
Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Comparative study of RPSALG algorithm for
convex semi-in�nite programming

RPSALG algorithm for CSIP

A. Auslender?, A. Ferrer??, M.A. Goberna???, M.A. Lópezy

Address(es) of author(s) should be given

The date of receipt and acceptance will be inserted by the editor

Abstract The Remez penalty and smoothing algorithm (RPSALG) is a
uni�ed framework for penalty and smoothing methods for solving min-max
convex semi-in�nite programing problems, whose convergence was analyzed
in a previous paper of three of the authors [1]. RPSALG subsumes well-
known classical algorithms, but also provides some new methods with in-
teresting computational properties.
In this paper we consider a partial implementation of RPSALG for solv-
ing ordinary convex semi-in�nite programming problems. Each iteration of
the algorithm involves two types of auxiliary optimization problems: the
�rst one consists of obtaining an approximate solution of some discretized
convex problem, while the second one requires to solve a non-convex opti-
mization problem involving the parametric constraints as objective function
with the parameter as variable. The main computational di¢ culties come
from the non-convex optimization problem associated with the constraints,
which must be solved e¢ ciently at each iteration. In this paper we tackle the
latter problem with the so-called Cutting Angle Method, a global optimiza-
tion procedure for solving Lipschitz programming problems. We implement
di¤erent variants of RPSALG which are compared with the unique publicly
available SIP solver, NSIPS, on a battery of test problems.
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1 Introduction

Ordinary convex SIP problems arise in a natural way in a variety of �elds,
such as �nance [30], controller design problems [22], sensor selection [21],
system identi�cation [23], Chebyshev systems [15], convex geometry [18] or
probability distributions [14], among others.
A Remez penalty and smoothing algorithm (RPSALG in short) was

proposed in [1] to solve min-max convex semi-in�nite programming (SIP)
problems of the form

(P0) F� := inffF (x) : x 2 Cg; (1)

where the objective function is F (x) := supfft(x) : t 2 T1g; the feasible
set is C := Q \ D; with Q being a �xed closed convex subset of Rn and
D := fx : G(x) � 0g; G(x) := supfgt(x) : t 2 T2g; T1 and T2 are compact
metric spaces, and f : T1 �Rn ! R [ f+1g and g : T2 �Rn ! R [ f+1g
are �nite and continuous functions on T1 � Q and T2 � Q; respectively,
and such that for each t the functions ft(�) := f(t; �) and gt(�) := g(t; �)
are lower semicontinuous and convex on Rn, and at least C1 on Q: In this
general version of RPSALG, the objective function F (x) is smoothed and
the constraint function is replaced with a penalty function involving �nitely
many constraints gt. In the article we con�ne ourselves to consider ordinary
convex SIP problems in which Q = Rn and T1 is a singleton set. Then, the
convex semi-in�nite programming problem considered here can be described
in the form:

(P ) f� = infff(x) : g(t; x) � 0; t 2 Tg; (2)

where T is a compact metric space, f : Rn ! R is convex on Rn and level
bounded on the feasible set C := fx 2 Rn : G(x) � 0g; with G(x) :=
maxfgt(x) : t 2 Tg; g : T � Rn ! R is continuous, and the constraint
functions gt are convex on Rn for all t 2 T:Moreover, the involved functions,
f and gt; t 2 T; are assumed to be C1. We also consider problems with
constraints in blocks (also called parametric constraints), i.e. convex SIP
problems where the feasible set is the intersection of �nitely many sets of
the form fx 2 Rn : g(t; x) � 0; t 2 Tg ; with T and g as above. We say that
the convex SIP problem (P ) satis�es the Slater condition whenever there
exists bx 2 Rn such that g (t; bx) < 0 for all t 2 T: This is a stability condition
for (P ) in the sense that su¢ ciently small perturbations of the constraints
preserve the feasibility of the problem [12, Theorem 5.1].
Our version of RPSALG is a particular case of the uni�ed framework

described in [1], inspired by the �rst algorithm of Remez [28], which was
proposed for approximating functions in the framework of linear SIP. The
basic Remez�s algorithm for solving (2) is described in Table 1, in which
the step S1 consists of computing a minimizer xk+1 of the ordinary convex
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program (Pk) obtained by replacing in (2) the index set T by a grid T k;
while step S2 provides the index tk+1 of a most violated constraint at xk+1:
In practice, xk+1 is an approximate solution of (Pk) while tk+1 is the index
of some constraint su¢ ciently violated by xk+1. The approximate optimal
solution tk+1 2 T obtained in step S2 is aggregated to T k for the next
iteration.

Table 1 REMEZ general framework

Procedure: REMEZ
Initialization: determine T 0 and x0; k := 0; non_stop:=true (binary);
begin
while (non_stop) do
S1 : Solve (Pk) f(xk+1) = min ff(x) : g(t; x) � 0; t 2 T kg;
S2 : Solve g(tk+1; xk+1) = maxfg(t; xk+1) : t 2 Tg;
S3 : T k+1 := T k [ ftk+1g;
S4 : k := k + 1;
S5 : If the stopping condition is satis�ed then, non_stop:=false;

endwhile
return bestSolution xk;
end

Accordingly, RPSALG is structured as the basic Remez�s algorithm, but
replacing the constrained convex program (Pk) in step S1 by the minimiza-
tion without constraints of the regularized convex program

min fHk(x) + 'k(x) : x 2 R
ng; (3)

where 'k is a suitable regularizing convex function guaranteeing the strong
convexity of the objective function of (3), and Hk is the corresponding merit
function,

Hk(x) := f(x) +Gk(x); (4)

with Gk(x) de�ned as

Gk(x) :=
k
jT kj

X
t2Tk

�(g(t; x)�k)

�k
; (5)

where � belongs to some family of penalty functions, and fkg and f�kg are
appropriated sequences of positive scalars; Gk(x) is a penalty function for
approaching of the feasible set of the discrete subproblem (Pk) ; i.e. fx 2
Rn : g(t; x) � 0; t 2 T kg: RPSALG algorithm for solving (2) is described in
Table 2, where f�kg and f�kg denote two sequences of positive tolerances
such that �k # 0 and �k # 0.
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Table 2 RPSALG general framework

Procedure: RPSALG
Initialization: determine T 0 and x0; k := 0; non_stop:=true (binary);
begin
while (non_stop) do
S1 : Solve Hk(x

k+1) + 'k(x
k+1) � min fHk(x) + 'k(x)g+ �k;

S2 : Solve g(tk+1; xk+1) � maxfg(t; xk+1) : t 2 Tg � �k,
S3 : T k+1 := T k [ ftk+1g;
S4 : k := k + 1;
S5 : If the stopping condition is satis�ed then, non_stop:=false;

endwhile
return bestSolution xk;
end

Unfortunately there is not much software for SIP. In this paper we com-
pare RPSALG with NSIPS, the unique solver publicly available so far for
solving SIP problems. NSIPS is a set of solvers for semi-in�nite program-
ming problems designed without assumptions of convexity. NSIPS uses the
SIPAMPL software package, which allows the codi�cation of semi-in�nite
programming problems in AMPL and includes a database with a large
battery of coded SIP problems (see [31] and the SIPAMPL manual1 for
additional information). NSIPS is publicly available on the NEOS server
platform2 . NSIPS includes four solvers: a discretization solver, a penalty
technique solver, a sequential quadratic programming solver (SQP), and
an infeasible quasi-Newton interior point solver. Some of them need to use
commercial software NPSOL [17].
Of all the solvers included in NSIPS only the penalty technique solvers

are considered in the article. Penalty methods include two versions based
on a quasi-Newton method applied to penalty functions. The �rst method
solves the unconstrained problem, and it is based on penalty functions (sev-
eral penalty functions can be selected), and no reference to Lagrange multi-
pliers is made. The second one solves the unconstrained problem using two
possible options, namely an Augmented Lagrangian penalty function or a
multiplier penalty function.
The paper is organized as follows. Section 2 describes di¤erent versions

of RPSALG for problems with a unique block of constraints. Section 3 ana-
lyzes, from a computational e¢ ciency point of view, implementations of RP-
SALG based on optimal gradient algorithms and variable metric schemes.
Section 4 proposes stopping rules for both auxiliary optimization subprob-
lems. Section 5 adapts RPSALG to problems with constraints in blocks.
Section 6 compares the numerical results obtained for two particular imple-
mentations of RPSALG, and for two particular NSIPS solvers on a large
collection of test problems. Finally, Section 7 provides some conclusions.

1 http://plato.la.asu.edu/ftp/sipampl.pdf
2 http://www.neos-server.org/neos/
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2 Versions of RPSALG

The implementation of RPSALG for the problem (P ) formulated in (2)
depends on the optimization algorithms used in steps S1 and S2 (see Table
2), and also on the regularizing convex function ', the penalty function �,
and the couple of sequences of positive scalars fkg and f�kg: Notice that
for each choice of these parameters we have a di¤erent instance of RPSALG.
Thus, once a standard algorithm has been chosen for solving S1 (e.g.,

a Gradient-type, a Newton-type, or a Quasi-Newton-type algorithm), the
following question arises: how to solve e¢ ciently the non-convex program in
step S2 when either the dimension of T is greater than one or the constraint
functions are non-standard? A sensible answer to this question consists of
using the so-called Extended Cutting Angle Method (ECAM), a global op-
timization procedure for Lipschitz programs that allows us to solve the
subproblems S2 regardless of the dimension of T . To the authors�knowl-
edge, the use in this article of global optimization software, such as ECAM,
to solve the non-convex program at the step S2 in algorithms based on
Remez�s approximation is an innovation in the �eld.

2.1 The choice of the regularizing convex function '

The most relevant choice concerns the regularizing convex function '; as
it determines the convergence behavior of the corresponding variants of
our method. In this paper we consider two versions of RPSALG, named
RPSALG1 and RPSALG2, that use di¤erent regularizing convex functions,
'1 and '2; guaranteeing the strong convexity of the objective function in
the unconstrained convex problem (3). Consider the regularizing functions
'1; '2 : Rn ! R de�ned by

'1 (x) = � kxk2 ; for � > 0; and '2 (x) = 1

2
kx� xk2 ; for x 2 Rn;

i.e. the Tihonov and the Moreau-Yosida regularizing functions, respectively.
In RPSALG1 we associate with a given positive sequence f�kg such that

�k & 0 the sequence of regularized subproblems

(P 1k ) minfHk(x) + '1k (x) : x 2 Rng; k = 1; 2; :::;

where '1k (x) := �k kxk
2
; k = 1; 2; :::

In RPSALG2 we consider the sequence of regularized subproblems

(P 2k ) minfHk(x) + '2k (x) : x 2 Rng; k = 1; 2; ::::; (6)

where '2k (x) :=
1
2

x� xk�12 ; k = 1; 2; :::, with xk�1 denoting an approx-
imate solution of (P 2k�1):
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2.2 The choice of the penalty function �

In order to guarantee the convergence of RPSALG, the penalty function
� : R! R+ in (5) is required to be C1; convex, non-decreasing, non-constant
and with limu!�1 �(u) = 0: These conditions are satis�ed by well-known
penalty functions as the following:

�1(u) = log(1 + exp(u));

�2(u) = 2
�1(u+

p
u2 + 4);

�3(u) =

8<:
0; u � �1;
1
4 (u+ 1)

2
; �1 < u < 1;

u; u � 1;

�4(u) =
1

2
(u+)2;

where u+ := max fu; 0g ;
�5(u) = (u

+)3;

and
�6(u) = exp(u):

The assumptions on � entail �1(�1) = 0 and �1(1) > 0; where �1 denotes
the asymptotic function of �; i.e. epi(�1) = (epi �)1 (the so-called recession
cone of the epigraph of �).

2.3 The choice of the positive sequences fkg and f�kg

Once the regularizing function has been �xed, each triplet (�; fkg; f�kg) in
the expression

Gk(x) =
k
jT kj

X
t2Tk

�(g(t; x)�k)

�k

determines a di¤erent instance of RPSALG. To ensure convergence, we con-
sider the following conditions involving a sequence of integer numbers fmkg
such that mk � jT kj; k = 1; 2; ::: :

(a) �1(1) < +1; limk!1 k=�k = 0; and limk!1 k=mk = +1.
(b) �1(1) = +1; limk!1 k=�k = 0; and k=mk > " 8k and a certain

" > 0.
(c) �1(1) = +1; limk!1 �k = +1, k=mk > " 8k and a certain " > 0,

fk=�kg is bounded, and �(0) = 0 or the Slater condition holds.

Observe that the three conditions (a), (b) and (c) imply

lim
k!1

k = lim
k!1

�k = +1:

The convergence of RPSALG1 derives from the following result (for RP-
SALG2 no counterpart is still available):
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Theorem 1 [1, Theorem 3.1] If the triplet (�; fkg; f�kg) satis�es at least
one of the conditions (a), (b), (c), then the sequence

�
xk
	
built by RP-

SALG1 is bounded and each limit point of this sequence is an optimal solu-
tion of (P ) :

With respect to the choice of the sequences fkg and f�kg three cases
are considered in our implementation. If we take mk := jT 0j + k; we can
verify the following statements:

i) k := (mk)
1:5 and �k := (mk)

2:5 satisfy (a), (b) and (c). Then, any
triplet (�; fkg; f�kg) with � 2 f�1; �2; �3; �4; �5g can be used.

ii) k := mk and �k := (mk)
1:5 satisfy (b) and (c). Then, any triplet

(�; fkg; f�kg) with � 2 f�4; �5; �6g can be used.
iii) k = �k = mk satisfy (c). Then, any triplet (�; fkg; f�kg) with � 2

f�4; �5g, or � = �6 together the Slater condition can be used. Never-
theless, Slater condition will not be taken into account in our analysis
because it is di¢ cult to be checked.

3 Implementing RPSALG

As we have seen, each triplet (�; fkg; f�kg) determines a di¤erent instance
of RPSALG. In this section, we compare the implementations correspond-
ing to cases i), ii) and iii), in which RPSALG1 converges. Nevertheless,
some considerations must be take into account. Indeed, the standardization
of �oating point arithmetics follows the IEEE 754 standard. This standard
has some major shortcomings. One of them is that it does not specify the
behavior of standard transcendental functions so as the exponential func-
tion. As J.M. Muller states in [25], some transcendental functions are even
very badly implemented in common run-time libraries that produce wrong
results on some arguments. Thus, the defective results generated could seri-
ously a¤ect the numerical stability of the implementations. In addition, the
lack of an exact de�nition of the results to be returned by standard libraries
prohibits portability over di¤erent platforms. These drawbacks suggest not
to use the penalization functions �1 and �6 in our implementation of RP-
SALG. However, in order to emphasize the previous comments on numerical
instability we have included the results of the function �1 in Table 3, where
we can see that it has the worst computational behavior from the point
of view of successfully completing the program run. On the other hand,
penalty functions �4 and �5 have a similar performance. For this reason,
since our purpose is to show the best penalty function, in Table 3 we only
compare �4 with �i, i = 1; 2; 3: Tests with �5 and �i; i = 1; 2; 3; have shown
similar results on RPSALG.

3.1 Choosing an e¢ cient version of RPSALG

The benchmark results are generated by running RPSALG1 and RPSALG2
on the set of test problems described in [20]. Then, we record information
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of interest for each instance from its performance pro�le (see Appendix for
a summary or [13] for complete description) with respect the number of
function evaluations and the CPU-time. From Table 3 we can compare the
instances with the probability of win over the rest, Best, and the probability
of success, Success, in solving the test problems with respect the number of
function evaluations, nfeval, and the CPU-time, time.

Table 3 Performance pro�le results for instance evaluations

RPSALG1 RPSALG2
nfeval time nfeval time

Instance Best Success Best Success Best Success Best Success

i) with �1 7.1% 93.1% 7.1% 93.1% 7.1% 71.5% 7.1% 71.5%
i) with �2 7.1% 100% 7.1% 100% 7.1% 86% 7.1% 86%
i) with �3 7.1% 100% 0% 100% 7.1% 78.6% 0% 78.6%
i) with �4 93.1% 100% 100% 100% 71.5% 78.6% 78.6% 78.6%
ii) with �4 7.1% 100% 7.1% 100% 7.1% 86% 0% 86%
iii) with �4 7.1% 100% 0% 100% 7.1% 86% 0% 86%

As we can see, the case i) with function �4 is the best for all options. It
performs less functions evaluations in the 93:1% of the cases with RPSALG1
(with an 100% of success), and in the 71:5% of the cases with RPSALG2
(78:5% of success). Moreover, it is the best option for CPU-time since it
spends less time in the 100% of the cases with RPSALG1 (100% of success),
and in the 78:6% of the cases with RPSALG2 (78:6% of success). So, we
shall use the case i) with function �4 in all RPSALG implementations.

3.2 Building a starting grid T 0

As explained in Section 1, we con�ne ourselves to consider ordinary convex
SIP problems of the form (2) such that T is a compact metric space, the
objective function f : Rn ! R is convex on Rn and level bounded on
C = fx 2 Rn : G(x) � 0g, g : T �Rn ! R is continuous, and the constraint
functions gt are convex on Rn for all t 2 T ; we also assume that the involved
functions, f and gt; t 2 T; are C1. These assumptions guarantee that the
optimal set of (2) is nonempty and compact (by the same argument as [1,
Prop. 2.1]). Moreover, by [1, Lemma 3.1], there exists a �nite nonempty
subset T 0 � T such that f is level bounded on C0 := fx 2 Rn : G0(x) � 0g,
with G0(x) := maxfgt(x) : t 2 T 0g: There are some particular cases in
which the set T 0 is easily obtainable. For instance, when T = cl intT � Rm
and �r & 0; since dist (T \ �rZm; T ) ! 0; it is possible to take the regular
grid T 0 = T \ �rZm for su¢ ciently large r (see [1, Remark 3.1]).
When T is either a full dimensional closed convex sets or the �nite

union of pairwise disjoint sets of this class (typically a box or the union of
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�nitely many disjoint boxes, as it happens in almost all test problems), then
T = cl intT by the accessibility lemma.
When T has a �nite number of isolated elements (indices), then they

must be included in T 0: So, it is easy to get a starting grid T 0 whenever T
is the union of a �nite set with �nitely many pairwise disjoint boxes.

3.3 Solving the programs at step S1

The aim of this subsection is to discuss the optimization methods allowing
to solve e¢ ciently the subproblems

(P 1k ) inffHk(x) + �k kxk2 : x 2 Rng; k = 1; 2; :::;

and

(P 2k ) inffHk(x) +
1

2

x� xk�12 : x 2 Rng; k = 1; 2; :::;
where Hk(x) = f(x) +Gk(x): These problems have the common form

infff(x) : x 2 Qg;

where f is a strongly convex objective function C1 on Q = Rn: When the
number n of variables is too large we cannot use Newton type methods but
only gradient based methods. We summarize now, very shortly, the acceler-
ating gradient methods based on Nesterov�s ideas. Let Q be a closed convex
set in Rn and let f : Rn ! R [ f+1g be a proper lower semicontinuous
convex function, C1 on Q: We suppose the existence of a global minimizer
x� of f on Q and that rf is globally Lipschitz on Q with Lipschitz con-
stant L. This constant must be known since it is used in the construction of
Nesterov-type method. More precisely, if fxkg is a sequence given by such
an algorithm that we shall denote OGA (optimal gradient algorithm), then
there exists a constant D(x�; x0), depending on x� and the starting point
x0 such that

f(xk)� f(x�) � LD(x�; x0) = O(1=k2): (7)

Furthermore, Nesterov [26] has shown that this estimate is "optimal" for
for the class of convex C1 functions for which the gradient is globally Lip-
schitz (this last assumption is essential). It is worthwhile to note that Q
must be "simple" in the following sense: all the formulas in OGA are given
by analytic formulas, without any subroutine for solving a minimization
subproblem, so that (7) is really a complexity estimation. As examples of
"simple" sets Q we have euclidean balls, a¢ ne sets, half-spaces, box con-
strained sets, simplex sets, etc. This kind of �optimal methods�have been
extended with di¤erent versions to constrained optimization independently
by Nesterov [26] and by Auslender and Teboulle [2] for �simple� feasible
sets.
Since the comparative study tackled in this paper requires to solve (P 1k )

and (P 2k ) for the convex SIP problems collected at the SIPAMPL database,
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where Q = Rn; n is small, and the objective functions are very general (so
that it is not possible to give analytic formulas), OGA methods are not so
advantageous in this framework. We illustrate this sentence analyzing the
particular case of linearly constrained convex SIP problems, i.e. problems
as (P ) in (2) with g(t; x) = hat; xi � bt; with at 2 Rn and bt 2 R; for all
t 2 T : The continuity of g on T � Rn entails that t 7! at is continuous on
the compact set T; so that

� := sup
t2T

katk

is attained.

Proposition 1 Let � : R ! R+ be a C1; convex, non-decreasing, non-
constant function such that limu!�1 �(u) = 0 and �0 is globally Lipschitz
on R with constant �: Assume that L0 is a Lipschitz constant for rf: Then
r
�
Hk + '

1
k

�
and r

�
Hk + '

2
k

�
; are globally Lipschitz with constants L1 and

L2 given by

Lk1 = L0 + 2�k + �k�k�
2 and Lk2 = L0 + 1 + �k�k�

2;

respectively.

Proof: Let � be as above, with Lipschitz constant �:Given an a¢ ne function
h (x) = � (ha; xi � b) ; with � � 0; a 2 Rn; and b 2 R; we have r�(h(x)) =
��0(h(x))a: Thus, for any two points x; y 2 Rn; one has

kr�(h(x))�r�(h(y))k = � kak
���0(h(x))� �0(h(y))��

� �� kak kh(x)� h(y)k
� ��2 kak2 kx� yk ;

so that r (� � h) is globally Lipschitz on Rn with constant ��2 kak2 : Hence,

rGk(x) =
k
jTkj

P
t2Tk r�(�kg(t; x))

�k

is globally Lipschitz too, with Lipschitz constant �k�kjTkj
P

t2Tk katk
2 � �k�k�2:

Thus, rHk(x) = rf(x) +rGk(x) is globally Lipschitz with Lipschitz con-
stant L0 + �k�k�

2: �
The penalty functions �1 and �2 satisfy the assumptions of Proposition

1 because they are C2 with 0 � �001(u) � 1
4 and 0 � �002(u) � 1

8 for all
u 2 R: Also the non-C2 functions �3 and �4 satisfy the assumptions as their
derivatives have Lipschitz constants equal to 2 and 1; respectively. Observe
that the derivatives of �5 and �6 are not globally Lipschitz. Concerning
the objective function f; rf is Lipschitz with Lipschitz constant L0 = 0
whenever f is linear (i.e. in linear SIP).
Thus, OGA is inconvenient for the collection of problems considered in

this paper because n is small, we do not have analytic formulas to solve (P 1k )
and (P 2k ) and, �nally, the product k � �k tends to in�nity as the number
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of iterations increases, so that Lki ! +1 too as k ! +1, i = 1; 2: Indeed,
in each iteration new points must be calculated through steps whose length
depends on 1=Lki ; which tends to zero as k ! +1, this makes OGA in-
creasingly slow and ine¢ cient. This phenomenon is illustrated in the Tables
4 and 5, corresponding to Example 1 below. For this reason, we propose to
use the Limited-memory Broyden-Fletcher-Goldfarb-Shanno method [27] to
solve the subproblems in Step 1 of Table 2. This is a quasi-Newton method
(denoted by QN in the sequel) for unconstrained optimization that itera-
tively �nds a minimizer by approximating the inverse Hessian matrix using
information from last iterations, which drastically saves the memory storage
and computational time for large-scaled problems.3

Example 1 Consider the well-known test problem from linear semi-in�nite
literature consisting on computing the polynomial of degree less than n that
best approximates the tangent curve over [0; 1] in the L1 norm whose exact
solution is known (see [20]).

minimize f (x) =
Pn

i=1
xi
i

subject to: �
Pn

i=1 xit
i�1 � � tan t; t 2 [0; 1]:

We solve it for n = 3, taking the penalization function �2 and the positive
sequences k := (jT 0j+ k)1:5 and �k = (jT 0j+ k)2:5.
We can observe the results in Table 4 and Table 5. The columnMethod in

Table 4 indicates the use of QN or OGAmethods, ' indicates the regularized
function which has been used, Iter indicates the number of major iterations
required, f� represents the optimal value obtained by RPSALG, f-eval is the
number of objective functions evaluations, g-eval is the number of gradient
evaluations, (P i)-mean is the average of the iterations performed at each
major iteration in the problems (P ik), i = 1; 2 and Time is the CPU time
in seconds. On the other hand, Table 5 represents the evaluation of the
numbers k, �k and k=jT j for the problem number 4 in Table 5, and EPS
indicates the stop criterion evaluation.

Table 4 Results and CPU requirements for the tangent sample with precision
� = 0:001

Num Method ' Iter f* f-eval g-eval (P i)-mean Time

1 QN '1 47 6.49994e-001 586 331 6 2.603
2 QN '2 45 6.49923e-001 479 227 4 1.612
3 OGA '1 47 6.50003e-001 0 83590 890 457.447
4 OGA '2 46 6.50037e-001 0 76510 833 390.191

In Table 5 we can see the inconvenience of using OGA algorithm since the
product k�k tends to in�nity as the number of iterations increases. In Table

3 For additional information: http://www.chokkan.org/software/liblbfgs/
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4 we can compare the results of the di¤erent versions of the RPSALG and
the advantages of using a Quasi-Newton method for solving subproblems in
Step 1 of Table 2. Also, we can see that using '2 as regularizing function
we obtain better CPU time implementations.

Table 5 fkg and f�kg for the problem number 4 in Table 4

Iter k �k k=jT j EPS

0 22.63 181.02 3.23 7.92611
10 76.37 1374.62 4.49 0.01230
20 148.16 4148.54 5.49 0.00395
30 234.25 8901.41 6.33 0.00201
40 332.55 15962.58 7.08 0.00126
46 396.82 21428.14 7.49 0.00097

3.4 Solving the programs at step S2

The subproblems to be solved in Step 2 consist of �nding the optimal set of
g(�; x) : T ! R for some x 2 Rn: Assume that g(�; x) is C1 on T and denote
� := maxt2T krtg(t; x)k 2 R: Then, given t1; t2 2 T; there exists � 2 ]0; 1[
such that

jg(t1; x)� g(t2; x)j = jrtg((1� �) t1 + �t2; x) (t1 � t2)j � � kt1 � t2k ;

so that g(�; x) is Lipschitz continuous on T with Lipschitz constant �:
We assume in this section that g(�; x) is C1 on T for all x 2 Rn and that

T is a convex polyhedron (typically, it is a box). Then we have to �nd the
solution set of a problem of the form

inf ff(x) : x 2 Sg ; (8)

where f is Lipschitz continuous and S is a convex polyhedron.
In all the implementations of RPSALG considered in this paper we use

the Extended Cutting Angle Method (ECAM) of Beliakov ([5],[6],[7],[8],[9])
in order to solve this very hard optimization problem. In ECAM the objec-
tive function is assumed to be Lipschitz continuous and it is optimized by
building a sequence of piecewise linear underestimates. ECAM is inspired in
the classical Cutting Plane method by Kelley [24] and Cheney and Golstein
[11] to solve linearly constrained convex programs of the form (8) where S
is the solution set of a given linear system and f : Rn ! R is convex. Since
f is lower semicontinuous, it is the upper envelope of the set of all its a¢ ne
minorants, i.e.

f = sup fh : h a¢ ne function, h � fg: (9)
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Indeed, it is enough to consider in (9) the a¢ ne functions of the form h(x) =
f(z) + hu; x� zi ; where u 2 @f (z) (the subdi¤erential of f at z 2 Rn), the
graph of h being a hyperplane which supports the epigraph of f at (z; f(z)) :
Let x1; :::; xk 2 S be given and consider the a¢ ne functions hj(x) = f(xj)+

uj ; x� xj

�
; for some uj 2 @f

�
xj
�
; j = 1; :::; k: The function

fk := max
j=1;:::;k

hj (10)

is a convex piecewise a¢ ne underestimate of the objective function f; in
other words, a polyhedral convex minorant of f: The k-th iteration of the
Cutting Plane method consists of computing an optimal solution xk+1 of
the approximating problem inf ffk(x) : x 2 Sg which results of replacing f
with fk in (8) or, equivalently, solving the linear programming problem in
Rn+1

inf
�
xn+1 : x 2 S; xn+1 � hj(x); j = 1; :::; k

	
; (11)

where x = (x1; :::; xn) : Then the next underestimate of f; fk+1 := max
�
fk; h

k+1
	
;

is a more accurate approximation to f; and the method iterates.
The Generalized Cutting Plane method for (8), where f : Rn ! R is

now a non-convex function while S =
n
x 2 Rn+ :

Xn

i=1
xi = 1

o
is the unit

simplex, follows the same script, except that the underestimate fk is built
using the so-called H-subgradients (see [29]) instead of ordinary subgradi-
ents, so that minimizing fk on S is no longer a convex problem. The Cutting
Angle Method ([3]), of which ECAM is a special case, is an e¢ cient numer-
ical method for minimizing the underestimates when f belongs to certain
class of abstract convex functions. Assume that f is Lipschitz continuous
with Lipschitz constant M > 0 and take a scalar  �M: Let x1; :::; xk 2 S
be given. For j = 1; :::; k; we de�ne the support vector lj 2 Rn by

lji :=
f(xj)


� xji ; i = 1; : : : ; n; (12)

and the support function hj by

hj(x) := min
i=1;:::;n

(f(xj)� (xji � xi)) = min
i=1;:::;n

(lji + xi): (13)

Since the functions hj are concave piecewise a¢ ne underestimates of f (i.e.
polyhedral concave minorants of f), the underestimate fk de�ned in (10)
is now a saw-tooth underestimate of f and its minimization becomes a hard
problem as (11) is no longer a linear program: ECAM locates the set V k

of all local minima of the function fk which, after sorting, yields the set of
global minima of fk (see [7] and [8] for additional information). A global
minimum xk+1 of fk is aggregated to the set

�
x1; :::; xk

	
and the method

iterates with fk+1 := max
�
fk; h

k+1
	
:

Remark 1 Notice that the transformation of variables

1) �xi = xi�ai; i = 1; : : : ; n; d =
Pn

i=1(bi�ai) with �xi � 0 and
Pn

i=1 �xi � d
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2) zi = �xi
d ; i = 1; : : : ; n, zn+1 =

Pn
i=1 zi;

allows us to substitute the program

minff(x) : x 2 [a; b]g

by the following one:

minfg(z1; : : : ; zn+1) : (z1; : : : ; zn+1) 2 Sg;

where S denotes the unit simplex in Rn+1:

4 Stopping rules

4.1 Stopping rule for programs at the step S1

SinceHk is C1, any usual convergent gradient method will provide the iterate
xk in a �nite number of steps if suitable stopping rules are adopted.
The regularized objective functions

Hregi
k (x) := Hk(x) + '

i
k(x); i = 1; 2; k = 1; 2; ::::;

are strongly convex and so, they have a unique global minimizer yki . Ac-
cording to S1 in Table 2, for each k; (P ik); i = 1; 2; has to be solved within
the error �k; with �k & 0, i.e. xk must satisfy

Hregi
k (xk) � Hregi

k (x) + �k; 8x 2 Rn; i = 1; 2; k = 1; 2; ::: (14)

Stopping rule for (P 1k ) in RPSALG1: According to [1, Remark 3.2],
(14) will be satis�ed, i.e.

Hk(x
k) + �k

xk2 � Hk(x) + �k kxk2 + �k 8x 2 Rn: (15)

provided that we use the stopping rulerHk(xk) + 2�kxk� p2�k; (16)

where
rHk(xk) = rf(xk)+

k
jTkj

X
t2Tk

�0(�kgt(x
k))rgt(xk)

is obtained by the chain rule.

Stopping rule for (P 2k ) in RPSALG2: Now (14) will be satis�ed, i.e.

Hk(x
k) +

1

2

xk � xk�12 � Hk(x) + 1
2

x� xk�12 + �k 8x 2 Rn: (17)

provided that we use the stopping rulerHk(xk) + xk � xk�1�p�k: (18)
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In fact, the function Hreg2
k is strongly convex with modulus 1 [19, IV,

Theorem 4.3.1], and applying (18) and [19, IV, Theorem 4.1.4] to the couple
of points xk and yk2 where fyk2g = argminRn H

reg2
k (and so, rHreg2

k (yk2 ) =
0n): xk � yk22 � 
rHreg2

k (xk)�rHreg2
k (yk2 ); x

k � yk2
�

�
rHreg2

k (xk)�rHreg2
k (yk2 )

xk � yk2
=
rHreg2

k (xk)
xk � yk2

� p�k
xk � yk2 ;

entailing
xk � yk2 � p�k: Moreover, by convexity,
Hreg2
k (xk) � Hreg2

k (yk2 )�


rHreg2

k (xk); xk � yk2
�

� Hreg2
k (yk2 ) +

rHreg2
k (xk)

xk � yk2
� Hreg2

k (yk2 ) +
p
�k
p
�k;

and we get (17).

Proposition 2 Assume that the triple (�; fkg; f�kg) satis�es at least one
of the conditions (a), (b), (c) in Theorem 1. Let � and � be given positive
numbers (tolerances) and let

�
xk
	
be the sequence generated by RPSALG

1. Then rHk(xk) � � and G(xk) � � (19)

holds for some k 2 N:

Proof: We can assume without loss of generality (w.l.o.g., in short) that�
xk
	
is convergent. It is su¢ cient to show that limk!1

rHk(xk)= 0 and
limk!1G(x

k) � 0:
Let x� = limk!1 x

k: By Theorem 1 x� is an optimal solution of (P ) : On
the one hand, taking limits in (16) as k !1; we get limk!1

rHk(xk)= 0:
On the other hand, G(x) = maxfgt(x) : t 2 Tg is a convex �nite-valued
function, so that it is continuous and, so, limk!1G(x

k) = G(x�) � 0: �

Remark 2 The proof of Theorem 1 does not make use of the di¤erentiability
of the functions gt; t 2 T: Nevertheless, if gt is not di¤erentiable, the same
may happen with Gk and Hk; so that the new iterate xk could be non-
approachable by gradient methods and the stopping rules (16) and (18)
may not apply. So, convergence of RPSALG1 is conditioned to the fact that
all the constraint functions are continuously di¤erentiable at the elements of
the sequence

�
xk
	
built by RPSALG1, a condition which cannot be checked

a priori.
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4.2 Global stopping rule for RPSALG1

Theorem 1 established the existence of a subsequence of iterates fxkgk2K
such that limk2K; k!1 x

k = x�, where x� is optimal for problem (P ) in (2).
In [1], the Lagrangian dual of (P ) is studied by considering the dual pair
formed by:
a) C(T ): the Banach space of real-valued continuous functions on T ,

equipped with the maximum norm

khk = maxfjh(t)j : t 2 Tg:

b) M(T ) : the topological dual of C(T ), i.e. the space of all the �nite
signed Borel measures on T , embedded with the total variation norm.
c) The pairing

h�; hi =
Z
T

h(t)�(dt) with � 2M(T ) and h 2 C(T ):

In [1, Section 4], a sequence of discrete measures f�kgk2K associated
with fxkgk2K is introduced by means of the expression

�k :=
k
jT kj

X
t2Tk

�0(g(t; xk)�k)�t; (20)

where �t is the Dirac measure concentrated at t, i.e. for any continuous
function h 2 C(T )

h�t; hi = h(t):
Assuming that the objective function f : Rn ! R is convex on Rn and

level bounded on the feasible set C := fx 2 Rn : G(x) � 0g; that the
Slater constraint quali�cation holds, and that rg(:; :) exists and is continu-
ous on T �Rn, Theorem 4.2 in [1] establishes the existence of a subsequence
f�kgk2K0 , K 0 � K, which is weak*-convergent to a measure ��: The mea-
sure �� is an optimal solution for the Lagrangian dual problem (D) given
in [1, (47)] and satis�es

h��; g(�; x�)i = 0:
Then, applying for instance [10, Proposition 2.24(iii)], we have

lim
k2K0; k!1

h�k; g(�; xk)i = h��; g(�; x�)i = 0:

Inspired in this fact we can use the following global stopping rule:��h�k; g(�; xk)i�� = k
jT kj

X
t2Tk

�0(g(t; xk)�k)
��gt(xk)�� � �; (21)

where � > 0 is a tolerance parameter.
In the particular case of linearly constrained convex SIP, i.e. g(t; x) =

ha(t); xi � b(t); if we use �(u) = �4(u) =
1
2 (u

+)2; the stopping rule (21)
becomes

k�k
jT kj

X
t2Tk

(
�

a(t); xk

�
� b(t)

�+
)2 � �: (22)



Title Suppressed Due to Excessive Length 17

5 Adapting RPSALG to constraints in blocks

Some SIP problems arising in practice can be formulated as

(P0) f� = infff(x) : gi(t; x) � 0; t 2 Ti; i = 1; :::;mg; (23)

where Ti is a (possibly degenerate) compact interval in Rdi ; i = 1; :::;m;
f : Rn ! R is convex on Rn and level bounded on the feasible set C :=
fx 2 Rn : Gi(x) � 0; i = 1; :::;mg; with Gi(x) := maxfgi(t; x) : t 2 Tig:
Assume that for each i = 1; :::;m; gi : Ti � Rn ! R is continuous, and
the functions gi(t; �) are convex on Rn for all t 2 Ti: Assume also that the
involved functions, f and gi(t; �); t 2 T; are C1: We shall now describe a
procedure to reformulate (P0); when Ti is a (possibly degenerate) interval
for all 1; :::;m; with a unique index set, in three steps which preserve the
objective function f and the feasible set C.

Step 1: Embedding all index sets in the same space.
Let d := max fdi : i = 1; :::;mg and Ti =

Y
j=1;:::;di

�
�ij ; �

i
j

�
; �ij � �ij ;

j = 1; :::; di: If di < d; we de�ne
�
�ij ; �

i
j

�
:= [0; 1] ; j = di + 1; :::; d; eTi =

Ti�[0; 1]d�di and egi : eTi ! R such that egi (t; s; x) = gi (t; x) for all (t; s; x) 2
Ti � [0; 1]d�di � Rn: Then, we can replace gi(t; x) in (P ) by egi (t; s; x) ;
where egi enjoys the same properties as gi: At the end of Step 1, we have an
optimization problem of the form

(P1) f� = infff(x) : gi(t; x) � 0; t 2 Ti; i = 1; :::;mg;

where all the index sets Ti have the same dimension.

Step 2: Unifying the index sets.
Assume that Ti =

Y
j=1;:::;d

�
�ij ; �

i
j

�
; �ij � �ij ; i = 1; :::;m: Given i 2

f1; :::;mg and j 2 f1; :::; dg ; de�ne hij : R! R such that hij (�) = (1� �)�ij+
��ij : For i 2 f1; :::;mg ; let hi : Rd ! Rd be the a¢ ne mapping such
that hi (�1; :::; �d) =

�
hi1 (�1) ; :::; h

i
d (�d)

�
: Since Ti = hi

�
[0; 1]

d
�
; de�ningegi (s; x) := gi(h

i (s) ; x); we can replace the constraint system in (P ) with
f egi (s; x) � 0; s 2 T; i = 1; :::;mg; where T = [0; 1]d is the common index
set of all blocks of constraints. So, Step 2 provides a reformulation of (P1)
of the form

(P2) f� = infff(x) : gi(t; x) � 0; i = 1; :::;m; t 2 Tg;

whose constraint functions satisfy the same properties as those in the initial
model (P ):
For most SIP problems arising in functional approximation Steps 1-2 are

usually unnecessary as the index sets Ti coincide.
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Example 2 Consider the problem consisting of computing a best uniform ap-
proximation from above to a given function h : [�; �]! R; � < �; by means
of polynomials of degree less that n�1; with n > 2; under the condition that
they are non-decreasing and convex on [�; �]: Since the unknown polynomialPn�1

i=1 t
i�1xi can be represented by its vector of coe¢ cients (x1; :::; xn�1) ;

denoting by xn the uniform error bound, the problem to be solved is

(P2) f� = infff(x) : gi(t; x) � 0; i = 1; :::; 5; t 2 [�; �]g;

where x = (x1; :::; xn) ; f(x) = xn; and the constraints are:

� Approximation from above: g1(t; x) = h(t)�
Pn�1

i=1 t
i�1xi � 0:

� Monotonicity: g2(t; x) = �
Pn�1

i=1 (i� 1) ti�2xi � 0:
� Convexity: g3(t; x) =

Pn�1
i=1 (i� 1) (i� 2) ti�3xi � 0:

� xn is a lower uniform error bound: g4(t; x) = �
Pn�1

i=1 t
i�1xi�xn+h(t) � 0:

� xn is an upper uniform error bound: g5(t; x) =
Pn�1

i=1 t
i�1xi�xn�h(t) � 0:

Step 3: Reduction to a unique block.
De�ning g (t; �) := max fgi(t; �); i = 1; :::;mg ; we get the following re-

formulation of (P2) :

(P3) f� = infff(x) : g(t; x) � 0; t 2 Tg:

Since gi : T�Rn ! R is continuous and the functions gi(t; �) are C1 and con-
vex on Rn for all t 2 T and i = 1; ::;m; (P3) satis�es the same assumptions
required to the problem (P ) in (2), except the possible lack of di¤erentiabil-
ity of gt at those points x 2 Rn whose corresponding set of active indices,
de�ned as

It (x) =

�
i 2 1; :::;m : gi(t; x) = max

j=1;:::;m
gj(t; x)

�
;

is not a singleton (i.e. such that max fgi(t; x); i = 1; :::;mg is attained at
more than one index). Thus, the set[

1�i<j�m
fx 2 Rn : gi(t; x) = gj(t; x)g : (24)

contains all points where gt fails to be C1: When solving (P3) with RP-
SALG, the failure of the C1 property of gt at xk for some t 2 T k entails
the non-smoothness of the auxiliary problem (P 1k ); which should be solved
with some subgradient method (instead of a gradient one). Fortunately, the
subdi¤erential of Hk at xk; @Hk(xk); can be easily computed through the
closed formula (25), where convX stands for the convex hull of X:
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Proposition 3 Let (P0) be as in (23), the triple (�; fkg; f�kg) be as in
Theorem 1, and Hk be de�ned as in (4) and (5). Then, given xk2Rn;

@Hk(x
k) = rf(xk)+ k

jT kj
X
t2Tk

�0
�
gt
�
xk
��
conv

�
rgi(t; xk) : i 2 It

�
xk
�	
:

(25)

Proof. Let t 2 T be given. By [19, Theorem 4.3.1 and Corollary 4.3.2] one
has

@ (� � gt) (x) = �0 (gt (x)) @gt (x)

= �0 (gt (x)) conv

0@ [
i2It(x)

rgi(t; x)

1A : (26)

Observing that all functions in the right hand-side of the equation

Hk(x) =f(x)+
k
jT kj

X
t2Tk

�(gt (x) �k)

�k

are �nite-valued and convex, we can combine [19, Theorem 4.1.1] and (26)
to obtain

@Hk(x
k) = rf(xk)+ k

jTkj�k
P

t2Tk @�(g(t; x
k)�k)

= rf(xk)+ k
jTkj

P
t2Tk �

0 �gt �xk�� conv �rgi(t; xk) : i 2 It �xk�	 :
�

The unique possible drawback of RPSALG applied to (P3) is related with
the stopping rule @Hk(xk)\�B 6= ; (where B denotes the closed unit ball
in Rn), the natural extension of

rHk(xk)��; which does not guarantee
�nite termination.
If the constraints in (P0) are linear and non-repeated (as in Example

2), the sets fx 2 Rn : gi(t; x) = gj(t; x)g ; i 6= j; are hyperplanes and so the
set in (24) is null. Actually, even though we may have gi(t; �) = gj(t; �)
on some set of positive measure in arti�cial examples, in most convex SIP
applications the constraints of (P3) are C1 almost everywhere for all t 2 T:
In that case, since the functions Gk and Hk are C1 except on some subset
of [

t2Tk

[
1�i<j�m

fx 2 Rn : gi(t; x) = gj(t; x)g

(union of
��T k�� null sets), these functions are C1 almost everywhere for all

t 2 T: So, one can expect the convergence of RPSALG applied to (P3)
provided at least one of the conditions (a), (b), (c) in Theorem 1 holds.
The convex SIP problem (P0) with blocks formed by a unique constraint

(gi(t; x) � 0; such that jTij = 1) can be reformulated as (P3): When T 1 is
in�nite while jTij = 1; i = 2; ::;m; it can be convenient to replace (P0) by a
suitable approximating problem with C1 constraints. Indeed, let � : R! R
be a non-decreasing C1 function such � (u) = 0 for all u � 0 and � (u) > 0
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for all u > 0 (conditions satis�ed by the penalty functions �4 and �5);
choose "big" positive numbers M1; :::;Mm and consider the convex SIP
approximating problem

(Pa) f� = infff(x) +
mX
i=2

Mi� (gi(x)) : g1(t; x) � 0; t 2 T 1g;

where gi(x) stands for gi(t; x) as the latter function does not depend on t for
i = 2; :::;m: Obviously, (Pa) has the same feasible set as (P0) and satis�es
all assumptions required to the problem (P ) in (2).

Example 3 Consider the convex SIP problem (P0) in R2 [31, page 49] with
objective function f (x) = kxk2 and constraints g1 (t; x) = tx1+t2x2 � 0; t 2
[0; 1] ; g2 (t; x) = x1+x2� 10 � 0 (t = 2); and g3 (t; x) = �x1�x2� 10 � 0
(t = 3). Despite the fact that T1 = [0; 1] ; T2 = f2g and T3 = f3g have
di¤erent dimensions, we can replace T2 and T3 by T1; obtaining the following
reformulation of (P0) :

(P3) f� = inffkxk2 : gt (x) � 0; t 2 [0; 1]g;

whose constraint function

gt (x) = max
�
tx1 + t

2x2; x1 + x2 � 10;�x1 � x2 � 10
	

is C1 except on the union of the straight lines
�
x 2 R2 : (t+ 1)x1 +

�
t2 + 1

�
x2 = �10

	
and

�
x 2 R2 : (t� 1)x1 +

�
t2 � 1

�
x2 = �10

	
(a null set).

The alternative approach consists of taking two big numbers M1 > 0 and
M2 > 0 and a function � 2 f�4; �5g ; and replacing (P0) with

inffkxk2+M1� (x1 + x2 � 10)+M2� (�x1 � x2 � 10) : tx1+t2x2 � 0; t 2 [0; 1]g:

Observe that the linear constraints could be replaced by the non-smooth
convex constraint jx1 + x2j � 10; getting the simpler approximating prob-
lem

inffkxk2 +M� (jx1 + x2j � 10) : tx1 + t2x2 � 0; t 2 [0; 1]g;

with M > 0: The disadvantage of the latter problem is the failure of the C1
property of the objective function on the parallel straight lines x1 + x2 =
�10:

6 Numerical results

In this section we present the results of numerical experiments to compare
the two versions of RPSALG with the penalty solvers included in NSIPS.
The numerical experiments were carried out on a PC with Processor Intel(R)
Core(TM)2 Duo CPU E8500, 3:16 GHz and 3:49 GB of RAM (MS Windows
XP, professional). For comparing the di¤erent solvers on the same computer
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Table 6 Results for RPSALG1, RPSALG2, Penalty1 and Penalty2, dim T = 1,
� = 0:001, (�) indicates the failure of corresponding solver

Num Name n Itr1 Tfc1 Itr2 Tfc2 ItrP1 TfcP1 ItrP2 TfcP2

1 coopeL 2 0* 0000 8 1120 5 19530 9 26720
2 coopeM 2 9 6480 7 4046 5 17175 10 28294
3 hettich4 2 9 3392 11 2184 5 33635 12 65103
4 leon12 2 8 4072 9 2540 5 28556 10 34600
5 leon13 2 8 3118 401* 12848 4 361854 9 42670
6 leon14 2 12 5751 12 3095 5 655248 9 55853
7 liu1 2 401* 24120 401* 20530 5 11791 11 18056
8 liu2 2 10 3312 10 2461 5 22677 9 28030
9 watson1 2 10 3312 401* 25440 6 22504 11* 40865
10 hettich2 3 8 5534 9 6898 6 85232 11 125432
11 watson4a 3 8 6689 8 3372 5 28974 9 76059
12 watson5 3 12 7624 12 5204 5* 27036 11 44009
13 leon1 4 7 7388 401* 106582 5 72977 11 89331
14 hettich3 5 13 38532 9 22342 6 40318 12 53189
15 leon6 5 6 17621 10 15031 4 57090 8 70905
16 leon7 5 7 16908 8 7311 5 528993 9 427003
17 leon2 6 6 23042 8 20799 4 61317 7 78341
18 leon3 6 7 28942 8 18971 4 294449 9 337566
19 watson4b 6 7 18023 9 17205 5 31368 9 141536
20 leon4 7 7 29793 401* 135756 5 91313 9 122092
21 leon8 7 8 60767 7 22607 9 298892 9 217280
22 leon9 7 8 458573 8 171424 5* 250714 9* 217387
23 ferris1 7 7 33655 7 15069 7 208777 9 265833
24 ferris2 7 8 36763 9 16900 5 59729 7 178273
25 leon5 8 8 27727 8 27727 9 304946 9 269204
26 watson4c 8 7 55682 9 29687 5 54011 9 205438
27 fang1 50 15 900654 10 231185 4* 42913 6* 167138
28 fang2 50 8 582136 11 437440 4* 44996 6 170520
29 fang3 50 20 1443832 11 332947 5* 44972 9 137194

we have used the AMPL Student Version 20111121 (MS VC++ 6.0) to run
NSIPS. The AMPL student version can be downloaded for free but it is
limited to solve problems with 300 variables and a total of 300 objectives
and constraints.

The numerical experiments are summarized in four tables. In Tables 6
and 7, Num denotes the number assigned to the instance selected of the cho-
sen solver, Name indicates the name of the instance in SIAMPL database,
n is the number of variables, Itr1 is the number of iterations required for
RPSALG1, Tfc1 indicates the total number of functions and constraints
evaluations for RPSALG1, Itr2 is the number of iterations required for
RPSALG2, Tfc2 indicates the total number of functions and constraints
evaluations for RPSALG2, ItrP1 is the number of iterations required for
Penalty1, TfcP1 indicates the total number of functions and constraints



22 A. Auslender et al.

Table 7 Results for RPSALG1, RPSALG2, Penalty1 and Penalty2, dim T =1
� = 0:001, (�) indicates the failure of corresponding solver (Continued)

Num Name n Itr1 Tfc1 Itr2 Tfc2 ItrP1 TfcP1 ItrP2 TfcP2

30 ftpeallT1 5 8 23717 10 10486 3 68219 9 107806
31 ftpeallT1 10 8 38294 10 21980 4 104427 7 122150
32 ftpeallT1 15 9 64560 10 32020 4 128913 9 125002
33 ftpeallT1 20 9 74922 11 49486 4 149475 7 150263
34 ftpeallT1 25 9 113051 11 77726 3 134452 7 169104
35 ftpeallT1 50 8 204996 11 205008 4 152510 9 143445
36 ftpeallT1 100 9 370370 11 535044 3 217982 7 106212
37 ftpeallT1 150 9 631567 10 723818 4 72148 7 68182
38 ftpeallT1 200 9 888875 9 591287 3 59251 7 60756
39 ftpeallT1 250 9 1147834 8 564614 4 57262 7 62128
40 ftpeaqlT1 5 12 14823 13 14320 4 36017 9 53840
41 ftpeaqlT1 10 12 29001 13 24923 4 40330 10 62838
42 ftpeaqlT1 15 12 44718 12 32900 4 39372 10 66483
43 ftpeaqlT1 20 12 64793 13 49820 5 42169 9 67780
44 ftpeaqlT1 25 12 79442 13 63712 5 45696 8 50821
45 ftpeaqlT1 50 12 149173 12 109142 5 47843 9 67782
46 ftpeaqlT1 100 12 243641 12 222307 4 42026 10 60512
47 ftpeaqlT1 150 12 420680 12 325963 4 38261 9 68638
48 ftpeaqlT1 200 12 583250 12 444920 4 35394 7 47597
49 ftpeaqlT1 250 12 672318 12 573394 4 35427 7 48350

Table 8 Solvers evaluation

Solver �s(1) ��s
RPSALG1 12:25% 96:43%
RPSALG2 59:18% 90:38%
Penalty1 18:37% 90:38%
Penalty2 6:70% 94:67%

evaluations for Penalty1, ItrP2 is the number of iterations required for
Penalty2, TfcP2 indicates the total number of functions and constraints
evaluations for Penalty2. In Tables 9 and 10 dimT represents the dimension
of the space of parameters, f� the optimal value of the objective function,
Tfce the total number of functions and constraints evaluations, and Time
the CPU time.

The results shown in the Tables 6 and 7 are compared in Table 8. The
precise meanining of the entries in the latter table, �s(1) (probability of
success in solving a problem) and ��s (probability of win over the rest) is
explained in the Appendix.
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Table 9 Results for RPSALG1, dim T > 1, � = 0:001, (�) indicates failure of the
solver

Num Name n dim T Iter f� Tfce Time

50 andreson1 3 2 10 -0.3340 6409 0.189
51 hettich5 3 2 7 0.5368 6007 0.484
52 lin1 6 2 7 -1.5070 37750 0.531
53 reemtsen3 10 2 10 -0.8015 81066 3.062
54 reemtsen4 37 2 401* -1.4433 2275119 260.375
55 potchinkov2 65 3 1 -0.0005 89150 27.500
56 potchinkov3 66 2 7 0.9996 236747 59.609
57 potchinkovPL 122 2 6 -0.0008 1351250 338.865
58 fpeallT2 5 2 11 -0.6408 46679 1.421
59 fpeallT2 10 2 11 -0.6407 81360 2.959
60 fpeallT2 50 2 12 -0.6409 609637 49.985
61 fpeallT2 100 2 13 -0.6409 1613578 218.964
62 fpeallT2 250 2 12 -0.6408 2758994 799.040
63 fpeallT2 500 2 11 -0.6409 4402209 2396.774
64 fpeallT2 1000 2 10 -0.6406 2000102 2065.064
65 fpeaqlT2 5 2 12 0.9992 16235 0.703
66 fpeaqlT2 10 2 12 0.9992 32569 1.515
67 fpeaqlT2 50 2 13 0.9992 163137 14.562
68 fpeaqlT2 100 2 12 0.9990 310612 44.173
69 fpeaqlT2 250 2 12 0.9990 727781 214.893
70 fpeaqlT2 500 2 12 0.9991 1695534 919.218
71 fpeaqlT2 1000 2 12 0.9991 3428577 3525.101

6.1 Options to the Solvers

As we know RPSALG can solve convex semi-in�nite programs of class C1,
without any limitation on the number of parametric and non-parametric
constraints, the initial guess, and the dimension of T: The public version
of NSIPS without using the NPSOL commercial software [17] cannot start
an instance unless an initial guess has been de�ned. Moreover, the index
set of any parametric constraint is a one-dimensional interval. On the other
hand, penalty methods in NSIPS include two versions based on a quasi-
Newton method applied to penalty functions. The �rst method solves the
unconstrained problem, based on penalty functions (that can be chosen on
three options), where no reference to Lagrange multipliers is made. The
second one, in which an estimation of the Lagrange multipliers is made,
solves the unconstrained problem using two possible options: an Augmented
Lagrangian penalty function or a multiplier penalty function. For making
a more streamlined presentation of the results we previously have tested
all the option solvers and �nally the two most e¢ cient of them (for each
penalty method) have been selected to be compared against the two versions
of RPSALG.
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Table 10 Results for RPSALG2, dim T > 1, � = 0:001, (�) indicates failure of
the solver

Num Name n dim T Iter f� Tfce Time

50 andreson1 3 2 401* -0.3333 117798 7.505
51 hettich5 3 2 7 0.5392 2293 0.359
52 lin1 6 2 8 -1.6265 41903 0.562
53 reemtsen3 10 2 11 -0.8013 69738 2.671
54 reemtsen4 37 2 401* -1.4433 2275119 260.985
55 potchinkov2 65 3 1 -0.0005 10698 3.828
56 potchinkov3 66 2 6 0.9995 164254 41.656
57 potchinkovPL 122 2 6 -0.0008 1143037 287.322
58 fpeallT2 5 2 9 -0.6409 8481 0.453
59 fpeallT2 10 2 9 -0.6406 15038 0.860
60 fpeallT2 50 2 10 -0.6407 92860 8.406
61 fpeallT2 100 2 10 -0.6405 180172 25.625
62 fpeallT2 250 2 10 -0.6407 481768 140.951
63 fpeallT2 500 2 10 -0.6407 983064 534.158
64 fpeallT2 1000 2 10 -0.6406 2000102 2065.064
65 fpeaqlT2 5 2 12 0.9990 9970 0.593
66 fpeaqlT2 10 2 13 0.9992 20290 1.156
67 fpeaqlT2 50 2 13 0.9991 121333 10.969
68 fpeaqlT2 100 2 13 0.9992 225129 31.909
69 fpeaqlT2 250 2 13 0.9991 593726 173.499
70 fpeaqlT2 500 2 13 0.9993 1137878 613.258
71 fpeaqlT2 1000 2 13 0.9992 2467579 2558.739

As penalty functions we have selected the following AMPL command op-
tions (indeed they are the penalty functions with integral representations in
[31, (5.11) and (5.14)]): option nsips_options �method=penalty pf_type=p1�
and option nsips_options �method=penalty_m pf_type=p1�. In this article
we refer to this couple of selected methods as Penalty1 and Penalty2, re-
spectively.

6.2 Test problems

A total of 71 semi-in�nite test problems have been selected satisfying the
convexity and di¤erentiability hypothesis of RPSALG with an initial guess.
The test problems have been selected as follows: 37 of them have been
obtained from the SIAMPL database4 (numbers from 1 to 29 in table 6 and
from 50 to 57 in tables 9, 10) and the remaining 34 problems have been
generated by using the procedure described in [16]. In this latter case we
can generate test problems with known solution and without limitations on
n and dimT:

4 http://plato.la.asu.edu/ftp/sipampl.pdf
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6.3 Computational results

The maximum number of iterations was limited to 400 and the precision
is � = 0:001 for all instances. If a solver needs more than 400 iterations to
obtain a solution and/or the accuracy of the obtained solution is greater
than the chosen value, then we will consider that the solver has failed in
solving the problem. The failure of a solver is indicated with a star (�),
in the column that indicates the number of iterations of the corresponding
solver.
Due to the mentioned limitations of the NSIPS, the computational re-

sults presented in the article have been divided in two cases:

i) Instances that satisfy the NSIPS limitations. We compare the
total number of functions an constraints evaluations for the solvers RP-
SALG1, RPSALG2, Penalty1 and Penalty2 as described in Tables 6 and
7. For the sake of brevity and clarity, we have included the numerical re-
sults as performance pro�les in Table 8. Figure 1 plots the performance
pro�le of the results. From Table 8 we can compare the four solvers with
respect to the probability of win over the rest, �s(1), and the probability
of success in solving a problem, ��s.

ii) Instances that do not satisfy the NSIPS limitations.We compare
the solvers RPSALG1, RPSALG2 for problems from 50 to 71 described
in tables 9 and 10, that do not satisfy the NSIPS limitations so we can
only solve them by using the RPSALG versions. In Tables 9 and 10
the speci�c numerical results for the solvers RPSALG1, RPSALG2 with
dimT > 1 are described.

7 Conclusions

This paper reports on the implementation of a penalty and smoothing
method for solving convex semi-in�nite programing problems inspired by
the �rst algorithm of Remez, the so-called RPSALG. It is known that one
of the main computational di¢ culties to solve semi-in�nity programs comes
from the non-convex optimization problem associated with the constraints,
S2, which must be solved e¢ ciently at each iteration. As an innovation of
this paper, we tackle this problem with the so-called Cutting Angle Method,
a global optimization procedure for solving Lipschitz programming prob-
lems. As far as we know, a global optimization software for solving S2 has
not been used before.
Two versions of RPSALG are proposed (RPSALG1 and RPSALG2),

implemented in C++ and run on Visual C++ 6.0. We compare them with
the best options of the two penalty methods solvers included in NSIPS,
called Penalty1 (based on penalty functions where no reference to Lagrange
multipliers is made) and Penalty2 (using an Augmented Lagrangian penalty
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function), and run on the student version of AMPL (with a maximum of
300 variables and a total of 300 objectives and constraints, and dimT = 1).
We verify its performance by conducting some numerical results with a set
of test problems. All the results have been obtained on the same computer.
Notice that, the termination criterion (21) used in RPSALG is computa-
tionally expensive due to the number of function evaluations performed at
each iteration. NSIPS just requires the evaluation of a relatively small vari-
able change at each iteration (with such termination criterion the number of
function evaluations performed for RPSALG would have been much lower).
Despite of this drawback there are several reasons to use it: a) the theoret-
ical coherence of the article, b) it provides accurate approximations of the
optimal value of the objective function together with good estimations of
the optimal solution, and c) it minimizes the risk of a false statement of
convergence.

The preliminary numerical considerations are as follows. From the sum-
mary results of the solvers evaluation of Table 8, we can conclude that
RPSALG2 is much faster than the other solvers while RPSALG1 is slightly
more stable than the others (it solves more than 96% of the instances in con-
trast with percentages in the interval 90%-95% for the three other solvers).
On the other hand, RPSALG can solve convex semi-in�nite programs of
class C1, without any limitation on the number of parametric constraints,
the number of general �nite constraints, and dimT as described on the
Tables 9 and 10.
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The results obtained are promising enough to suggest that RPSALG
could be a competitive solver for CSIP problems.

Appendix: performance pro�les

The benchmark results are generated by running the three solvers to be
compared on the collection of problems gathered in the SIPAMPL database
and recording the information of interest, in this case the number of function
evaluations (as it is independent of the available hardware). In this paper
we use the notion of performance pro�le due to Dolan and Moré [13]) as a
tool for comparing the performance of a set of solvers S on a test set P. For
each couple (p; s) 2 P � S we de�ne

fp;s := number of function evaluations required to solve problem p by solver s:

Let p 2 P be a problem solvable by solver s 2 S. We compare the perfor-
mance on problem p of solver s with the best performance of any solver on
the same problem by means of the performance ratio

rp;s :=
fp;s

minffp;s : s 2 Sg
� 1;

with rp;s = 1 if and only if s is a winner for p (i.e. it is at least as good,
for solving p; as any other solver of S). We also de�ne rp;s = rM when
solver s does not solve problem p; where rM is some scalar greater than the
maximum of the performance ratios rp;s of all couples (p; s) 2 P � S such
that p is solved by solver s: The choice of rM does not a¤ect the performance
evaluation.
The performance of solver s on any given problem may be of interest,

but we would like to obtain an overall assessment of the performance of the
solver. To this aim, we associate with each s 2 S a function �s : R+ ! [0; 1];
called performance pro�le of s; de�ned as the ratio

�s(t) =
sizefp 2 P : rp;s � tg

sizeP ; t � 0:

Obviously, �s is a stepwise non-decreasing function such that �s (t) = 0 for
all t 2 [0; 1[ and �s(1) is the relative frequency of wins of solver s over
the rest of the solvers. If p is taken at random from P; then rp;s can be
interpreted as a random variable and �s(1) as the probability of solver s
to win over the rest of the solvers while, for t > 1; �s(t) represents the
probability for solver s 2 S that a performance ratio rp;s is within a factor
t 2 R of the best possible ratio. So, in probabilist terms, �s can be seen as
a distribution function.
The de�nition of the performance pro�le for large values requires some

care. We assume that rp;s 2 [1; rM ] and that rp;s = rM only when problem
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p is not solved by solver s. As a result of this convention, �s(rM ) = 1, and
the number

��s := lim
t&rM

�s(t)

is the probability that the solver s 2 S solves problems of P.
Choosing a best solver for P is a bicriteria decision problem, the ob-

jectives being the probability of winning and the probability of solving a
problem, i.e.

�min�f(�s(1); ��s) : s 2 Sg :

Performance pro�les are relatively insensitive to changes in results on a
small number of problems. Additionally, they are also largely una¤ected by
small changes in results over many problems.
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