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INTRODUCTION

Among the small pelagic species that inhabit the
coastal waters of the NW Mediterranean Sea, anchovy
Engraulis encrasicolus and pilchard Sardina pilchar-
dus stand out in their abundance and importance to
fisheries. The horizontal and vertical distribution pat-
terns of the early stages of anchovy were addressed by
Palomera (1991, 1992) and García & Palomera (1996).
Much less attention has been focused on eggs and lar-
vae of pilchard. Direct information on pilchard spawn-
ing is limited to adult studies (Gómez-Larrañeta 1960)
and a 2-yr survey based on monthly plankton sampling

at 2 isolated inshore stations (Palomera & Rubiés 1979,
Palomera & Olivar 1996). While the main oceanogra-
phy and primary production features of the region are
well known (e.g. Estrada & Margalef 1988, Estrada &
Salat 1989, Font et al. 1990), information on prey distri-
bution and feeding habits of early stages of both spe-
cies is scarce (Tudela & Palomera 1995, E. Saiz pers.
comm.).

In the NW Mediterranean, larvae of anchovy and
pilchard are usually found over the continental shelf,
and we examined the continental shelf off the Ebro
River. It receives considerable input of inland water
from the river (around 400 m3 s–1, Guillén & Palanques
1997). On the upper continental slope off the shelf
break, water circulation is characterized by a shelf-
slope jet, affecting the whole water column, which
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flows to the southwest and transports roughly 1 Sver-
drup (106 m3 s–1) (Castellón et al. 1990, Millot 1999).
This current (local name: Catalan Current), is in
geostrophic balance with a typical shelf-slope density
front (Font et al. 1988). Strongly steered by topogra-
phy, the circulation is also subject to mesoscale vari-
ability due to open sea eddies (Tintoré et al. 1990, Gar-
cía et al. 1998), seasonal variability (Font et al. 1995)
and frontal oscillations (Alvarez et al. 1996). At the
Ebro shelf, the change in the orientation of the shelf
break in the northern part of the area has been
reported to affect the stability of the slope current in
that region (Font et al. 1990). Ageostrophic cross
frontal motions, such as filaments, have also been
reported in this area (Wang et al. 1988). All these
features contribute to enhance local productivity (Salat
et al. in press), but they may also exert adverse effects
by dispersing the larvae.

Thus, understanding the horizontal distribution pat-
terns of eggs and larvae requires information on cou-
pling between vertical distribution patterns and ocean
dynamics. Many studies have dealt with the role of
vertical distribution of the early ontogenetic stages of
fishes as an important factor affecting advection of
those stages (Leis 1986, Neilson & Perry 1990, Govoni
& Pietrafesa 1994, John & Ré 1995). The sampling
strategy employed, i.e. using fixed stations or follow-
ing a water parcel and the vertical resolution of the
gear used, greatly affects the results obtained on
vertical distribution patterns. Previous studies on the
vertical distribution of anchovy eggs and larvae in the
NW Mediterranean have been based on sampling at
fixed stations (Palomera 1991, Olivar & Sabatés 1997,
Olivar et al. 1998). These studies disclosed the shal-
low distribution of these larvae in the upper 30 m.
They also showed variability in abun-
dance associated with intrusions of
new water masses at the sampling
sites. Coombs et al. (1997) analyzed
discrete vertical distributions (every
5 m) for the species in the northern
Adriatic (a very shallow sea), and re-
ported a more restricted vertical distri-
bution, in the upper 10 m.

No studies exist for the vertical dis-
tribution of pilchard eggs and larvae
in the NW Mediterranean region. The
closest available references are the
examinations carried out by Andrés et
al. (1992), John & Ré (1995) and Far-
inha & Lopes (1996) off the Atlantic
coast of the Iberian Peninsula. All
these studies recorded the main con-
centrations of eggs and larvae in the
upper 60 m.

We examined whether the different environmental
conditions during the spawning seasons for anchovy
(summer) and pilchard (winter) influenced the hori-
zontal and vertical distribution patterns of the eggs
and larvae of these species on the continental shelf off
the Ebro River (NW Mediterranean).

MATERIALS AND METHODS

We surveyed the horizontal and vertical distribution
of eggs and larvae during the spawning season (sum-
mer for anchovy, winter for pilchard). The sampling
area was the same in both cases (Fig. 1), off the Ebro
River delta (NW Mediterranean).

The anchovy egg and larval study started with a hor-
izontal survey between 31 May and 2 June 1996. A
total of 23 stations were sampled using Bongo nets.
Hauls were oblique at a vessel towing speed of 2 knots,
from 95 m to the surface, depth permitting. The vol-
ume of water was measured by a flow meter placed in
the center of the net mouth. Egg and larval abundance
was standardized to number of individuals under
10 m2, on the basis of the volume of water filtered
through the net and the starting depth of the haul.

The pilchard egg and larval study started with a hor-
izontal survey between 4 and 13 February 1997. Due to
the lack of previous data on horizontal distribution of
pilchard eggs and larvae in the region, a larger num-
ber of stations were sampled during this cruise. A total
of 86 samplings were carried out using a Bongo net.
Hauls were vertical from 100 m to the surface, depth
permitting. Measurement of the volume of water fil-
tered and standardization of egg and larval abundance
were the same as in the anchovy survey.
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Fig. 1. Map of the study area
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In both studies, samples were initially examined on
board to locate patches of eggs and/or larvae for
release of the drogues, the start of the Lagrangian
experiments. Radio-tracked drogues attached to a sea
anchor calibrated to a depth of 10 m were launched
near the respective patches of eggs and/or larvae. This
depth was chosen to track the surface water parcel,
where most of the early stages of anchovy were found
(Palomera 1991). In the case of pilchard, with an
expected larger vertical range, the depth of the anchor
is not as critical because in winter the vertical shear is
weak. This depth is also useful to avoid the direct
effect of wind over the drogue. The distance between
drogues at the time of release was 0.7 nautical miles.
The water parcels tracked by the drogues were fol-
lowed and sampled every 4 to 6 h for 44 h during the
anchovy survey and 65 h during the pilchard survey.
Vertical temperature, salinity and fluorescence profiles
were obtained using a Sea Bird 25 CTD (Seabird Elec-
tronics Inc, Bellevue, WA), equipped with a Sea-Tech
fluorometer (Sea-Tech Inc, Corvallis, OR). Stratified
plankton samples were collected using a Longhurst-
Hardy Plankton Recorder (LHPR) net system (Spartel,
Devon, UK). In the anchovy Lagrangian survey, 7 sta-
tions were sampled in the daytime and 3 at night. In
the pilchard Lagrangian survey, 7 stations were sam-
pled in the daytime and 6 at night.

LHPR hauls were carried out at a vessel towing speed
of 3 to 3.5 knots while the net was descending. Eggs
and larvae were counted and pooled into 5 m intervals
from the surface to a depth of 70 to 80 m. The volume of
water filtered by the net was recorded by a flow meter
attached to the mouth of the net. Egg and larval abun-
dance was standardized to number per 100 m3.

Eggs stages were classified in: (1) eggs without
embryo; (2) eggs with early stage embryos (tail still

attached); and (3) eggs with late stage embryos in
which the tail was free. Larvae were measured to the
nearest 0.1 mm and classified by 2 mm size intervals.

Microzooplankton samples were collected during
the winter survey with the LHPR net using a mesh size
of 53 µm. Nauplii and copepodite concentrations were
analyzed for 3 daytime stations. Because no simultane-
ous microzooplankton data were recorded for the sum-
mer cruise, we used data obtained from 3 stations sam-
pled in June 1993 in a comparable situation in the
same region (E. Sáiz pers. comm.).

RESULTS

Anchovy

Horizontal egg and larval distributions covered the
entire shelf, with the main concentrations near the
shelf break (180 to 200 m). Egg densities attained val-
ues of 1000 to 7000 per 10 m2 (Fig. 2). Larval densities
were lower, <1000 larvae per 10 m2. The main center of
egg abundance was located over the 150 m isobath,
between 15 and 25 nautical miles offshore. This was
the position chosen to release 2 drogues for the
Lagrangian experiment. The release site was located
near the main course of the Catalan Current that flows
along the shelf break. The track of the drogues showed
a net displacement towards the southeast (Fig. 2).

No significant changes in physical parameters were
detected over the Lagrangian study (Fig. 3), indicating
that the drogues followed the same water parcel. The
distance between the 2 drogues never exceeded 1 nau-
tical mile. Vertical temperature profiles were typical
for the season, showing the seasonal thermocline
development. The sharpest temperature gradient was
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recorded between 5 and 30 m in depth. Relatively
homogeneous temperature values of between 13.5 and
13°C were found below 60 m. Fluorescence profiles
consistently showed a deep fluorescence maximum
layer at a depth between 40 and 60 m over the study.

Anchovy eggs and larvae were found throughout the
entire water column sampled but were mainly concen-
trated in the upper 20 m (Fig. 4). Eggs had a shallower
distribution, with 90% of the eggs found in the upper
15 m, while the main larval concentrations exhibited a
broader depth distribution that spanned the upper
40 m. There were no day/night differences in the ver-
tical distribution of the eggs, whereas larval abun-
dance was concentrated in the upper 10 m at night
(Fig. 4).

Early stage eggs (without embryo or before tail sep-
aration) were nearly absent below 30 m. Later stage
egg abundance increased below that depth (Fig. 5).

The larvae collected ranged in size from ca 2.5 to
15 mm, with a modal size at 3 to 4 mm (Fig. 6). The
highest concentrations of larvae smaller than 6 mm
were located in the upper 20 m in both daytime and
nighttime hauls. Larvae larger than 6 mm followed a
different pattern, with a tendency towards concentra-
tion in the upper layers at night and a more disperse
pattern during daylight hours. No larvae larger than
12 mm were collected in daytime hauls at the surface
(Fig. 6).

Pilchard

Horizontal distribution of pilchard eggs and larvae in
February was more concentrated over the shelf than
anchovy distribution in June. Egg densities reached
values of from 1000 to ca 10 000 per 10 m2, while larval
densities were from 1000 to ca 4000 per 10 m2. Pilchard
eggs and larvae were mainly present over the broad
portion of the shelf south of the Ebro River delta. The
main concentrations of both eggs and larvae were
between the 70 to 100 m isobaths, 15 nautical miles off-
shore. That zone was therefore chosen for the release
of 3 drogues for the Lagrangian experiment. The zone
was located outside the direct influence of the river
discharges affecting the coastal strip and far enough
from the shelf break to escape the direct influence of
the Catalan Current. The track of the drogues revealed
a circular clockwise trajectory (Fig. 7).

Temperature and salinity profiles varied slightly
during the study (Fig. 8), indicating that the drogues
followed the same water parcel. The distance be-
tween the drogues was always under 1 nautical mile.
Mean vertical temperature profiles revealed a homo-
geneous water column from the surface to the bottom,
with temperatures ranging between 13.1 and 13.4°C,
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Fig. 3. Mean vertical temperature (°C), salinity (psu), σ t (kg
m–3) and fluorescence profiles during the Lagrangian survey
in June 1996 (horizontal lines indicate standard deviations)
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the typical situation in this region in
winter. Sigma-t and salinity profiles
showed values slightly higher in the
upper 30 m, and quite homogeneous
below that depth. The highest flu-
orescence values during the study
were from the surface down to 20 m
(Fig. 8).

Nauplii abundance was highest be-
tween 10 and 35 m, with a maximum at
15 m. Copepodites were most abun-
dant between 20 and 40 m with peak at
35 m (Fig. 9).

Pilchard eggs and larvae appeared
throughout the sampled water column,
but were most abundant in the upper
50 m (Fig. 10). Maximum egg abun-
dance (44%) was in the upper 10 m of
the water column both during the day-
time and at night. Larvae were con-
centrated mainly between 10 and 30 m
in daytime hauls, exhibiting a broader
distribution at night and a deeper peak
(Fig. 10). The vertical egg distribution
pattern showed that early stages were
located below 15 m. Later egg stages
were more concentrated in the upper
5 m (Fig. 11).

The pilchard larvae collected ranged
from 2.5 to 21.5 mm in size, with a
modal size at 8 to 9 mm. The vertical
larval size distribution revealed the
migration pattern of the larger larvae
(Fig. 12). The highest concentrations of
larvae smaller than 4 mm were located
between 40 and 50 m in both daytime
and nighttime hauls. Highest abun-
dance of larvae from 4 to 8 mm in size was between 10
and 20 m during the daytime and more dispersed in
the water column at night. Larvae larger than 8 mm
exhibited distinct differences in distribution, with a
pattern similar to that of the smaller sizes in the day-
time but increased abundance in the layers below 35 m
at night.

DISCUSSION

As a general rule, during the spawning period of
anchovy in the NW Mediterranean (summer), nutri-
ents are depleted at the surface because of the
strong thermal stratification. In such conditions pro-
ductivity in the water column is confined to the Deep
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Fig. 5. Engraulis encrasi-
colus. Mean vertical dis-
tribution of 3 develop-
mental stages of eggs in
June 1996. (See ‘Materi-
als and methods’ for clas-

sification)
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Chlorophyll Maximum (DCM) (Estrada & Salat 1989).
The presence of a DCM is a generalized feature in
most oligotrophic seas in the period of water column
stratification (Varela et al. 1994). During the spawn-
ing period of pilchard (winter), low temperatures and
vertical mixing associated with wind storms affect

the entire surface layer (usually >100 m). Mixing
over the continental shelf involves the water column
as a whole, carrying nutrients to the entire euphotic
zone. Consequently, in the winter, maximum pro-
ductivity over the continental shelf is centered near
the surface.

Main environmental features during each
survey were those expected for the respective
season. The survey carried out in June yielded
evidence of seasonal thermocline formation
and the presence of a pronounced DCM. In
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February there was a well-mixed water column; peak
chlorophyll values were found near the surface.

The general vertical egg and larval distributions of
both Engraulis encrasicolus and Sardina pilchardus
recorded in the present study were consistent with
those reported for other pilchard and anchovy species
around the world (John 1982, Boehlert et al. 1985,
Fletcher 1999, Matsuura & Olivar 1999, Moser & Pom-
meranz 1999). From the evidence of the location of the
early egg stages, anchovy spawned close to the surface
at depths of <10 m; larvae in their first stages of devel-
opment exhibited the same surface distribution, above
the level of the thermocline (15 to 20 m). In contrast,
the absence of vertical gradients in winter may con-

tribute to the wider vertical distribution observed for
pilchard eggs (>50 m), either due to spawning over a
wider vertical range, as compared to anchovy, or by
active vertical mixing of the water column.

Anchovy larvae larger than 6 mm displayed a wider
vertical range due to vertical migrations towards
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deeper waters during the day. This size-related diel
migration is a feature known from larvae of other fish
species (Willis & Pearcy 1982, Munk et al. 1989, Lough
& Potter 1993, Gronkjaer & Wieland 1997). Blaxter &
Hunter (1982) concluded that vertical migrations of
larvae should follow the same pattern as those in
adults, upwards to the surface at dusk and downwards
at dawn. Anchovy, and particularly Engraulis encrasi-
colus larvae larger than 6 mm, kept close to that migra-
tion pattern. However, according to our findings, this
was not true for the pilchard Sardina pilchardus.
Fletcher (1999) reported similar results for pilchard off
southern Australia. Thus, the night vertical displace-
ment by pilchard larvae, in a direction opposite to that
taken by anchovy larvae, merits special attention.

Numerous studies (Pearre 1979, Heath et al. 1988,
Munk et al. 1989, Ponton & Fortier 1992) presented
evidence that light, food, or a combination of the 2 sig-
nificantly determined vertical movements of larvae.
Perry & Neilson (1988), Davis et al. (1990) and Olivar
(1990), however, have noted the importance of well-
established thermoclines as barriers to vertical migra-
tion, but other research has suggested that a thermo-
cline is not the prime factor influencing vertical larval
distributions; food availability and larval behavior are
more important (Southward & Barret 1983, Gray 1996).
According to Conway et al. (1998), feeding by anchovy
occurs mainly during daytime. The vertical distribution
of anchovy larvae recorded during the daytime, down
to 40–60 m, would appear to be linked to the layer of
highest production, the DCM. Main microzooplankton
concentrations in this area during summer have been
found to be associated with the DCM, above, and at
the DCM (E. Sáiz pers. comm.).

Sardina pilchardus spawns when the water column
is well mixed. The contrasting hydrography, with re-
spect to anchovy spawning season, has been pointed
out to be responsible for the different vertical distribu-
tions at early stages of development. This contrast can
also influence the migration patterns of larger larvae.
Feeding by pilchard, like anchovy, occurs mainly dur-
ing the daytime (Blaxter 1969, Conway et al. 1994).
The daytime distribution of pilchard larvae, between 5
and 40 m, closely conformed to the zone with high con-
centrations of potential food items. Although the high-
est fluorescence values were recorded in the upper
20 m, high microzooplankton concentrations ranged
somewhat deeper, from 10 to 35 m. The main food
items for pilchard larvae are nauplii and the cope-
podite stages of copepods (Conway et al. 1994). Thus,
the vertical location of the larvae during daylight could
also be related to feeding.

At night anchovy larvae larger than 6 mm migrated
to the surface, as previously reported for Mediter-
ranean anchovy (Palomera 1991, Olivar & Sabatés

1997). This is consistent with the pattern observed in
other anchovy species, which has been related to
energy-saving mechanisms (Hunter & Sánchez 1976).
The broader and relatively deeper nighttime distribu-
tions observed for pilchard have also been observed in
other fish larvae (Boehlert et al. 1985, Brewer & Klep-
pel 1986, Heath et al. 1988, Leis 1991, Ponton & Fortier
1992), and have been attributed to passive sinking by
larvae (Munk et al. 1989, Richards et al. 1996).

Information on the diel cycle of swim bladder infla-
tion in the larvae of several clupeoid species (see Neil-
son & Perry 1990, for a review) indicated that larvae
migrate to the surface at night to swallow air and fill
their swim bladders, but for some species subsequent
slow sinking of larvae at night has also been observed.
This may provide an explanation for the results re-
corded in the present study. Anchovy larvae that
migrate upward to fill their gas bladders at night are
confined to those layers by the thermocline during the
nocturnal resting period. In winter, as there are no
physical barriers to keep pilchard larvae confined to
the upper layers, slow sinking may occur during the
period of darkness.

In summary, light and food availability apparently
regulate the vertical distributions of the larvae of these
2 species, which spawn in diametrically opposite sea-
sons of the annual cycle. Larvae tend to aggregate in
the respectively more productive layers during the
hours of daylight. At night, during periods of thermal
stratification, anchovy larvae are kept near the surface,
while pilchard larvae may be subjected to a passive
slow sinking.

The horizontal patterns for the egg and larval distri-
butions of Engraulis encrasicolus and Sardina pil-
chardus observed in this study can also be related to
the areas of higher productivity. In summer, the chloro-
phyll values at the DCM are higher in the vicinity of
the frontal zone, on account of the associated meso-
scale activity (Estrada & Margalef 1988, Masó et al.
1998). In the survey carried out in June 1996, anchovy
larvae were mainly concentrated near the shelf break,
the main frontal area. Thus, the horizontal distribution
of these larvae mirrored the productivity distribution.
In winter, productivity is higher over the continental
shelf than further offshore, because vertical mixing
there spans the entire water column. The horizontal
distribution of pilchard larvae found in February 1997
also reflected this pattern, with peak abundance
recorded at the center of the continental shelf.

The large concentrations of anchovy larvae found
near the main frontal area means that they are exposed
to horizontal displacements caused by the shelf-slope
current associated with the front. Long-distance
entrainment of anchovy larvae along the continental
slope in the NW Mediterranean has been reported and
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explained as a larval export mechanism (Sabatés et al.
2001). In terms of potential dispersal, that pattern con-
trasts with the central distribution of pilchard on the
shelf, where currents are less intense and circulation is
usually anticyclonic (Font et al. 1990). Consequently,
the early stages of pilchard are less exposed to hori-
zontal displacement and will tend to remain inside the
200 m isobath.

The different distribution patterns found can be
attributed to the different seasonal mechanisms that
act to enhance productivity. Although our sampling
was not specifically addressed to quantify the coupling
of prey distributions and ichthyoplankton, both the
horizontal and the vertical egg and larval distributions
recorded indicate that the spawning strategies of the 2
species are adapted to the seasonality of the produc-
tive mechanisms operating in the region.
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