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ABSTRACT

Motivation: Coexpression networks are data-derived representations

of genes behaving in a similar way across tissues and experimental

conditions. They have been used for hypothesis generation and

guilt-by-association approaches for inferring functions of previously

unknown genes. So far, the main platform for expression data has

been DNA microarrays; however, the recent development of

RNA-seq allows for higher accuracy and coverage of transcript popu-

lations. It is therefore important to assess the potential for biological

investigation of coexpression networks derived from this novel tech-

nique in a condition-independent dataset.

Results: We collected 65 publicly available Illumina RNA-seq high

quality Arabidopsis thaliana samples and generated Pearson correl-

ation coexpression networks. These networks were then compared

with those derived from analogous microarray data. We show how

Variance-Stabilizing Transformed (VST) RNA-seq data samples are

the most similar to microarray ones, with respect to inter-sample

variation, correlation coefficient distribution and network topological

architecture. Microarray networks show a slightly higher score in biol-

ogy-derived quality assessments such as overlap with the known

protein–protein interaction network and edge ontological agreement.

Different coexpression network centralities are investigated; in particu-

lar, we show how betweenness centrality is generally a positive marker

for essential genes in A.thaliana, regardless of the platform originating

the data. In the end, we focus on a specific gene network case, show-

ing that although microarray data seem more suited for gene network

reverse engineering, RNA-seq offers the great advantage of extending

coexpression analyses to the entire transcriptome.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The comprehensive understanding of the functional molecular

mechanisms in the cell is a major challenge of modern biology
(Kitano, 2002). Network representations have been successfully

used to capture various cellular relationships, ranging from

protein–protein interactions (Breitkreutz et al., 2008) to gene

regulations (Yilmaz et al., 2011) and metabolic conversions

(Yamada and Bork, 2009). In these networks, biological entities

(e.g. genes, proteins and metabolites) are represented as nodes,

and their interactions are represented as edges. Biological net-
works can be assembled either by gathering all existing experi-

mental knowledge over relationships between these entities

(Breitkreutz et al., 2008; Caspi et al., 2012; Yilmaz et al.,
2011), or alternatively, when this kind of data is missing, they

can be reconstructed by educated inferences based on data pro-
files (Hartemink, 2005). The latter approach, often dubbed

‘biological network reverse engineering’ has great cost and time

advantages over, for instance, classical forward genetics
approaches, as it allows to reduce the experimental investigation

to a subset of candidates potentially involved in a particular
biological process (Wang et al., 2012). In the specific case of

reverse-engineered gene networks, the last decade has witnessed

an avalanche in the availability of transcript expression data,
provided mainly by microarray data (Farber and Lusis, 2008),

which has in turn fueled the generation of ‘coexpression’ net-
works (Vandepoele et al., 2009). Coexpression networks are un-

directed graph representations of transcriptional co-behaviour

between genes within an organism. In such graphs, genes are
connected by edges representing the similarity in their expression

pattern across several experiments in which both genes are quan-
tified. These similarities are usually calculated by simple methods

like Pearson correlation (D’haeseleer et al., 2000) or by more
sophisticated approaches such as mutual information (Daub

et al., 2004) or linear modelling (Vasilevski et al., 2012). A sig-

nificance value is usually associated to each edge to estimate the
amount of coexpression between any gene pair; in the case of

Pearson correlation, this value is the Pearson Correlation
Coefficient (PCC), which ranges from �1 (perfect negative

linear coexpression) to þ1 (perfect positive linear coexpression),

whereas 0 (no correlation) signifies the overall lack of linear re-
lationships between the transcript quantities of the two genes

(Usadel et al., 2009). Coexpression networks have been widely
generated and exploited in studies aimed at the identification of

novel gene functions via the ‘guilt-by-association’ paradigm

(Wolfe et al., 2005), which assumes that similar expression pat-
terns correspond to similar functions, times of activation or cel-

lular compartments (Ryngajllo et al., 2011). Noteworthy
successes of this approach have been obtained, for example, in

identifying novel genes involved in plant cell wall synthesis
(Persson et al., 2005), starch metabolism (Fu and Xue, 2010)

and in the human B-cell leukaemia signal transduction

(Basso et al., 2005). At the same time, several standalone coex-
pression tools have been developed (Margolin et al., 2006;
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together with freely accessible online databases (Obayashi et al.,

2013; Usadel et al., 2009).
Coexpression networks have also been studied topologically,

generally showing a modular structure (Bassel et al., 2011) and a

scale-free distribution of their connectivity (Barabási and Oltvai,

2004; Iancu et al., 2012), meaning that most genes have a small

number of coexpressors, while a few genes behave as coexpres-

sion ‘hubs’. However, the vast majority of these studies have

neglected the growing availability of RNA-seq datasets, which

provide several potential advantages over microarrays (Wang

et al., 2009). First of all, RNA-seq does not require prior know-

ledge of the studied organism, extending its usage even to poorly

characterized organisms (Balakrishnan et al., 2012), both for

‘standard’ purposes (transcriptome definition and differential

gene expression) and for any derived application (such as

sample clustering or coexpression analysis). Furthermore,

RNA-seq allows for the identification of all transcripts, whereas

microarrays usually cover only a subset of the transcriptome.

For example, in Arabidopsis thaliana, the most used microarray

for quantitative transcriptomics (Edgar et al., 2002; Giorgi et al.,

2010), the Affymetrix ATH1, covers reliably and unambiguously

only 21 377 genes [based on the most recent CustomCDF anno-

tation (Dai et al., 2005)], which is only a subset of the entire

genome [27 416 genes in the TAIR10 annotation release

(Swarbreck et al., 2008)]. Finally, RNA-seq has the potential

to detect novel transcribed loci on annotated genomes (Roberts

et al., 2011), splicing variants (Richard et al., 2010) and

allele-specific events (Zhang et al., 2009), massively increasing

the investigative capability over these molecular phenomena.
In the present study, we try to determine whether RNA-seq

data can be efficiently used for coexpression analysis. To do so,

we derive coexpression networks from a set of 65 high quality

Illumina-based RNA-seq A.thaliana experiments, and compare

them with those extracted from biologically analogous and

equally sized microarray data. We determine the nature of

these networks, both biologically and topologically, with an

overview on different network centralities and their association

with gene essentiality (Jeong et al., 2001) in Arabidopsis. Finally,

we focus on two specific gene cases, showing how the increased

detection range of RNA-seq can indeed cover missing areas of

the coexpression networks.

2 METHODS

2.1 Dataset selection and preprocessing

We downloaded 95 samples from the NCBI Sequence Read Archive

(Leinonen et al., 2011). After the SRA files were collected, the archives

were extracted and saved in FASTQ format. The FASTQ files were

trimmed using ERNE-FILTER software (Available: http://erne.source-

forge.net), with default parameters and minimum read length at least

70% of the original size. All samples with530% of the reads surviving

the trimming process were discarded. Surviving reads (986482 909) were

aligned on the TAIR10 A.thaliana reference genome (Swarbreck et al.,

2008) using TopHat v2.0.4 (Trapnell et al., 2009). Samples where530%

of the trimmed reads aligned on the Arabidopsis transcriptome were not

considered for coexpression analysis. The 831 286856 aligned reads (cor-

responding to 65 final samples, see Supplementary File S1 for details)

were then summarized at the gene level based on the TAIR10 annotation

by Cuffdiff v2.0.2 (Trapnell et al., 2010), which provided also the raw

count and the RPKM (Reads Per Kilobase of gene model per Million

mapped reads) values (Mortazavi et al., 2008). Raw counts were modified

into normalized values via the Variance-Stabilizing Transformation

(VST) method implemented in the R package DESeq (Anders and

Huber, 2010). Analogous tissue and condition microarray datasets (see

Supplementary File S1) were downloaded from Gene Expression

Omnibus (Edgar et al., 2002) and normalized using MAS5 (Hubbell

et al., 2002). All microarray samples were quality tested using the

Robin software (Lohse et al., 2010).

2.2 Construction and evaluation of coexpression networks

PCCs between all gene pairs were calculated for each dataset, and net-

works with varying correlation coefficient thresholds were extracted.

Only positive PCCs above the specified thresholds were converted into

a network edge, to allow for the application of network quality assess-

ments based on the assumption of co-presence (or co-absence) of gene

expression, specifically the existence of protein–protein interaction and/or

activating gene regulation, and the belonging to the same functional

group (Jordan et al., 2004; Vandepoele et al., 2009).

The Mapman-based iso-ontological percentage in the networks was

obtained by counting the number of edges containing two genes with

at least one shared Mapman ontology term (Klie and Nikoloski, 2012).

Owing to the highly grained nature of the Mapman bins, the ontology

was trimmed to the third branch (e.g. bin 1.3.1.10 would become 1.3.1).

The total percentage agreement is then calculated by dividing the number

of agreeing edges by the total number of edges in the network. Edges

containing genes of unknown function (Mapman bin 35) were ignored for

this calculation.

The A.thaliana reference protein–protein interaction network, collect-

ing 96 827 protein interactions, was obtained from AtPin version

Jun-2010 (Brandüao et al., 2009). The reference genetic interaction net-

work, composed by 11355 positive genetic interactions, was obtained

from AtRegNet version 15-Sep-2010 (Yilmaz et al., 2011).

The fit of degree distribution of the coexpression networks to a power

law was calculated as in (Brohée et al., 2008).

Networks were graphically represented using Cytoscape (Smoot et al.,

2011); node colouring was applied to the networks following the

Mapman ontology described within the CorTo tool (Available at:

http://www.usadellab.org/cms/index.php?page¼corto) and in

Supplementary File S2.

2.3 Network centrality and essential genes

A manually curated list of 481 essential genes was obtained from

SeedGenes v8 (Tzafrir et al., 2003). Degree, shortest path betweenness

and clustering coefficient network centralities were calculated with an

implementation of the JUNG library (Available: http://jung.source-

forge.net). Receiver-operating characteristic (ROC) curves (Beck and

Shultz, 1986) were generated for essential genes by using a sliding thresh-

old (�), namely every different degree (�deg), betweenness (�btw) and clus-

tering coefficient (�clc) values in the population, and then calculating the

number of true positive essential genes above each �. Joint centrality

ROC curves were calculated by averaging the ranking in the three cen-

tralities (degree, clustering coefficient and betweenness) for each gene.

Further details are available in the Supplementary material

(Supplementary File S3).

2.4 Ontology enrichment analysis

Mapman ontology term over-representation analyses were performed

using the most recent A.thaliana Mapman TAIR9 mapping (Thimm

et al., 2004) via a Bonferroni-corrected Fisher’s Exact Test (Upton,

1992) as implemented in the CorTo software. Over-represented

Mapman bin pairs (to estimate the functional enrichment in edges)
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were also calculated with an implementation of the Fisher’s Exact Test

based on the theoretical maximum number of combinations between two

Mapman bins.

3 RESULTS

3.1 Properties of the coexpression networks

We collected 65 Illumina RNA-seq samples (totalling 831 286 856

aligned reads) representing a wide range of A.thaliana tissues and

conditions. Expression values for each gene were calculated (i) as

the count of aligned reads over the transcript sequence (‘raw

counts’); (ii) after RPKM normalization (Mortazavi et al.,

2008), which simply adjusts raw counts using the number of

mapped reads and gene lengths; and (iii) after VST normaliza-

tion, a method designed to transform count data into values

distributed homoscedastically (Anders and Huber, 2010) (see

Supplementary File S3). We decided to pair each of the 65

RNA-seq samples with corresponding microarray experiments,

via a manual research of the Gene Expression Omnibus database

(Edgar et al., 2002) for the best tissue/condition/ecotype match,

to keep comparability between these two data sources as high as

possible. Despite this, sample clustering shows a clear distinction

between the two platforms. However, VST normalization gener-

ally brings RNA-seq samples hierarchically closer to microarrays

than RPKM normalization or raw counts (Supplementary File

S4).

Correlating samples to each other shows that microarrays are

more similar to each other (Fig. 1A). It is known that even with a

single-array normalization method such as MAS5, which does

not overestimate sample correlation (Lim et al., 2007), micro-

array samples tend to be highly correlated to each other

(Giorgi et al., 2010). Correlation coefficients between samples

are much lower in publicly available A.thaliana RNA-seq data

when compared with similarly sized combinations of randomly
taken publicly available microarrays (Giorgi et al., 2010). RPKM
normalization, supposed to increase comparability between sam-

ples (Mortazavi et al., 2008), is indeed reducing sample variabil-
ity when compared with raw counts. VST normalization yields a
high inter-sample correlation, comparable with microarray levels

(Fig. 1A).
Concerning PCCs between genes, which is the basic parameter

on which coexpression networks are built in most studies (Usadel
et al., 2009), microarray data yield a symmetrical bell-shaped

distribution (Fig. 1B, solid line), almost perfectly overlapped
by VST-normalized RNA-seq data (Fig. 1B, dotted grey line).
RNA-seq raw count data show a bimodal correlation distribu-

tion (Fig. 1B, cross-pointed line), as noted before in a smaller
dataset comparison (Iancu et al., 2012), where this increase was
explained by the greater sensitivity and dynamic range of

RNA-seq data. RPKM normalization shows a bell-shaped
curve slightly skewed towards negative values, and not centered
over a zero value (Fig. 1B, plus-pointed line). All data generate

correlations between gene expressions that are higher than the
random PCC distribution (Fisher, 1915) (Fig. 1B, dashed line).
Because the expected random distribution depends on the

number of samples in the original dataset (not on the number
of variables/genes), these differences are not merely owing to the
different number of genes detected by microarrays versus

RNA-seq. Distributions of correlation coefficients for raw
RNA-seq counts approach a monomodal distribution for
log2-transformed data and Spearman correlation coefficients

(Supplementary File S5).
An immediate consequence of different PCC distributions is

the difference in the relationship between coexpression network

size and PCC threshold used to build it (Fig. 2A). Microarray
data, given the same threshold, yield smaller networks than
RNA-seq, message that should warn against the application of

the same rule-of-thumb significance thresholds applied before in
coexpression studies, with PCC¼ 0.7 as a frequently used value
(Jordan et al., 2004; Luo et al., 2007; Usadel et al., 2009).

For each PCC threshold plotted in Figure 2A, we calculated
several biological and topological properties. The overlap of a
coexpression network with protein–protein interaction networks

is a common criterion for biology-based network quality assess-
ment (Lim et al., 2007; Usadel et al., 2009). In fact, direct
Pearson correlation has successfully been used before for iden-

tifying proteins belonging to the same complex, as these usually
require genes to be coexpressed to yield stoichiometrically
balanced proteic products (Teichmann and Babu, 2002). In this

respect, microarray data allow to achieve the highest perform-
ance in terms of Matthews Correlation Coefficient (MCC) (Baldi
et al., 2000) and accuracy in the overlap between coexpression

connections and the 96 827 experimentally validated A.thaliana
physical protein–protein interactions (Brandüao et al., 2009)
(Fig. 2B and Supplementary File S6). RNA-seq data allow for

positive coexpression-based estimation (i.e. positive MCCs) only
for PCCs 40.8, with raw counts achieving higher prediction
power than normalized counts. The accuracy of the coexpression

analysis shows a constant increase proportional to the threshold
stringency applied to generate the networks (Supplementary
File S6). However, and unexpectedly, the overlap between pro-

tein–protein interaction networks and coexpression networks is

A

B

Fig. 1. Correlation in expression datasets. (A) Box plots showing PCCs

between samples. (B) Density distributions of PCCs between genes
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very low, as shown by the generally weak MCCs (even for micro-

array data, reaching at most a value of 0.0067).
Regardless of the expression measurement method or the PCC

threshold applied, edges derived from coexpression networks are

always negative or null predictors (Fig. 2C) of the manually

curated collection of 11 355 A.thaliana transcription factor-target

relationships (Yilmaz et al., 2011). Although direct static

coexpression measures such as Pearson correlation are known

to be positive estimators of static protein interactions

(Zampieri et al., 2008), they are usually counter-predictive or

meaningless for causal relationships like transcription factor–

target interactions. In these cases, more complex methods that

can remove indirect and spurious edges are suggested, such as

Partial Correlation (de la Fuente et al., 2004; Schäfer et al., 2001)

or LASSO (Vasilevski et al., 2012). However, even full partial

correlation networks (Schäfer et al., 2001) derived from

both microarray and RNA-seq data have negative MCCs with

the annotated Arabidopsis genetic network (Supplementary

File S7).
Another common evaluation method of data-derived net-

works is the assessment of the ontological nature of the edges

(Lim et al., 2007), which assumes that a positive-hit edge is the

one connecting genes sharing at least one biological function. To

do so, we assessed the edges of our coexpression networks using

the Mapman ontology (Thimm et al., 2004) (Fig. 2D), a

plant-oriented finely grained version of the more generic Gene

Ontology (Klie and Nikoloski, 2012). This ontological assess-

ment is partially biased, because also genes with different func-

tions can be coregulated in reality (Lim et al., 2007). However, it

guarantees a qualitative estimate—independent from experimen-

tally proven interactions—for the 63.1% of Arabidopsis genes

that are functionally annotated by Mapman; since the fraction of

annotated genes is slightly higher in the population represented

by the ATH1 microarray (67.9%, Supplementary File S8), we

used the intersection between genelists in the two data types to

perform this analysis. Our data show that microarray-derived

networks (Fig. 2D) possess the highest percentage of iso-

ontological edges, while all other data types perform poorly. A

clear connection between threshold stringency and the percent-

age of edges sharing genes belonging to at least one common

ontological term is evident only for microarray-based networks

(Fig. 2D), warning against the direct application of functional

clustering methods (Mutwil et al., 2010) on RNA-seq-derived

coexpression networks.

We also analysed the networks topologically by fitting their

global connectivity to a power law distribution (Brohée et al.,

2008). All coexpression networks, regardless of the type of tran-

script data used, show a good fit to a scale-free distribution

(Fig. 2E), with R2 always40.7 whenever the PCC threshold re-

duces the number of connections below 107 (Fig. 2A) (Barabási

and Oltvai, 2004). There seems to be an optimal scale-free PCC

threshold, which is 0.78 for microarray, 0.86 for RPKM, 0.88 for

VST and 0.95 for raw count networks. These thresholds corres-

pond also to a positive overlap (Fig. 2B) with the A.thaliana

protein–protein interaction network [also scale-free (Brandüao

et al., 2009)].

3.2 Centrality and essentiality in coexpression networks

We now focus on specific networks, selected by visual inspection

based on the best overall qualities (Fig. 2) at three different sizes

(simply dubbed ‘small’, ‘medium’ and ‘large’) and summarized in

Table 1. On these networks, we calculated for each gene, three

different measures for network centrality (Koschützki and

Schreiber, 2008), specifically degree (number of connections),

clustering coefficient (normalized amount of connections be-

tween the gene’s neighbours) and shortest path betweenness (nor-

malized number of times the gene is crossed by a shortest path

connecting two other genes). Regardless of the data and network

size used, we constantly see a positive correlation between degree

and betweenness, and a negative correlation between clustering

coefficient and betweenness (Supplementary File S9). In network

biology, a strong association between centrality and gene func-

tion has been observed for a long time: for instance, essential

genes products tend to have more distinct interactors (i.e. a

higher degree) than non-essential ones (Jeong et al., 2001), high

betweenness genes tend to be key network regulators (Joy et al.,

2005) and cancer genes have a significantly higher degree and

clustering coefficient than other genes (Rambaldi et al., 2008). In

coexpression analysis, this relationship is less investigated; how-

ever, it has been proven that embryonic-essential Arabidopsis

genes (Tzafrir et al., 2003) have a significantly higher degree

than the rest of the transcriptome in microarray-based coexpres-

sion networks (Mutwil et al., 2010). The same is true in our

microarray, VST and raw count (but not RPKM) gene networks,

where the essential genes are consistently and significantly more

connected than non-essential ones (Table 2). In microarray-

derived networks, degree, clustering coefficient and betweenness

in all three thresholds analysed are positive predictors for

A B C D E

Fig. 2. Properties of coexpression networks at different PCC thresholds. (A) Network sizes by number of edges. (B) Overlap toA.thalianaAtPin protein–

protein interaction network. (C) Overlap to A.thaliana AtRegNet transcription factor–target network. (D) Percentage of edges connecting genes with

identical Mapman ontology. (E) R2 fit of the degree distribution to a power law
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essentiality (Table 2 and Fig. 3A). For networks derived from

RPKM-normalized data, betweenness is the only parameter sig-

nificantly associated with essentiality, albeit not in high threshold

networks (Fig. 3C), while RNA-seq raw counts and VST-based

networks show again the tendency of essential genes to possess a

high degree and a high betweenness (Fig. 3B and D). The con-

nection with clustering coefficient is lost in larger RNA-seq

networks (Table 2).

In general, essential genes possess a significantly higher

betweenness in almost all A.thaliana coexpression networks

(Supplementary File S9), while there seems to be no advantage

in combining all three centralities by average gene ranking

(Fig. 4), an approach used before for essential gene detection

(Joy et al., 2005). It is clear, however, that coexpression network

degree alone, as stated before for degree in protein–protein inter-

action networks (Wuchty, 2002), is not always a sufficient pre-

dictor for gene essentiality in RNA-seq networks, while it is a

valid predictor in microarray networks.

3.3 Biological insights from coexpression networks

We then functionally annotated and intersected the networks

described in Table 1 and looked at them at a greater detail

(Fig. 4, Supplementary Files S2 and S10). There is a low size

overlap between microarray- and RNA-seq-derived coexpression

networks (Fig. 4A). This is perhaps not entirely surprising, given

the technical low correlation between these two techniques, es-

pecially for high and low transcript abundances (Wang et al.,

2009). However, microarray-derived networks are more similar

to VST-derived ones (12.7% shared edges relative to total micro-

array network size) than those based on RPKM or raw counts

(respectively, 6.2% and 5.0%). Also, the overlap between

RNA-seq networks is constantly below 50% of their total sizes

(Supplementary File S10, the highest overlap is visible between

raw counts and RPKM), posing an interesting caveat about the

comparability of coexpression inferences made with differently

normalized RNA-seq data [the same issue was reported before

for different normalization procedures on microarray data (Lim

et al., 2007)]. Each of the networks derived by our analysis seems

to be focusing on different parts of the cellular transcriptome

(Fig. 4B): for example, microarrays show a high propensity of

coexpression for RNA-processing genes with other functional

areas, and RPKM-based networks describe several transport-

related coexpressions.
An intersection of all networks describes a few backbone coex-

pression structures well known in literature, like the relationship

between cell wall synthesis/degradation and regulation of tran-

scription (Mutwil et al., 2010) or the one between biotic stress

and post-translational modification mechanisms (Mishra et al.,

2006). Genes coding for ribosomal proteins are also highly coex-

pressed to each other (Fig. 4B and Supplementary File S2).
One of the great advantages of coexpression analysis is its

possibility to propose novel candidate genes for incompletely

characterized biological pathways (Persson et al., 2005;

Vasilevski et al., 2012). RNA-seq allows a quantitative assess-

ment of the entire transcriptome, therefore extending this type of

inference over genes where microarray-based coexpression inves-

tigations are not an option. One of these genes is Sphavata

(At5g21960), a poorly characterized ethylene-responsive factor

Table 1. Properties of three ranges of similarly edge-sized A.thaliana coexpression networks from different input data

Size range Data source PCC

threshold

Number

of edges

Average node

degree

PPI MCC % Fraction of

iso-ontological edges

Power

law R2

Small Microarrays 0.90 132 558 26.53 3.247� 10�3 3.442 0.737

VST 0.94 111 543 20.95 1.004� 10�3 1.582 0.810

RPKM 0.97 115 485 19.40 6.790� 10�4 1.210 0.819

Raw counts 0.97 158 314 16.32 1.623� 10�3 1.284 0.832

Medium Microarrays 0.80 861 676 58.02 6.725� 10�3 2.145 0.831

VST 0.86 911 096 50.99 1.904� 10�3 1.317 0.843

RPKM 0.91 954 178 58.42 9.333� 10�4 0.939 0.788

Raw counts 0.94 997 889 54.29 3.247� 10�3 1.082 0.843

Large Microarrays 0.70 2994 674 155.32 6.222� 10�3 1.411 0.796

VST 0.78 2857 389 118.19 1.354� 10�3 0.989 0.832

RPKM 0.84 3011 806 129.08 4.043� 10�4 0.812 0.814

Raw counts 0.91 3161 796 143.95 3.552� 10�3 0.922 0.820

Table 2. Wilcoxon tests P-values testing the distributions of centrality

values of essential versus non-essential genes in similarly sized coexpres-

sion networks

PCC

threshold

Degree Clustering

coefficient

Betweenness

Microarrays 0.90 10�55 10�53 10�55

0.80 10�59 10�35 10�48

0.70 10�60 10�27 10�44

RNA-seq VST 0.94 10�4 0.036 0.002

0.86 10�4 0.383 10�5

0.78 10�5 0.135 10�10

RNA-seq RPKM 0.97 1 1 1

0.91 0.208 0.881 10�45

0.84 0.121 1 10�18

RNA-seq raw counts 0.97 10�11 0.008 10�13

0.94 10�24 10�5 10�8

0.91 10�27 0.902 10�43
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gene (ERF) known to be induced by jasmonate (Giuntoli et al.,

2009). In fact, the top 100 correlators for Sphavata calculated by

all three normalizations of RNA-seq data (Supplementary File

S11) show a significant over-representation for genes involved in

jasmonate metabolism (Mapman bin 17.7) and belonging to the

ERF family (Mapman bin 27.3.3).
On the other hand, a well-studied gene for coexpression ana-

lysis is RHM2, a NDP-L-rhamnose synthase involved in polysac-

charide branching and necessary for Arabidopsis seed coat

mucilage pectin biosynthesis (Usadel et al., 2004). This gene

has been used as a coexpression bait to identify novel genes

involved in the mucilage pathway (Haughn and Western, 2012)

by using correlation analysis over a microarray seed dataset

(Vasilevski et al., 2012). Our analysis shows the potential in iden-

tifying novel genes coexpressing with RHM2 (Fig. 5 and

Supplementary File S12): among the top 10 positive correlators

identified using RNA-seq data, four genes not present on the

Arabidopsis microarray were identified, three of which putatively

involved in polysaccharide synthesis (Swarbreck et al., 2008):

At2g26100 (a putative galactosyltransferase), At3g06550

(RWA2, involved in polysaccharide O-acetylation) and

At5g57270 (a putative N-acetylglucosaminyltransferase). In

total, six coexpressors of RHM2 are already annotated as

cell-wall related (Fig. 5, green nodes); a particular coexpressor

found with RNA-seq data (UGP2) is an essential gene active on

nucleotide sugar pyrophosphorylation (Meng et al., 2009). All

these genes may be novel candidates in the pectin biosynthesis

A

B

C

D

Fig. 3. ROC curves showing the discerning capability for essentiality of

three centrality measures in medium-sized coexpression networks.

(A) Microarray. (B) RNA-seq VST. (C) RNA-seq RPKM.

(D) RNA-seq raw counts. Areas under the ROC are indicated in par-

entheses (total area 10 000)

Fig. 4. Overlap assessment and functional overview of medium-sized

coexpression networks described in Table 1. (A) Venn diagrams for

relative distribution of network edges. In brackets, percentage of edges

specific to a particular data type. (B) Selection of significantly over-

represented (P Bonferroni corrected510�100) connections between

Mapman functional classes

Fig. 5. Coexpression network of RHM2, obtained by merging the top 10

correlators calculated from four different input data: microarrays (dotted

line), RNA-seq VST (dot-dashed line), RNA-seq RPKM (dashed line)

and RNA-seq raw counts (solid line). Nodes depicted as rectangles are

not represented by the ATH1 Arabidopsis array
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pathway. At the same time, RNA-seq-based coexpression is able
to identify GAUT1, a �-1,4-galacturonosyltransferase already
known to be active, as RHM2, within the pectin branching me-

tabolism (Sterling et al., 2006).

4 DISCUSSION

Our results describe the first large scale (65 samples) attempt to
use RNA-seq data collected from multiple tissues and experi-

mental conditions for gene network reverse engineering. We
show that coexpression networks generated from this novel
technology are indeed realistic (Fig. 2) and accurate, with accur-

acy increasing together with network stringency, validating the
assumption that RNA-seq-based coexpression is a better-than-
random selector of real biological relationships (Supplementary

File S6). However, our results show that microarray-based coex-
pression networks based on simple correlation achieve a higher
similarity to biological networks, and at the same time show a

low overlap with RNA-seq-based representations (Fig. 4).
Unexpectedly, although Arabidopsis coexpression networks are
generally positive predictors of protein–protein interactions, the

overlap is quite small and associated to weak MCCs in all cases
(Fig. 2B).
All RNA-seq networks show a scale-free topology (Fig. 2E) as

previously noted on a smaller dataset (Iancu et al., 2012), but no
RNA-seq dataset allowed to reach microarray-like network qua-

lities, neither as raw counts nor after two popular normalization
procedures (RPKM and VST) (Figs 2 and 3 and Table 1).
VST-normalized data possess microarray-like behaviour with

regards to correlation coefficient distribution and topological
network properties (size and degree distribution, Fig. 2A and
E). Amongst RNA-seq data, VST networks also possess the

highest proximity to microarray networks detected by hierarch-
ical clustering (Supplementary File S4) and edge intersection
(Supplementary File S10). RPKM and raw count networks, per-

haps owing to the heteroscedasticity of these types of data
(Anders and Huber, 2010), differ more markedly from micro-
array networks than VST networks.

We also find that coexpression network betweenness centrality
can be calculated from RNA-seq data and used as a positive
marker for A.thaliana essential genes (Table 2). The task of iden-

tifying essential genes has been called the ‘most important task of
genomics-based target validation’ (Chalker and Lunsford, 2002),
as these genes are extremely important not only to understand

the minimal requirements for life (Li et al., 2011), but also
because they are excellent drug targets (Cole, 2002).

Another important application of coexpression analysis is in
the identification of novel genes and novel gene functions. To
this respect, we show how RNA-seq data can be complementary

to microarray data in describing the functional neighbourhood
of a pectin metabolism gene (Fig. 5) or to confirm the connection
with jasmonate of a poorly characterized putative transcription

factor (Supplementary File S11). There are at least 6953
A.thaliana genes annotated on the TAIR10 genome but not rep-
resented by any probeset on the Affymetrix ATH1 microarray

platform; 3578 of these genes have no functional annotation—
neither experimentally inferred, nor predicted in silico (Thimm
et al., 2004)—which gives RNA-seq the unique possibility to

functionally investigate a previously uncovered portion of the

transcriptome. This potential can indeed be transposed to

other organisms as well, given the fair conservation of coexpres-

sion across species, at least in the plant kingdom (Movahedi

et al., 2012). All data investigated in this article are preloaded

and can be freely analysed by the CorTo coexpression tool.

Despite its obvious advantages, the unexpected relative under-

performance of RNA-seq versus microarrays in network recon-

struction raises an important caveat on its direct usability for

coexpression analysis, at least by the simple Pearson correlation

criteria used in this work. The creation of novel approaches to

properly normalize and interpret gene count correlations gener-

ated by Next-Generation Sequencing will pose a future

fundamental challenge for coexpression investigators.
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