In the case of SiO2 (RH) and 3 wt.% CuO/SiO2 (RH), acetaldehyde is
deformed before diethoxyethane and butanol.

The highest selectivity for acetaldehyde is observed on a catalyst of 3 wt.% CuO/SiO2
(RH), which has the largest number of medium acid sites. On the catalyst 3 wt.% CuO/SiO2
(RH), the selectivity for acetaldehyde is 47%, which is relatively higher compared to
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the known catalysts Cu/ZrO2 (SAA = 21%) [27], Cu/Al2O3 (SAA = 32%) [25], Cu/C
(SAA = 15%) [64], and Ni/SiO2 (SAA = 1.7%) [65].

According to [12], medium acid sites relate to ammonia adsorbed on strongly acid
Lewis sites. Therefore, the existence of strongly acidic Lewis sites has a positive effect on
the selectivity of the catalyst for acetaldehyde.

4. Conclusions

In this work, efficient low-percentage catalysts based on copper oxide were established
using silicon dioxide SiO2 (RH) as a carrier, synthesized from a renewable raw material—
rice husk—to produce acetaldehyde. The synthesized catalysts were first studied in the non-
oxidative dehydrogenation of ethanol. According to FTIR and XRD data, the hydrophilicity
and hydrophobicity of silicon oxide play a major role in the preparation of catalysts. SiO2
(RH) is more hydrophobic compared to SiO2, which allowed copper oxide to concentrate
on its surface in the form of a “crust”, which is very important in the synthesis of low-
percentage catalysts. Due to this, the active sites are more available for interaction with
the molecules of the reactants. According to SEM, XRD, and TPR-H2, the use of SiO2
(RH) as a carrier leads to an increase in the dispersion of copper oxide particles, which
is an active site for ethanol dehydrogenation. The results of TPD-ammonia showed that
the support of copper oxide on the SiO2 and SiO2 (RH) carriers lead to an increase in the
total acidity of the samples. Compared to SiO2 and 3 wt.% CuO/SiO2, SiO2 (RH), and
3 wt.% CuO/SiO2 (RH) have medium acid sites in addition to weak and strong acid sites.
It can be assumed that the activity of low-percentage copper-containing catalysts in the
non-oxidative dehydrogenation of ethanol symbatically increases with the rise in the total
acidity of the samples, while the selectivity for acetaldehyde depends on the presence of
medium acid sites. The highest acetaldehyde selectivity of 47% is observed on the 3 wt.%
CuO/SiO2 (RH) catalyst, which has the highest number of medium acid sites.

It follows from the results of the FTIR analysis that silicon oxide obtained from rice
husks is stable to the effects of the reaction medium, that is, it does not change its structure
compared to synthetic silicon oxide. The obtained results show that copper catalysts
supported by silicon oxide from rice husks have good characteristics for the non-oxidative
dehydrogenation of ethanol into valuable products.
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