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Abstract

This research work proposes mathematical models, based on arti�cial neural network (ANN) with back-propagation 
algorithm, adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM), for prediction of 
material removal rate (MRR) and surface roughness (SR) of helium-assisted electrical discharge machining of D3 die steel. 
The helium gas-assisted die-sinking EDM with perforated electrode was carried out by an EDM machine. For the present 
experimental work, discharge current, pulse on time, duty cycle, electrode rotation and discharge gas pressure were 
selected as process factors, while MRR and SR were chosen as process responses. Analysis of variance (ANOVA) was done 
to examine the adequacy of the developed model. The �t summary con�rmed that the quadratic model is statistically 
appropriate and the lack of �t is insigni�cant. Root mean square error and absolute standard deviation, obtained through 
RSM, were also used for developing the model and for its predicting abilities through ANN and ANFIS. The experimental 
and predicted values of MRR and SR during the process, obtained by RSM, ANN and ANFIS, were found to be in accord 
with each other. However, the ANFIS technique proved to be more �tting to the responses as compared to the ANN and 
the RSM. The optimum value of the MRR at 28.54 mg/min and the SR at 4.21 µm was obtained with optimal process 
parameters by optimization of developed statistical models using genetic algorithm.
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1 Introduction

Electrical discharge machining (EDM) is a widely used non-
conventional machining process, which utilizes heat from 
sparks to remove materials from sti� and hard work pieces 
which cannot be machined by conventional methods. The 
process is used for fabrication of molds, dies, automotive 
and aeronautical components [1]. However, moderate 
material removal rate (MRR), excessive tool wear rate (TWR) 
and substandard surface quality are major shortcomings 
of the EDM process that are yet to be resolved. While it 
is an important means for machining hard materials and 

ceramic composites, one also has to keep in mind that 
productivity with a high level of accuracy is always a mat-
ter of priority in any process and EDM lacks in that aspect 
[2]. Researchers have long been engaged to �nd ways for 
improving the MRR. Some of the widely used methods 
include high pressure gas �ow through thin-walled pipe 
tool electrode, ultrasonic-assisted EDM, rotary EDM with 
ball burnishing, vibratory electrode and a rotary electrode, 
integration of work piece vibration and tool vibration with 
electrode rotation, electrodes with peripheral slots, ultra-
sonic-assisted cryogenically cooled electrode, etc.
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1.1  Literature review with aspects of improved 
machining performance of EDM

Mohan et al. [3] investigated the influence of tool rota-
tion on the machinability of EDM operation. They con-
ducted impact analysis of a conventional stationary 
electrode and a rotary electrode on output responses. 
Kuppan et al. [4] carried out investigations to analyze 
the influence of tool rotation during the EDM drilling 
of Inconel 718. Teimouri and Baseri [5] studied impelled 
action of tool rotations and different intensities of 
magnetic field on EDM machining. They compared the 
machining performance of the conventional EDM and 
the magnetic field-assisted rotary EDM with the same 
processing parameters. Abdulkareem et al. [6] carried out 
experimentation to study the effect of cryogenic cooled 
electrode on process responses during EDM of titanium 
alloy work piece. Srivastava and Pandey [7] investigated 
the effect of ultrasonic-assisted cryogenically cooled tool 
on machinability of the EDM process. They compared the 
effectiveness of the concerned electrode with a conven-
tional electrode as well as with a cryogenically cooled 
electrode in terms of process responses. Aliakbari and 
Baseri [8] applied the Taguchi-based design of experi-
ment (DOE) to obtain the optimum process factors for 
rotary-assisted multi-hole electrode EDM process. The 
authors also studied the effect of machining factors on 
responses, such as SR, MRR, EWR and overcut. Gu et al. 
[9] did a feasibility analysis of EDM on Ti6Al4 V by using 
bundled electrode. They also undertook a comparative 
analysis of process responses by using bundled tool 
and by using conventional solid tool while conducting 
EDM operation. Singh et al. [10] studied the effect of 
air-assisted multi-hole rotary tool electrodes during the 
EDM process. They found that its use improved the MRR 
and reduced the EWR as compared to solid rotary tool 
electrodes under the same machining conditions.

1.2  Literature review in correlation of soft 
computing model development

In the last few decades, various researchers have pro-
posed different modeling tools to establish a correlation 
between machining parameters and prominent output 
responses like MRR and SR. Mandal et al. [11] used ANN 
to develop models to study the MRR and the absolute 
tool wear rate. Further, they applied a non-dominating 
sorting genetic algorithm to find the optimum value 
of process responses. Assarzadeh and Ghoreshi [12] 
applied ANN to develop models and to get optimal 
value of responses, viz. the MRR and the SR, during the 

EDM operation. Pradhan et al. [13] proposed two differ-
ent ANN-based models for prediction of the SR during 
the EDM process. Their finding established that back-
propagation neural network model gives more accurate 
results than radial basis function neural network model. 
Pataowari et al. [14] developed models to determine 
average layer thickness and material transfer rate dur-
ing EDM operation by applying ANN. Panda [15] used 
neuro-grey modeling approach for optimization of pro-
cess responses, such as depth of heat-affected zone, SR, 
MRR and micro-hardness of machined surface. Kumar 
et al. [16] applied ANN paired with Taguchi technique for 
modeling and optimization of the SR. Kumar and Choud-
hury [17] used ANN techniques to determine the SR and 
wheel wear during Electrical Discharge Diamond Grind-
ing (EDDG) of high-speed steel (HSS) specimen. They 
observed that ANN-based model makes more precise 
assessment in comparison with regression-based model. 
Agarwal et  al. [18] developed models to determine 
the MRR and the SR during EDGC by applying an ANN 
method. Kar et al. [19] optimized the SR parameters dur-
ing electrodischarge coating process by applying fuzzy 
logic coupled with the Taguchi technique. Unune et al. 
[20] used an ANN and RSM-based technique to develop 
a model for determining MRR and SR through EDGC of 
Inconel 718. Prakash et al. [21] obtained optimum value 
of the input parameters in powder mixed EDM by using 
the Taguchi-based RSM coupled with a non-dominated 
sorting genetic algorithm.

1.3  Research gaps and novelty of this study

• Very few studies have been performed on the applica-
tion of liquid cum gaseous dielectrics in hybrid EDM, 
which would ensure better MRR and surface �nish in 
gas-assisted EDM.

• Development of the statistical model while consider-
ing dielectric properties, such as discharge gas pressure 
and tool rotation speed for additional investigation, has 
not been addressed in the literature.

• Very few investigations are there on the comparison 
of statistical and soft computing models. Most of the 
researches have been focused on comparison of the 
soft computing models in EDM.

• A small number of studies have been performed for 
evaluation and prediction of EDM responses like MRR 
and SR using ANN and ANFIS modeling techniques.

• Comparative study among RSM, ANN and ANFIS mod-
els has not been addressed in the literature.

In view of the aforementioned issues, in the present 
work, hybrid EDM technique, using liquid–gaseous die-
lectrics, has been proposed to utilize the advantage of 
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oil EDM as well as dry EDM. Compressed helium gas has 
been used in die-sinking EDM to prevent the oxidation 
reaction, chances of �re and hazards during the machin-
ing operation. Central composite rotatable design (CCRD) 
has also been used to plan the experimentation. Based on 
the obtained results, ANN, ANFIS and RSM-based models 
have been developed to assess the in�uence of various 
machining factors on MRR and SR during helium-assisted 
electrical discharge machining (HAEDM) process. Sta-
tistical analysis of the experimental data has been done 
using analysis of variance (ANOVA). ANOVA enables to 
get insight into the machining process and distinguish 
between the factors which have signi�cant e�ects on the 
process responses. The e�cacy of the established models 
in predications of machinability has been compared at the 
end. This type of study would assist in evolving a suitable 
model for simulation of the EDM process.

2  Experimentation

2.1  Aspects of work piece and tool materials

Experiments were conducted on D3 die steel, which is 
broadly utilized for making molds and dies. A rectangular 
work piece with dimensions of 20 mm × 15 mm × 15 mm 
was used along with a perforated tube as a tool electrode 
to ensure smooth �ow of high-velocity gas through it. 
The work piece had hardness of 51HRC. Table 1 shows the 
chemical composition of the selected work piece.

2.2  Details of tool design

A schematic of the perforated tube electrode is presented 
in Fig. 1a. In order to ensure e�ective transfer of heat from 
tool tip, a tool having diameter of 8.35 mm and length of 
70 mm was chosen. A review of literature disclosed that 
among all the parameters, it is the discharge parameters, 
viz. discharge current, pulse on time, duty cycle, tool speed 
and discharge gas pressure, that signi�cantly in�uence the 
EDM operation. Accordingly, �ve factors were chosen for 
the present study. The experimentations were carried out 
involving these �ve factors at various levels. The values of 
these factors were selected on the basis of preparatory 
experiments and capacity of the machines. When reverse 
polarity was used (i.e., tool is at positive terminal and work-
piece is at negative terminal), high energy electrons strike 
the workpiece and the positively charged ions strike the 
tool resulting in better material removal from workpiece. 
Therefore, experimentation is conducted with reverse 
polarity.

Details of machining parameters with their range are 
given in Table 2. The gas-assisted die-sinking EDM was 
conducted with a perforated tool. For all the experi-
ments, machining time was �xed at 15 min. The dielectric 
medium, selected for the present experiment, was kero-
sene. Figure 1b illustrates the schematic of the experiment 
setup, developed to carry out the HAEDM process.

The present study examined e�ects of various process 
factors on output through the CCRD method. A total of 
32 experiments were conducted using the CCRD method 

Table 1  Chemical composition 
of specimen

Element C Si Cr Mn P S Fe

wt. (%) 1.80 0.50 9.85 0.40 0.05 0.05 Rest

Fig. 1  Schematic diagram of a tool electrode b experiment setup mounted on EDM machine. [10]
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with independent variables at 5 different levels. The 
machined specimens were cleaned with acetone. An elec-
tronic weighing balance (least count of 0.1 mg) was used 
for weight measurement. In order to ensure an accurate 
machining time calculations, electronic timer (accuracy of 
0.1 s) was used. A portable SR tester, Mitutoyo (model: SJ 
201P), was used to quantify the SR of the machined work 
piece.

3  Results and discussions

3.1  Analysis of variance (ANOVA)

Statistical analysis of the experimental findings was 
done by ANOVA. The ANOVA of a second-order model 
of the HAEDM process for the MRR and the SR is shown 
in Tables 3 and 4. The �t summary suggested that the 
quadratic model for the MRR and the SR is statistically 

appropriate and the lack of �t is not signi�cant. For the 
model, the value of “Prob > F” is smaller than 0.05 (95% 
con�dence). Therefore, it con�rms that the parameters 
in the model have notable influence on the output 
responses. The value of R2 shows that regression models 
have a pro�cient correlation between independent vari-
ables and the responses as well as o�er a good explana-
tion of this relationship. Equations 1 and 2 represent the 
statistical equations of the MRR and the SR, respectively.

The normal distribution of residuals (refer Fig. 2) reveals 
that there is no distinct paradigm and uncommon struc-
ture. This suggests that the developed models are appro-
priate and can be used to examine signi�cant in�uence of 
distinct factors on the process responses.

Contribution percentage of each parameter of the 
model to the MRR and the SR is depicted in Fig. 3. Fig-
ure 3a reveals that discharge current, pulse on time and 

(1)

MRR = −22.4 −
(

1.93 × Ip
)

+
(

0.0120 × T
on

)

+ (33.8 × DC)

+ (0.0141 × RPM) + (1.92 × GP) +

(

0.676 × I2
p

)

−
(

0.000013 × RPM
2
)

−
(

0.00394 × Ip × T
on

)

−
(

0.00118 × T
on

× GP
)

− (2.01 × DC × GP)

(2)

SR = 3.38 − (0.013 × Ip) − (0.0102 × T
on
) + (0.34 × DC)

+ (0.00160 × RPM) + (0.0183 × GP) + (0.000812 × Ip × T
on
)

+ (0.0090 × T
on

× DC) − (0.000003 × T
on

× RPM)

Table 2  Process factors with ranges

Machining factors Range

Discharge current ( Ip ) ( A) 3,4,5,6,7

Pulse on time ( T
on

 ) ( �s) 100,200,300,400,500

Duty cycle ( DC) 0.52,0.58,0.64,0.70,0.76

Tool rotation speed ( rpm) 200,400,600,800,1000

Gas pressure ( GP ) ( mmHg) 4,8,12,16,20

Table 3  ANOVA results for MRR model (considering signi�cant 
terms only)

S = 0.706698, PRESS = 102.972, R2 = 98.92%, R2 (pred) = 85.41%, R2 
(adj) = 97.02%

Source DF Adj SS Adj MS F P

Regression 20 514.691 25.735 51.53 0.000

Linear 5 472.897 94.579 189.38 0.000

Current 1 318.573 318.573 637.88 0.000

Ton 1 114.319 114.319 228.90 0.000

DC 1 8.120 8.120 16.26 0.002

Gas pressure 1 29.748 29.748 59.57 0.000

Square 5 23.483 4.697 9.40 0.001

Current*current 1 13.595 13.595 27.22 0.000

RPM*RPM 1 7.794 7.794 15.61 0.002

Interaction 10 18.311 1.831 3.67 0.020

DC*gas pressure 1 3.706 3.706 7.42 0.020

Ton* gas pressure 1 3.572 3.572 7.15 0.022

Residual error 11 5.494 0.499 – –

Lack of �t 6 3.892 0.649 2.02 0.228

Pure error 5 1.602 0.320 – –

Total 31 520.185 – – –

Table 4  ANOVA results for SR model (considering signi�cant terms 
only)

S = 0.0824588, PRESS = 1.24377, R2 = 98.62%, R2 (pred) = 77.71%, R2 
(adj) = 96.11%

Source DF Adj SS Adj MS F P

Regression 20 5.34059 0.26703 39.27 0.000

Linear 5 3.77768 0.75554 111.12 0.000

Current 1 1.27882 1.27882 188.08 0.000

Ton 1 0.97607 0.97607 143.55 0.000

DC 1 0.79207 0.79207 116.49 0.000

RPM 1 0.60167 0.60167 88.49 0.000

Gas pressure 1 0.12907 0.12907 18.98 0.001

Interaction 10 1.49265 1.49265 21.95 0.000

Current*ton 1 0.10562 0.10562 15.53 0.002

DC*ton 1 0.04622 0.04622 6.80 0.021

Ton*RPM 1 0.04623 0.04623 6.80 0.021

DC*gas pressure 1 1.19902 1.19902 176.34 0.000

Residual error 11 0.07479 0.00680 – –

Lack of �t 6 0.04546 0.00758 1.29 0.398

Pure error 5 0.02933 0.00587 – –

Total 31 5.41539 – – –
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gas pressure are crucial parameters a�ecting the MRR. Of 
them, the discharge current is found to be the most nota-
ble parameter a�ecting the MRR with a contribution of 
63%. Figure 3b reveals that discharge current, pulse on 
time, duty cycle and tool speed are critical factors in�uenc-
ing the SR. Out of them, discharge current is found to be 
the most notable factor in�uencing the SR with a contribu-
tion of 32%, which is followed by pulse on time and duty 
cycle with a contribution of 25% and 20%, respectively.

3.2  E�ects of process parameters

Figure 4 shows the main e�ect plots for the MRR. It can be 
observed that the MRR increases with a rise in discharge 

current and duty cycle. Again, from the plot, it can be seen 
that the MRR gets reduced with an increase in pulse on 
time and tool speed. On the other hand, the MRR goes 
up with discharge gas pressure. It is probably the �ushing 
e�ciency of the process that improves with an enhance-
ment in discharge gas pressure, which, in turn, contributes 
to a better MRR. However, high tool rotation results in an 
increased turbulence, which stirs up the plasma channel 
[25]. As a result, discharge energy decreases and leads to 
a lower MRR after tool speed reaches a certain value. Fig-
ure 5 presents the main e�ects plots for the SR. It can be 
seen that the SR increases with a rise in discharge current 
and duty cycle and reduces with a rise in pulse on time. 
The SR also shows an increase with discharge gas pressure 

Fig. 2  Normal probability plot of a residual for MRR b residuals for SR

Fig. 3  Contribution (%) of each parameter a on MRR b on SR, for HAEDM
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and tool speed. When the tool rpm and discharge gas pres-
sure are increased, the �ushing action improves, resulting 
in low deposition of the recast layer. Low deposition of 
carbon leads to larger size craters, thereby enhancing the 
SR. Yan et al. [23] and Chattopadhyay et al. [24] in their 
investigations have also found the same e�ect of tool rota-
tion during the EDM.

3.3  Prediction of MRR and SR in HAEDM

ANN is the most widely used soft computing technique 
to unravel complex nonlinear problems. This technique 

offers a flexibility of learning the mapping between the 
input factors and the process responses to sort out com-
plicated problems [16]. The neural network consists of 
immensely interconnected neural computing elements. 
The neural elements have a competency to learn and 
extract information, and they are ready for use [20]. 
They can rehearse like human by gathering information 
during continuous learning pursuits. Because of these 
computational capabilities of ANN, it was chosen in the 
modeling of the HAEDM process. In the present work, 
the MATLAB software was used to design the best ANN 
architecture. The input layer corresponded to discharge 

Fig. 4  Main e�ects plots for 
MRR

Fig. 5  Main e�ects plots for SR
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current, pulse on time, duty cycle, tool speed and dis-
charge gas pressure. The output layer corresponded to 
the MRR or the SR. In this model, the input layer is associ-
ated with a hidden layer neuron and the hidden layer is 
associated with output layers. After extensive trials and 
on the basis of functioning of the network, ANN models 
for the MRR and the SR were developed. In these models, 
one hidden layer consists of 15 neurons, 5 input and 1 
output neurons as shown in Fig. 6. For swift and super-
vised learning, Levenberg–Marquardt back-propagation 
neural network algorithm was used during training of 
the network [14–16]. The network performance is meas-
ured using mean square error (MSE) and average error 
percentage. MSE can be calculated as:

(3)MSE =
1

X × Y

X
∑

i=1

Y
∑

j=1

(

pj − qj
)

where X is the number of output nodes, Y is the total num-
ber of training data, pj is output of the jth neuron and qj is 
the predicted value of jth neuron [20].

In the present ANN model for the MRR and the SR 
during simulating, the values of correlation coefficients 
(R) are 0.9989 and 0.9986 as shown in Fig. 7. From the 
statistical point of view, a network can more precisely 
correlate the process input to the output response if 
the value of the correlation coefficients is closer to 1. 
Therefore, for a wide range of machining conditions, a 
selected BP neural network effectively maps the process 
factors for the process output responses [11]. Figure 8 
shows the comparison of actual and predicted value of 
the MRR and the SR by FFBP-ANN. From the figure, one 
can observe an accord between the measured and the 
predicted values as attained by the FFBP-ANN models.

3.4  Prediction of MRR and SR in HAEDM by ANFIS

ANFIS is a hybrid model which integrates ANN’s adaptive 
potential and fuzzy logic’s qualitative techniques. ANFIS 
exploits the competency of the ANN and fuzzy logic and 
simultaneously prevails over their respective limitations 
[22]. In the present investigation, the ANFIS technique was 
applied to establish the correlation between input factors 
and output response, such as the MRR and the SR during 

Fig. 6  ANN structure 5-15-1

Fig. 7  Linear regression analysis between the experimental values and predicted values by FFBP-ANN for training, validation, testing and 
overall a of MRR b of SR
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the HAEDM process. Modeling of process responses of the 
HAEDM process by ANFIS technique consists of two impor-
tant stages: training and testing. For the ANFIS modeling, 
it is mandatory that all the process input factors should be 
quantitative. Here, as per the available design matrix 32 
experiment data, a total of 24 data were arbitrarily selected 
for the training of ANFIS network. The remaining 8 data, 
which were not considered for training, were used for test-
ing of the ANFIS model. The accuracy of the ANFIS model 
depends upon a few important factors, which are listed 
in Table 5.

Figure 9 shows that there is a good accord between 
the measured values of the MRR and the SR as well as the 
predicted values through the ANFIS model. From this �g-
ure, the developed models can be seen to have precisely 
predicted the value of the MRR and the SR. The precision 
of the prediction model was evaluated by using the root 

mean square error (RMSE) [20]. The following equation can 
be used to obtain the RMSE.

where T is the total training data, Xi is the value of the 
measured data and Yi is the value, predicted by the ANFIS 
model.

The prediction potential of any model can be deter-
mined only with an entirely new set of data. Hence, all the 
developed models were tested using a set of data, not pre-
viously used during the experimentation process. The set 
of data used for con�rmation of experiments are listed in 
Table 6. The experimental and predicted results by RSM, 
ANN and ANFIS models were seen to have fewer fallacies. 
Thus, it can be con�rmed that the developed models are 
appropriate and authentic in prediction of the MRR and 
the SR.

3.5  Comparison of predicted MRR and SR by ANN, 
ANFIS, and RSM

A comparison of predicted values of responses by RSM, 
ANN, and ANFIS models and measured values correspond-
ing to each trial of the HAEDM process for the MRR and 
the SR is shown in Table 7. The precision of prediction 

(4)RMSE =

√

√

√

√
1

T

T
∑

i=1

(

X
i
− Y

i

)2
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Fig. 8  Comparison of actual and predicted value by FFBP-ANN for a MRR b SR

Table 5  ANFIS architecture and training parameters

Number of nodes 524

Number of linear parameters 1458

Total number of parameters 1503

Number of training data pairs 24

Number of checking data pairs 8

Number of fuzzy rules 243

Membership function Triangular
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model was assessed by using the standard deviation, 
mean square error (MSE), RMSE and is listed in Table 8. 
From these values, it can be concluded that the ANFIS 
model enables more authentic and precise prediction in 
comparison with RSM and ANN models. A comparison of 
experimental and predicted values of MRR and SR by ANN, 
ANFIS and RSM models is presented in Figs. 10 and 11, 
respectively.   

3.6  Optimization of HAEDM process

So as to get the optimal machining parameters in 
HAEDM process, the multi- objective optimization was 
performed utilizing genetic algorithm strategy. The 

statistical response model of MRR and SR shown in 
Eqs. (1) and (2) for HAEDM process is utilized in the opti-
mization. In the present work, the goal is to maximize 
MRR and minimize SR within the parameters range as 
mentioned in Table 2.

The Pareto-optimal front of non-dominated arrange-
ment is appeared in Fig. 12. Figure 12 demonstrates a 
continuous Pareto-optimal front of non-dominated 
results, which shows that reasonable mixes of input 
parameters found in all the whole inquiry space. The 

Minimize f = f1 + f
−1

2
,

where f1 = SR and f2 = MRR
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Fig. 9  Comparison of actual and predicted value by ANFIS for a MRR b SR

Table 6  Con�rmation 
experiments

Exp. no. Machining parameters MRR (mg/min) SR (µm)

I Ton DC RPM GP Exp. RSM ANN ANFIS Exp. RSM ANN ANFIS

1 7 300 0.58 600 20 24.02 23.93 24 24.02 4.52 4.48 4.48 4.52

2 4 100 0.64 400 12 11.75 11.70 11.74 11.75 4.26 4.17 4.21 4.26

3 5 200 0.76 200 8 12.62 12.55 12.60 12.62 4.10 4.06 4.2 4.10

4 6 300 0.70 600 16 15.77 16.85 16.74 16.76 4.68 4.54 4.61 4.69

5 5 300 0.64 400 12 11.22 11.09 11.20 11.21 4.12 3.92 4.09 4.10

RMS (error) – 0.088 0.020 0.004 – 0.109 0.061 0.006
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Table 7  Measured and 
predicted values of responses 
corresponding to each trial of 
HAEDM process

Exp. no. I Ton DC RPM GP MRR (mg/min) SR (µm)

Exp. RSM ANN ANFIS Exp. RSM ANN ANFIS

1 5 300 0.64 600 20 13.80 13.54 12.83 13.8 4.19 4.2 4.19 4.19

2 5 300 0.64 600 12 11.60 11.31 10.89 11.09 4.07 4.06 4.07 4.08

3 4 400 0.70 800 8 5.90 6.14 6.00 5.90 4.25 3.77 4.25 4.25

4 6 400 0.58 800 8 9.70 10.52 9.73 9.70 3.75 3.92 3.75 3.75

5 5 300 0.64 200 12 10.30 9.83 10.29 10.3 3.62 3.78 4.03 3.62

6 5 300 0.76 600 12 13.45 12.47 13.32 13.45 4.53 4.42 4.63 4.53

7 7 300 0.64 600 12 21.95 21.31 21.5 21.95 4.56 4.52 4.61 4.56

8 6 400 0.70 800 16 12.12 12.98 12.42 12.12 4.29 4.54 4.29 4.29

9 6 200 0.70 800 8 17.00 16.86 16.74 17.00 4.84 4.68 4.84 4.84

10 5 300 0.52 600 12 9.88 10.15 9.86 9.88 3.84 3.69 3.98 3.84

11 5 300 0.64 600 12 10.50 11.31 10.89 11.09 4.02 4.06 4.07 4.08

12 5 300 0.64 600 12 10.45 11.31 10.89 11.09 4.21 4.06 4.07 4.08

13 6 200 0.70 400 16 19.40 19.68 20.47 19.4 4.26 4.43 4.26 4.26

14 4 200 0.58 400 16 10.15 11.40 10.25 10.15 4.02 3.87 4.02 4.02

15 4 400 0.70 400 16 5.85 7.07 6.10 5.85 3.49 3.76 3.49 3.49

16 5 300 0.64 600 12 11.80 11.31 10.89 11.09 4.14 4.06 4.07 4.08

17 4 400 0.58 800 16 6.57 6.27 7.40 6.57 3.76 3.45 3.76 3.76

18 5 500 0.64 600 12 6.92 6.94 6.88 6.92 3.70 3.62 3.81 3.70

19 4 200 0.70 800 16 11.68 11.00 12.06 11.68 4.32 4.53 4.45 4.32

20 5 100 0.64 600 12 16.35 15.68 16.62 16.35 4.57 4.49 4.57 4.57

21 6 200 0.58 400 8 14.44 15.34 14.38 14.44 3.84 4.02 3.84 3.84

22 6 200 0.58 800 16 18.31 18.88 18.39 18.31 4.96 4.57 4.96 4.96

23 6 400 0.58 400 16 14.46 13.38 14.45 14.46 4.32 3.91 4.32 4.32

24 4 200 0.58 800 8 7.28 6.65 7.15 7.28 3.91 4.13 4.44 3.91

25 5 300 0.64 600 12 10.90 11.31 10.89 11.09 4.04 4.06 4.07 4.08

26 4 400 0.58 400 8 5.95 4.61 6.00 5.95 2.92 3.14 3.44 2.92

27 5 300 0.64 1000 12 8.43 8.63 8.69 8.43 4.41 4.34 4.41 4.41

28 6 400 0.70 400 8 12.96 13.25 12.87 12.96 4.64 4.24 4.64 4.64

29 5 300 0.64 600 4 8.71 9.07 7.34 8.71 3.76 3.91 3.76 3.76

30 3 300 0.64 600 12 6.35 6.72 4.39 6.35 3.72 3.60 3.72 3.72

31 5 300 0.64 600 12 11.30 11.31 10.89 11.09 4.02 4.06 4.07 4.08

32 4 200 0.70 400 8 8.77 9.38 9.17 8.77 4.37 3.98 4.37 4.37

Table 8  Precision of prediction models

Parameters Model MAE MSE RMSE Standard 
deviation

MRR RSM 0.5725 0.4530 0.6731 0.6796

ANN 0.3906 0.3526 0.5938 0.5977

ANFIS 0.0891 0.0501 0.2238 0.2273

SR RSM 0.1778 0.0476 0.2181 0.2166

ANN 0.0730 0.0255 0.1596 0.1504

ANFIS 0.0113 9.1875*e−4 0.0303 0.0308
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Fig. 10  Comparison of measured and predicted results of MRR for 
various models
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optimal machining in HAEDM (discharge current 6A, 
pulse on time 158 µs, duty cycle 0.54, tool speed 291 rpm 
and gas pressure 19 mm of Hg) has been found to pro-
duce MRR and SR equivalent to 28.54  mg/min and 
4.21 µm, respectively (Table 9). 

4  Conclusions

In the present work, an experimental setup was success-
fully created to carry out the HAEDM process to measure 
process responses like the MRR and the SR. This work 

provides insights about the better prediction precision 
in EDM process; an improved perspective is suggested 
to model MRR and SR with ANN and ANFIS techniques, 
using RSM design of experimental techniques. The 
CCRD-based experiment design was used to analyze the 
effect of different parameters on the machining process. 
The ANN, ANFIS and RSM-based methods were used to 
develop models for predicting the MRR and the SR dur-
ing the HAEDM process on D3 die steel.

The following are the key �ndings from the study that 
can be summed up:

• An RSM-based mathematical model was developed to 
predict the MRR and the SR during the HAEDM process. 
The predicted value of responses by the model was 
found to be in accord with the measured value of each 
experiment.

• The ANOVA was applied to examine adequacy of the 
developed model. The �t summary con�rmed that the 
model is statistically appropriate and the lack of �t is 
insigni�cant.

• Two soft computing-based models, i.e., FFBP-ANN 
and ANFIS, were also developed for prediction of the 
HAEDM process performance. Due to lower values of 
the average error, MSE and RMSE soft computing-based 
models were found to predict more accurately as com-
pared to the mathematical RSM model.

• For validation of the RSM, ANN and ANFIS models, con-
�rmatory experiments were carried out. All the three 
models predicted the MRR and SR accurately.

• A comparison was done among the developed mod-
els to identify the most precise one among the three. 
The ANN-based model outperformed the mathemati-
cal RSM model in general. However, ANFIS model was 
found to predict responses most precisely as compared 
to ANN and RSM models.

• The optimal machining in HAEDM (discharge current 
6A, pulse on time 158 µs, duty cycle 0.54, tool speed 
291  rpm and gas pressure 19  mm of Hg) has been 
found to produce MRR and SR equivalent to 28.54 mg/
min and 4.21 µm, respectively.
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Fig. 11  Comparison of measured and predicted results of SR for 
various models

Fig. 12  Pareto-optimal front

Table 9  Optimum set of 
parameters for MRR and SR

I Ton DC RPM GP Predicted Experimented Error (%)

MRR SR MRR SR MRR SR

6 158 0.54 291 19 28.54 4.21 29.63 4.14 3.81 1.66
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