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ABSTRACT The development of the Internet of Things (IoT) benefits from 1) the connections between

devices equipped with multiple sensors; 2) wireless networks and; 3) processing and analysis of the gathered

data. The growing interest in the use of IoT technologies has led to the development of numerous diverse

applications, many of which are based on the knowledge of the end user’s location and profile. This

paper investigates the characterization of Bluetooth signals behavior using 12 different supervised learning

algorithms as a first step toward the development of fingerprint-based localization mechanisms. We then

explore the use of metaheuristics to determine the best radio power transmission setting evaluated in terms

of accuracy and mean error of the localization mechanism. We further tune-up the supervised algorithm

hyperparameters. A comparative evaluation of the 12 supervised learning and two metaheuristics algorithms

under two different system parameter settings provide valuable insights into the use and capabilities of the

various algorithms on the development of indoor localization mechanisms.

INDEX TERMS Indoor positioning, fingerprinting, Bluetooth, classification model, signal processing,

received signal strength indication, multipath fading, transmission power, benchmark, metaheuristic

optimization algorithms.

I. INTRODUCTION

A number of wireless network technologies are currently

available in the market, of which Wi-Fi and Bluetooth are

by far the most popular. This is because most current smart-

phones have Wi-Fi and Bluetooth interfaces. Accordingly,

most research and development efforts in the area of wireless

indoor localization mechanisms have been made using one or

both of these wireless technologies [1]. As for other technolo-

gies, Zigbee has also been explored in the context of wireless

sensor networks [2], [3]. These studies are being conducted

using the received signal strength indication (RSSI) of vari-

ous wireless transmitters as a means of estimating the loca-

tion of a smartphone device [4]. Among the technologies

being considered, over the past years, Wi-Fi networks have

attracted the attention of many researchers and practitioners

who have employed innovative techniques, e.g., machine
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and deep learning [5]. Many experimental studies have been

conducted to construct radio maps and models as a means

to estimate the distance between a reference transmitter and

a smartphone device. Because of the characteristics of the

wireless signal, the use of Kalman filters [6], [7] has been

required to remove the noise. Novel Bluetooth Low-Energy

4.0 (BLE4.0) devices have become a strong alternative to

Wi-Fi-based indoor locationmechanisms. Their low cost, low

energy consumption, and the size of the Bluetooth devices are

among themost important design features of battery-operated

mobile devices, mainly smartphones and tablets. Moreover,

these devices have many sensors, e.g., accelerometer, that

can be used to assist the indoor localization process [8].

In this context, Table 1 lists the main characteristics of

these three wireless technologies. In the case of Bluetooth,

the table lists the BLE4.0 specifications. The table also

includes the main algorithmic techniques used in the char-

acterization of RSSI fingerprints generated by the wireless

devices [9], [10].

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26123

https://orcid.org/0000-0003-1510-1608
https://orcid.org/0000-0001-6243-0864
https://orcid.org/0000-0002-2990-7090
https://orcid.org/0000-0003-3451-7852


J. Lovón-Melgarejo et al.: Comparative Study of Supervised Learning and Metaheuristic Algorithms

TABLE 1. Comparison of Bluetooth, Wi-Fi and ZigBee technologies.

Wi-Fi and Zigbee were primarily designed for implement-

ing wireless communications LANs, including broadband

connections, and the deployment of distributed wireless mon-

itoring and actuator applications, respectively. Due to a large

number of hotspots based on Wi-Fi access points and the

deployment of Zigbee wireless sensor networks, developers

and practitioners are exploring the development of localiza-

tion and tracking mechanisms based on these two wireless

technologies.

Among the different approaches being pursued in the

development of localization mechanisms, those approaches

based on the characterization of RSSI fingerprints have

benefited from the use of probabilistic graphical mod-

els (PGMs) [7], [11] and supervised learning algorithms

(SLAs) [12]. The localization and tracking of a target within

a given area is possible based on the characterization

of the RSSI fingerprints generated by a set of wireless

transmitters [6], [9].

Therefore, the methodology to develop a localization

mechanism based on RSSI fingerprinting using a SLA con-

sists of two main phases: (i) characterization of the distri-

bution of the RSSI in the area enabling the localization of

a given target [4], [13]; and (ii) the evaluation of the accu-

racy and error of the localization mechanism [2]. Brunato

and Battiti [14] presented a set of SLA techniques applied

to Wi-Fi fingerprinting, and a benchmark to compare them,

obtaining good results.

Considering the latest developments and technologies,

i.e., BLE4.0 beacons, hereinafter referred to as bea-

cons, this work is an extension of our previous research

efforts [12], [15]. The two major extensions are: the evalua-

tion of twelve different SLAs: linear, non-linear, and ensem-

ble models; and the use of genetic algorithms (GA) as a

means to reduce the computational cost and the time to opti-

mize the setting of the transmission power levels, hereinafter

referred to as TxPower, of every transmitter. Our proposal

involves the optimization of the hyperparameters of the vari-

ous algorithms.

FIGURE 1. Overall schema proposal.

The remainder of this paper is organized as follows.

Section II reviews the recent BLE4.0 localization literature,

including the techniques followed in our works in the area

of signal processing analysis. Section 3 specifies our indoor

setting and the devices used as transmitters and receivers,

depicted in Figure 1 with blocks called ‘‘Analysis of the Envi-

ronment’’ and ‘‘Characteristic of the Signal.’’ In addition,

RSSI and its behavior, i.e., signal features, are discussed.

Subsequently, Section 4 explains the SLAs used, whose

performance will be evaluated according to the accuracy

and mean error classification metrics, represented in Figure 1

with the block called ‘‘Supervised Learning Algorithms.’’

Section 5 presents our first set of results using symmet-

ric and asymmetric TxPower configurations of the beacons.

Section 6 introduces and evaluates the performance of the

metaheuristic algorithms and the tuning of the hyperparam-

eter used on the search of the optimal asymmetric TxPower

configuration. This section also includes an analysis of the

computational cost of the twelve SLAs considered in our

study, depicted in Figure 1 as ‘‘Optimal Asymmetric Trans-

mission Power.’’ Finally, Section 7 presents our conclusions

and future work directions.

II. RELATED WORK

In this section, we introduce the main features of the

BLE4.0 technology and its relevance on setting indoor local-

ization facilities. For better understanding, this section has

been divided into two subsections, which explain the techni-

cal characteristics, limitations, and communication protocol

of BLE4.0 related to indoor localization techniques.

A. BLE4.0 SIGNAL PROCESSING

BLE4.0 technology has rapidly spread in recent years. It is

available in most mobile devices, such as smartphones,

tablets [16], and electronic development kits [17]. Beacons

emit short packets, characterized by providing ways of deter-

mining zones of proximity through the intensity of the

signal, i.e., RSSI. Beacons have low power consumption
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requirements, making it possible for them to operate for long

periods without the need of replacing their batteries.

BLE4.0 divides the band into 40 2-MHz channels. Since

Wi-Fi and BLE4.0 operate over the 2.4-MHz band, beacons

make use of channels 37 (2402-MHz), 38 (2426-MHz) and

39 (2480-MHz) to avoid interference between devices and

advertise their presence [18]. Beacons cyclically broadcast on

these channels and use the other channels once paired with

a BLE4.0-equipped device. Beacons can transmit signal in

increments from 100ms to 10.24s, in steps of 0.625ms.

This parameter directly affects the battery lifetime. The

beacons have configurable TxPower levels that usually range

from −30dBm to 4dBm. The signal strength conditions the

beacons sensing range [17]. Therefore, the distribution of

the RSSI spectrum in the area depends directly with the

TxPower level [12], [15]. BLE4.0 signals are prone to noise

and impairments due to the presence of physical elements

within the coverage area, such as furniture, people, walls,

windows, and other obstacles. This makes it necessary to

conduct RSSI surveys. Some works have reported readings

of a given location with signal level variations of up to 20dB

in less than 20s [9], [10]. The deployment of beacons must be

carefully planned. In particular, the placement and all relevant

system BLE4.0 parameters must be calibrated to meet the

end-user expectations [19].

Multipath fading (MPF) is another major impairment that

has a major impact on the design of indoor wireless local-

ization mechanisms. Recent results have shown that the use

of floor plan as a basis for identifying the multipath com-

ponents may be exploited to enhance the accuracy of wire-

less indoor localization schemes [9], [17], [20]. Although the

use of such schemes is still in its infancy and limited to

wide-band communications, insights into the impact of the

structural features on the RSSI metric have been obtained.

In previous research [9], Faragher and Harle applied the mul-

tipath mitigation algorithm to the RSSI fingerprint of their

BLE4.0 experimental setup.

Various other works have explored the use of different

TxPower and channels to identify the setup offering the best

results. In a previous study [10], the authors analyze the

impact of the channel used for collecting the RSSI samples,

which revealed major differences in the level of the signal

samples. Another research [21] reported that power plays a

major role in terms of system performance, and its results

demonstrated the benefits of using the k-Nearest Neighbors

(k-NN) algorithm as a means to better exploit the information

retrieved from the RSSI fingerprint in the development of

indoor wireless localization schemes.

B. BLE4.0 INDOOR LOCALIZATION ALGORITHMS

Depending on the wireless network technology, the use of a

specific technique/algorithmmay bemore suitable or feasible

than the use of other techniques. As already stated, most

works to date reported that noise and MPF are two of the

main impairments with a negative impact on the quality of

RSSI fingerprints. Improving or identifying the impact of

such impairments on the quality of the RSSI fingerprint is

therefore one of the main challenges in the development

of robust and accurate BLE4.0-based indoor localization

mechanisms [4]. Since the structural characteristics and the

layout of objects may play a major role in signal impairments,

the research community is actively working on defining the

best system configuration, e.g., density of beacons and rel-

ative placement [22] and identifying the most suitable data

processing methodologies, i.e., filtering and classification

algorithms.

Recent studies employing SLAs have reported promising

results on characterizing RSSI fingerprints in the presence

of noise and MPF effects. In previous research [14], various

SLAs that were applied toWi-Fi fingerprints were compared.

In a more recent work [23], a hybrid localization experiment

was conducted using a set of Wi-Fi access points (APs)

accompanied by BLE4.0 devices. The localization mecha-

nism was based on weighted nearest neighbors in the signal

space algorithm. The main objective of this study was to

improve the indoor location by using BLE4.0 devices and

deploying a system that is constantly updated according to

RSSI levels reported by mobile devices (receivers). During

the experiments, two parameters of the BLE4.0 devices were

varied: the scan duration of the RSSI signal and the density.

In contrast, the TxPower was fixed to the maximum level

throughout the experiments.

In [14], in addition to exploring and performing

an extended evaluation of two SLAs, support vector

machine (SVM) and k-NN, the authors also explored the

use of Bayesian modeling and multilayer perceptron (MLP)

algorithms. Although their work is developed for Wi-Fi,

the authors claimed that their regression and classification

algorithms can be applied to the analysis of RSSI fingerprints

created by other wireless technologies.

While most recent works consider k-NN and SVM as the

two most promising SLAs, other works are exploring the

use of deep learning techniques as another alternative for

improving the quality of the information extracted from RSSI

fingerprints that consider two main metrics: accuracy, and

performance [24].

The above review has proven useful for defining and guid-

ing the objectives and methodology of our research. After

identifying the major system parameters and impairments,

the experimental setup layout was defined. The following

main system parameters were identified: number of beacons,

TxPower, and advertisement period. In one of our previous

works, we have shown that the use of SLA algorithms may

prove beneficial on mitigating theMPF impairment [15]. The

optimal parameter setting, namely the transmission power

setting of the Bluetooth beacons was conducted using a brute

force approach. In this work, we go a step further by exploring

twelve SLA algorithms following three different paradigms.

We also explore the use of two metaheuristic approaches as a

means to reduce the computational requirements. Our work

the differs from previous works that have mainly focused

on a limited number of SLA algorithms without taking
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into account their underlying features. Furthermore, to the

authors knowledge, no previous works have made use of

metaheuristic algorithms as a means of reducing the compu-

tational requirements on the process of setting the best system

configuration.

III. BACKGROUND: TOOLS AND WIRELESS

SIGNAL CHARACTERIZATION

The design and development of BLE4.0 fingerprint local-

ization techniques present major challenges since the indoor

propagation of BLE4.0 signals is highly sensitive to the MPF

effect [25]. It is also widely recognized that the capabili-

ties of the surveying devices will play a major role in the

quantity, quality, and time of the effort invested to produce

valuable RSSI fingerprints. The details about the area, trans-

mitter/receiver, survey campaigns, MPF, and intraday signal

attenuation were analyzed in previous works. Hence, we dis-

cuss additional information about BLE4.0 signal characteri-

zation and conduct an in-depth analysis about the impact of

different materials/structures on RSSI [26], [27].

FIGURE 2. Beacon indoor experimental area setup.

A. EXPERIMENTAL AREA

Our experiments were conducted in the lab of our research

institute. We placed four beacons at each one of the four

corners of a 9.3m× 6.3m rectangular area. The fifth beacon

was placed in the middle of one of the longest edges of

the room. Figure 2 depicts the experimental area in which

the five Beacons have been labeled as Be07, Be08, Be09,

Be10, and Be11. We divided the experimental area into

15 sectors of 1m2, each separated by a guard distance of

0.5m. A 1.5m-wide strip was left around the experimental

area. This arrangement will allow us to better differentiate

the RSSI level of joint sectors when reporting our results.

Measurements were performed by placing the mobile device

at the center of each one of the 15 sectors, as described

below. The shortest distance between a beacon and a receiver

was limited to 1.5m. Figure 3 shows four views taken from

each one of the four corners of the lab. As shown in the

figure, we placed beacons Be10 and Be11 in front of a win-

dow, Figures 3(d) and 3(b), respectively, while all other bea-

cons were placed in front of the opposite plasterboard wall.

We further noticed that beacon Be08 was placed at the left

FIGURE 3. Pictures from each one of the four corners of the lab. (a) View
from Be07. (b) View from Be11. (c) View from Be08. (d) View from Be10.

edge of the entrance door, close to the corridor with a glass

wall (Figure 3(c)).

B. TRANSMITTER AND RECEIVER DEVICES

For this experiment, JAALEE beacon devices were used [28].

According to the specifications of the five Beacons used in

our experiments, they may operate at one of eight different

TxPower levels. Following the specifications, the TxPower

levels are labeled in consecutive order from the highest

to the lowest level as TxPower = 0×01, TxPower =

0×02, . . . , TxPower = 0×08 (ultra wide range transmission

power: 4dBm to -40dBm), although TxPower = 0×07 and

TxPower = 0×08 were discarded since they did not ade-

quately cover the signal spectrum in the entire area. During

our experiments, we conducted several measurement cam-

paigns by fixing the TxPower level of all beacons at the

beginning of each campaign. Furthermore, all measurements

were performed under line-of-sight conditions.

As a receiver, we used a Raspberry Pi equipped with

a USB BLE4.0 antenna [29], hereinafter referred to as

BLE4.0 antenna.

C. RSSI FINGERPRINTINGS

It is well known that the floor plan and materials are two

major parameters that have a significant impact on the indoor

propagation of BLE4.0 signals. Since the experiments were

conducted in a single lab and zero occupancy during most tri-

als, the experiment focused on the impact of the surrounding

wall materials.

As shown in Figure 2, we analyzed the four beacons placed

at the corners with TxPower = 0×04 taking the RSSI in

all sectors. Beacon Be09 and other TxPower levels were

omitted because they had similar output and did not add

extra information. Figure 4 depicts the RSSI measurements
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FIGURE 4. RSSI behavior using TxPower = 0×04. (a) Sector 13 for Be08.
(b) Sector 15 for Be10.

taken at Sectors 13 and 15, corresponding to the signals of

Be08 and Be10, respectively. Be10 is located at a corner of

a flat wall made of drywall and a window wall located at

the right side of Figure 3. Be08 is placed at the corner of a

flat wall made of drywall and at the entrance of a corridor.

Comparing the RSSI levels captured for Be08 (Figure 4(a)) to

those captured for Be10 (Figure 4(b), the signal of Be10 suf-

fers higher attenuation and less RSSI value, a difference of

more than 10dBm, than that experienced for the signal of

Be08. These results clearly show the challenges involved in

accurately characterizing the indoor signal propagation of a

BLE4.0 transmitter.

To gain further insight into the impact of the surround-

ing material on indoor signal propagation, Figure 5 shows

the RSSI fingerprints throughout the experimental area of

Be07 and Be11. In this case, Be11 is located at the corner

of a flat wall made of drywall and a window wall located at

the right-hand side in Figure 2. Be07 is placed at the corner of

a flat wall that is solely made of drywall. In this case, we can

see the same behavior of the RSSI which Be07 has a greater

intensity than Be11.

From the results shown in Figures 5 and Figure 5, it is

clear that the materials surrounding BLE4.0 have a major

impact on signal propagation. The main observations can be

summarized as follows:

• The intensity of the RSSI in sectors close to the window

side is lower than that at the sectors close to the drywall

side.

FIGURE 5. RSSI fingerprinting for different beacons using
TxPower = 0×04 for: (a) Be07 and (b) Be11. Axis X and
Y represent the size (in meters) of the experimental area.

• The RSSI levels of the beacons placed at the windows,

namely, Be10 and Be11, experience a higher attenuation

than the beacons placed at the walls made of drywall,

namely Be07 and Be08.

Furthermore, the RSSI fingerprints (Figure 5), illustrate the

challenges involved in characterizing signal propagation. It is

evident that the presence of the MPF effect makes it difficult

to estimate the distance between the receiver and transmitter

based on the RSSI level.

These results clearly show that the setting of the TxPower

levels may prove useful in overcoming the impact of the

MPF effect. The mitigation of this effect will provide us

with the means to improve the accuracy of the classification

algorithms. This finding has motivated most results reported

in our previous works [15].

IV. MACHINE LEARNING MODELS:

PRINCIPLES AND EVALUATIONS

Machine learning techniques include a series of models in

which systems can perform the learning process to make the

best possible decisions or accurate predictions based on the

information extracted from a large dataset. This study was

extended to 12 SLAs, which were grouped as linear, non-

linear, and ensemble models. Moreover, this section explains

the main classification metrics and the data collected during

the survey.

A. SUPERVISED LEARNING ALGORITHMS

For this work, SLAs, specifically classification models,

prove useful in solving indoor location fingerprinting. Hence,

in SLAs, we know the input parameters and the output with

which we iteratively train the dataset. Once the model is

trained, predictions are made and compared with ground truth

values to obtain an estimation of the performance of the

model.

The total analysis of this work has been conducted using

different classification models (explained in Table 2) and

divided into a taxonomy of three models:
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TABLE 2. Definition of the different machine learning models evaluated.

• Linear models: In these models, we may expect the

target value to be expressed as a linear combination of

constant values or the product between a parameter and

a predicting variable. In other words, the predicting vari-

able may be modified, thereby generating more complex

curves or shapes.

• Non-linear models: This models do not make strong

assumptions about the relationship between the input

attributes and the output attribute being predicted.

• Ensemble models: These models combine prediction

models to improve the strength and the performance of

the classification model. The three most popular ensem-

ble models are:

– Bootstrap Aggregation or Bagging involves

takingmultiple samples of the training dataset (with

substitution) and forming a model for each sam-

ple. The prediction of the final output is averaged

through the predictions of all sub-models.

– Boosting algorithms create a sequence of models

that attempt to correct the errors of the previous

models in the chain. Once created, these models

make predictions that can be weighted by their

demonstrated accuracy and the results are combined

to generate an output.

– Voting is the linear combination of different classi-

fiers weighted with different probabilities values in

order to better predict the class labels.

B. CLASSIFICATION METRICS ASSESSMENT

Before the training phase, RSSI measurements are obtained

by placing the receiver at different sectors. The RSSI mea-

surements are then stored in a database during an offline

phase, including the 〈x, y〉 coordinates and RSSI level for

each sample. Afterward, the RSSI receiver measures are cap-

tured again in an online phase. These last instances are then

compared with the derived model to predict the location of

the receiver, i.e., to generate RSSI-based location fingerprint-

ing. The selected area with the beacon position can be seen

in Figure 2.

In this context, we have used two metrics related to the

classification models:

• Accuracy: It is the most intuitive performance measure

and it is simply a ratio of correctly predicted observation

to the total observations. The value is calculated in per-

centage (%) for the whole experimental area. It describes

the global accuracy rate of each setup.

• Mean error: The average error for the entire exper-

imental area. This error is calculated in meters (m)
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considering the total dimensions of each area, and it is

computed by averaging all absolute differences between

the predicted localization and the central point of each

sector of the experimental area, that is the real position

where each measurement was taken.

Moreover, for this research, the Scikit-learn Python

library [30] was used. In all the experiments we used a 10-fold

cross-validation scheme due to the size of the experimental

data, and the low variance obtained in terms of accuracy and

mean error compared other cross-validation fold values.

Finally, herein, data preprocessing was not performed.

In other words, raw data or data as collected have been used

for all experiments carried out. Table 3 lists the total number

of datasets for each TxPower.

TABLE 3. Sample sizes of the RSSI captured using BLE4.0 at different
transmission power (TxPower) levels.

V. EXPERIMENTAL RESULTS

In this section we present the results obtained in the experi-

ments that we have carried out. First, we present a comparison

of localization performance using symmetric and asymmetric

TxPower setups. Here, the results obtained with a symmetric

TxPower setup are considered as the baseline results.

A. BASELINE RESULTS: SYMMETRIC

TRANSMISSION POWER SETUPS

In Table 4 the localization accuracy obtained for each sym-

metric TxPower configuration is presented for every classifi-

cation models tested. As can be seen, linear models present

the worst performance results. On the contrary, ensemble

models have better accuracy, very similar to that of non-linear

models, except for MLP, of which k-NN provides the best

results. In addition, we can see that the GBM model obtains

TABLE 4. Accuracy (%) for each classification model. best values for each
TxPower are highlighted in bold.

the best accuracy, followed by VC. With respect to the

TxPower, using a TxPower = 0×05 give the worst results

for all classification models, followed by TxPower = 0×02

and TxPower = 0×01. In this context, we can see that for

TxPower = 0×06, the best results are obtained with GBM

with an accuracy of 86.10% and the worst results are obtained

with MLP with an accuracy of 55.40%. Another aspect to

take into account is the behavior in terms of variance, mean,

and accuracy range. This analysis can be seen in Figure 6,

which shows the accuracy for each TxPower level in a box-

plot graphics for TxPower = 0×06 and TxPower = 0×02

(see Figures 6(b) and 6(a)). In this figure, the remaining

TxPower has not been included for a better understanding.

On performing an analysis in the entire TxPower group,

we observe that the non-linear and ensemble models have a

constant behavior in average as well as a minimum variance,

especially ET.

Regarding the mean error, Table 5 lists the results obtained

for each classification model and TxPower used. The results

show that the ranking of the different algorithms is straight-

forward, i.e, the ensemble models exhibit the best results,

followed by the non-linear models while the linear models

report the worst results. This is true independently of the

power transmission being used except for the case of theMLP

algorithm. We also notice that the results reported by the dif-

ferent algorithms belonging to the non-linear and ensemble,

differ by no more than one per cent, except once again in the

case of theMLP algorithm. Similar conclusions can be drawn

from the mean error results, see Table 5.

TABLE 5. Mean error (m) for each classification model. best values for
each TxPower are highlighted in bold.

Comparing Table 4 with 5 shows that in our setting the

worst results in both accounts, accuracy and mean error are

reported for the casewhen TxPower = 0×05. However, more

importantly, we can conclude from a more in-depth analysis

of the results that a given power level does not guarantee the

best results in both accounts. As far as the more appropriate

algorithm, the GBM algorithm report the best results in terms

of the two metrics of interest. In summary, to improve the

accuracy andmean error, it is worth to explore the asymmetric

transmission power setting of the beacons as a means to

mitigate the multipath fading effect.
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FIGURE 6. Accuracy boxplots of classification models using symmetric TxPower setups: (a) TxPower = 0×02 and (b) TxPower = 0×06.

B. NUMERICAL RESULTS – ASYMMETRIC

TRANSMISSION POWER SETUPS

Previously, it has been exposed the importance of using dif-

ferent TxPower levels for each beacon (hereinafter referred to

as asymmetric TxPower configuration) to mitigate the MPF

effect, which has an impact on the final localization results.

Given this premise, five beacons with six TxPower levels

(i.e. fromTxPower = 0×01 to TxPower = 0×06) account for

a total of 7776 combinations. In this section we will evaluate

all these combinations to identify which configuration is the

best for each classification model.

Table 6 summarizes the results of all Asymmetric TxPower

configuration combinations evaluated. A specific TxPower

configuration is represented as a vector that contains the

TxPower level assigned to each beacon in this order: Be07,

Be08, Be09, Be10, and Be11 (e.g. [6–1–3–3–5]). The table

shows the accuracy (%) and mean error (m) results for each

classification model using the best asymmetric TxPower

configuration.

TABLE 6. Accuracy (%) and mean error (m) results for each classification
model using asymmetric TxPower configuration. the values of the best
classification model are highlighted in bold.

Comparing these results with the ones obtained with

symmetric TxPower configurations, that is results shown

in Tables 4 and 5, we can see similar behaviors with respect

the type of SLA used. In this respect, ensemble algorithms

obtain the best results and the linear algorithms, except MLP,

obtain the worst results. GBM continues to predominate in

terms of accuracy and low mean error (91.45% and 0.185m,

respectively), while MLP presents the worst results with an

accuracy and mean error of 68.18% and 0.692m, respec-

tively. As for the TxPower, except for AB which has a

[6–1–3–3–5] configuration, we can observe how configura-

tion [6–1–3–6–5] is the most repeated, the best configuration

for ensemble algorithms. Regarding the linear and non-linear

algorithms, we observe different optimal configurations.

In addition, we can observe common behavioral patterns

in general lines for the different beacons:

• For Be07, TxPower = 0×06 predominates, with

TxPower = 0×04 predominating to a relatively lesser

extent.

• Be08 has TxPower = 0×01, the best TxPower level

configured for all models.

• Be09 is has the greatest variation of TxPower

(TxPower = 0×02, TxPower = 0×03, TxPower =

0×04 and TxPower = 0×06), although there is a

majority of TxPower = 0×03.

• In Be10, we see equal alternation between TxPower =

0×03 and TxPower = 0×06 configurations.

• Be11 has an alternation between TxPower = 0×01 and

TxPower = 0×05.

Regarding accuracy, as summarized in Table 6, there is a

considerable improvement in the values obtained from each

of the models. With these results and taking into account the

symmetric TxPower results for TxPower = 0×06, we can

see how the models have improved on average in terms of

accuracy and mean error: (i) linear models improved by 10%

and 0.500m; (ii) non-linear improved by 9% and 0.340m;

and (iii) ensemble models improved by 5% and 0.260m.

However, following a brute-force search to find the optimal

TxPower configuration is computationally unfeasible given

that the search space (combinations of beacons and TxPower)
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grows exponentially with the number of beacons. Then,

in order to search for the optimal asymmetric TxPower con-

figurationwe need to rely onmetaheuristic search techniques.

This issue is addressed in the next section in order to apply

this techniques to real time indoor localization applications.

VI. OPTIMAL TXPOWER CONFIGURATION:

METAHEURISTIC OPTIMIZATION AND

PARAMETER TUNING

It is worth mentioning that the search for an optimal TxPower

configuration requires high computational resources. Con-

sequently, metaheuristic optimization algorithms may prove

effective on computing the optimal asymmetric TxPower

setup.

A. METAHEURISTIC ALGORITHMS

Here we discuss two metaheuristic approaches: (i) evolution-

ary algorithms (EAs), specifically genetic algorithms (GA);

and (ii) estimation of distribution algorithm (EDAs).

Case 1 (Estimation of Distribution Algorithm): EDAs are

stochastic optimization methods to search the optimum solu-

tion by building and sampling explicit probabilistic models

of promising candidate solutions. In our case the algorithm

randomly initializes the population (e.g., using a normal dis-

tribution) and, then, assesses it (evaluating the fitness of the

current probability distribution) [31], [32]. Therefore, itera-

tively, a new population of individuals is generated sampling

the current probability distribution, governed by the previ-

ously calculated parameters, and then evaluated.

This process is depicted inAlgorithm 1, where: population

denotes the list of individuals (default value: 100); bpopu-

lation denotes the best chosen individuals from the popula-

tion; select_ratio is the ratio for choosing the bpopulation

(default value: 0.5); reduction() reduces the population based

on select_ratio; estimate_params() adjust the distribution

parameters (with mean (µ) and standard deviation (σ )); and

re_sample() generates the new population based on the new

parameters found.

Algorithm 1 Estimation of Distribution Algorithm

1: population← initialize(µ, σ )

2: evaluate(population)

3: while condition_not_met

4: bpopulation← reduction(population, select_ratio)

5: (µ, σ )← estimate_params(bpopoulation)

6: population← re_sample(µ, σ )

7: evaluate(population)

8: end while

Case 2 (Evolutionary Algorithm): EA is a generic

population-based metaheuristic optimization algorithm that

uses mechanisms inspired by biological evolution, such as

reproduction, mutation, recombination, and selection. Can-

didate solutions to the optimization problem are the individu-

als of a population, and the evaluation function determines

the quality of each solution. Evolution of the population

then takes place after the repeated application of the above

operators.

This process is depicted in Algorithm 2 [33], [34], where:

population denotes a list of individuals (default value: 100);

cxpb is the probability of crossing two individuals (default

value: 0.5);mutpb is the mutation probability (default value:

0.3); ngen is the number of generations (default value: 12);

bNGF() (buildNextGenerationFrom) computes the next gen-

eration population applying crossing and mutation operations

to the selected population, validates the new individuals, and

computes the statistics of this new population.

Algorithm 2 Evolutionary Algorithm

1: evaluate(population)

2: for g in range (ngen)

3: population = select(population, len(population))

4: offspring = bNGF(population, cxpb,mutpb)

5: evaluate(offspring)

6: population = offspring

7: end for

In our experiments we used a GA, which is an specific

instance of an EA. In Table 7 the fundamental entities of a GA

for the asymmetric indoor localization problem are defined.

TABLE 7. Fundamental entities of the genetic algorithm evaluated.

With these initial definitions of both algorithms, the results

obtained for both cases are discussed below.

B. METAHEURISTIC OPTIMIZATION RESULTS

As we already said above, the main challenge we faced with

is to find an algorithm able to search for the optimal TxPower

configuration and performing the minimum number of eval-

uations. In other words, the fewer evaluations a metaheuristic
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TABLE 8. Experimental results using EDA and GA metaheuristic
optimization algorithms. in bold are highlighted the results that obtained
identical results as the brute-force search (see Table 6).

algorithm performs the better, as long as the same solution

to the problem is obtained. In this sense, Table 8 shows the

results obtained with EDA and GA for each classification

model. It is important to note that the value of the evaluation

function used in both algorithms is the accuracy obtained for

each specific classification model of each individual of the

population, i.e., for each candidate solution to the problem.

According to these results, we can observe how EDA needs

more number of evaluations than GA, see column Eval, but

both algorithms mainly need the same number of generations

to converge, see column Gen. Also, in general EA obtains

better TxPower configurations that EDA, obtaining inmost of

the cases (except for SVM, DT, and AB) the optimal solution.

This fact can be observed when comparing Table 8 with 6.

C. HYPERPARAMETER TUNING

Tuning is the optimization or adjustment process for the

hyperparameters of a model. It involves the comparison of

cross-validation results for the selected metric under dif-

ferent types of adjustments. The objective is to choose the

best combination of hyperparameters to maximize the cho-

sen metric and accuracy for the best TxPower obtained by

the metaheuristic algorithms. In our experiments, the ‘‘Grid-

searchCV’’ function of the Scikit-learn library [30] has been

used.

Table 9 lists all hyperparameters for each of the clas-

sification models assessed. Also, the search range of each

hyperparameter and the selected value for the best accuracy

results are shown.

Table 10 summarizes the results obtained with the GA

algorithmwith the selected optimized/tuned hyperparameters.

TABLE 9. Search range and selected hyperparameter for each model.

Comparing evaluation metric values with those presented

in Table 8, we can see how most models have improved in

terms of accuracy and how most models have reduced the

mean error. Specifically, for the VC classification model an

improvement of 1.65% in terms of accuracy and a reduction

of 0.019m in the mean error was obtained, outperforming the

best result achieved so far by the GBM classification model

in accuracy but not in mean error.

In addition, Figure 7 graphically represents these boxplot

results. The variance for most of these latter results is consid-

erably lower than the one reported in Figure 6(a).
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TABLE 10. Experimental results of the GA algorithm using tuned
hyperparameters, for each classification model. best result is
shown in bold.

FIGURE 7. Accuracy results of optimal asymmetric transmission power
for the GA.

Furthermore, Table 10 clearly shows that the run time

required, RT in seconds (s), to find the best combination of

TxPower by GA is substantially shorter than the required

by EDA and, obviously, by the brute-force search process.

For instance, in the case of the GBM model, the GA per-

formed 425 combinations in 3.269s for a total time of

1, 389.325s (23.155min). However, the EDA and brute-force,

their RTs were 3, 027.094s (50.452min) and 25, 419.744s

(423.662min), respectively.

Finally, we can observe how the boosted aggregation

(bagging) models, i.e., RF and ET, obtained very good per-

formance and a very low RT. The DT and k-NN mod-

els, although presenting a lower performance between 5%

and 3% very closely by DT, k-NN, and RF. These four

models are good alternatives for real-time localization,

although.

D. BENCHMARKING RESULTS

Being able to evaluate the computational cost with respect

to the accuracy of each model should provides us further

insights on the computational requirements of the 12 models

under study. Towards this end, we performed a benchmark

test using the Perf software package on a computer equipped

with 8GB RAM and an Intel i7 3.60GHz x8 processor.

Our computational cost analysis included the evaluation

of the energy consumption in Joules (J), instructions per

FIGURE 8. Benchmark of the different classification models: (a) Energy
consumption, (b) Inst/Cycle and (c) CPU.

cycle (inst/cycle) and CPU percentage of usage (% CPU).

Figure 8 shows the results of the benchmark test for the results

obtained in Table 10.

Regarding energy consumption (Figure 8(a)), the ensem-

ble algorithms, except the bagging algorithm, have a very

high consumption for LoR, MLP, and SVM classification

models. In Inst/cycle and % CPU, Figures 8(b) and 8(c),

similar results were found. The best results wre reported

for the ET model, followed very closely by DT, k-NN, and

RF. These four models are good alternatives for real-time

localization.

VII. CONCLUSIONS AND FUTURE WORK

This paper contributed to the mitigation of the MPF effect

based on asymmetric TxPower setups. Twelve different SLA

algorithms belonging to three different taxonomies have been

studied. The results showed a remarkable improvement in
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the accuracy of the classification models. Therefore, to per-

form an optimized search between the different beacons and

TxPower levels, two algorithms based onmetaheuristics were

evaluated: Estimation of Distribution Algorithm (EDA) and

Genetic Algorithm (GA). The experimental results carried

out exhibited that GA achieved optimal TxPower setup in

most of the cases, reducing the number of evaluations con-

siderably in comparison with the brute-force or exhaustive

search approach.

To further improve the performance of the localization

mechanism, a benchmark test was performed on energy

and CPU consumption as well as Inst/cycle, the results of

which confirmed that the boosted aggregation algorithm has

a useful relationship between metrics and computational

resource consumption. All studied algorithms, especially the

non-linear and ensemble models, are a good option, although

their very high computational resource consumption opens a

new challenge in the actual deployment based on embedded

devices.

Finally, the development of the distributed platform has the

main purpose of developing indoor localization applications

based on fog computing architecture. Traditional approaches

use a cloud-like architecture for data storage and processing,

while a future work of this research will perform data pro-

cessing at the edge level, i.e., taking final decisions near to the

receiver not in the cloud. Moreover, to minimize the energy

consumption at the edge level, microcomputers can be used

to make real-time decisions.
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