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Abstract: Four-bar linkages are one of the most widely used mechanisms in industries. This
paper presents a comparative study on the accuracy and efficiency of the optimum synthesis of
path-generating four-bar linkages using five metaheuristic optimization algorithms. The utilized
metaheuristic methods included two swarm intelligence-based algorithms, i.e., particle swarm op-
timization and hybrid particle swarm optimization, and three evolutionary-based algorithms, i.e.,
differential evolution, ensemble of parameters and mutation strategies in differential evolution, and
linearly ensemble of parameters and mutation strategies in differential evolution. The objective
function to be minimized is the sum of squares of the distance between the generated points and the
precision points of a coupler point. The optimal design of four-bar linkages must meet the Grashof’s
criteria and exhibit sequential constraints that can prevent the occurrence of order defect. This study
investigated five representative cases of the dimensional synthesis of four-bar path generators with
and without prescribed timing and compared the optimal solutions of the utilized five metaheuristic
methods to those of previously reported algorithms in literature. The improved metaheuristic meth-
ods exhibited superior optimal solution and enhanced reliability compared to the original methods.
Moreover, three improved metaheuristic methods were not only easy implemented, but also more
efficient for solving the optimal synthesis problems, particularly for high dimensional problems.

Keywords: path-generating four-bar linkage; metaheuristic optimization algorithm; swarm intelligence-
based algorithm; evolutionary-based algorithm

1. Introduction

A planar four-bar linkage is an important mechanism that is widely employed in
industrial applications. For example, path-generating four-bar linkages (or four-bar path
generators) are applied in thread pick-up mechanisms in sewing machines [1], agricultural
rice seeding transplanting mechanisms [2], human gait rehabilitation systems [3] and knee
exoskeletons [4], underwater manipulators [5], and in robotic fingers [6]. The synthesis
problems of linkages can be categorized into three types [7]: (1) type synthesis, (2) number
synthesis, and (3) dimensional synthesis. The dimensional synthesis problem involves
the determination of the dimensional or geometric size of mechanisms, such as lengths,
angles, initial motion position, and coordinates of the pivot, to ensure that the designed
mechanisms can meet the required motion. The dimensional synthesis problems of mecha-
nisms can be classified into function generation, path generation, and motion generation.
The dimensional synthesis of path-generating four-bar linkages (termed as path synthesis
problem in this work) involves the design of the parameters of a mechanism to ensure that
the coupler point traces the desired path defined by a number of precision points, which is
the central work of this research, and it is also a classical problem that has been investigated
by numerous researchers for several decades, and some papers have reviewed the path
synthesis problems [8–10]. Traditionally, the synthesis of such problems is solved using
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graphical methods [11], analytical methods [7], numerical methods [12,13], and a combined
numerical and analytical method [14]. However, owing to the limitations of the number of
precision points (the maximum precision points for the synthesis of four-bar path genera-
tion problem is nine), the solutions of path synthesis problems should address complex
non-linear equation under constraints, which cannot be easily solved using traditional
methods. With the rapid development of diverse optimization techniques, determining the
fittest value through efficient numerical calculations has emerged as a major trend. This is
because numerical calculations can rapidly search for the best design parameters within
the design constraints, thus effectively reducing the calculation time and the converging
rate to optimal solutions. Commonly used optimization methods can be divided into
two main categories. The first category includes traditional gradient-based methods that
require the determination of the derivative of the objective function, such as the Guass–
Newton method [15], the gradient method [16–20], tabu-gradient method [21], ant-gradient
method [22–24], and the sequential quadratic programming (SQP) method [25]. However,
these methods cannot easily determine the function derivative when dealing with complex
problems with nonlinear implicit objective functions. The second category includes free-
derivative and population-based metaheuristic global optimization methods, which consist
of two important groups. The first group includes the swarm intelligence-based algorithms
inspired by biological swarm behavior, including the well-known particle swarm optimiza-
tion (PSO) algorithm [26], cuckoo search (CS) algorithm [27], krill herd (KH) algorithm [28],
and their improved variants. The second group includes the evolutionary-based algorithms
inspired by biological evolution, including the well-known genetic algorithm (GA) [29],
differential evolution (DE) algorithm [30], imperialist competitive algorithm (ICA) [31],
teaching learning-based optimization (TLBO) algorithm [32], and their improved variants.
For a comparative study comparing other optimal solutions reported in previous literature,
here, we briefly review the metaheuristic global optimization methods and other methods
applied to the optimal path synthesis problems.

(1) Swarm intelligence-based algorithms:

These methods include PSO, HPSO, MKH, CS, APT-FPSO, BAS, etc. Kang et al. [33]
proposed a hybrid PSO method (HPSO) to solve optimal path synthesis problems with
and without prescribed timing, and verified the superiority of HPSO to PSO and DE.
Bulatovic et al. [34] proposed a modified krill herd (MKH) algorithm for the dimensional
synthesis problems of a four-bar path generator, and confirmed the efficiency of the pro-
posed method on four benchmark tested examples. Lin et al. [35] employed two population-
based metaheuristic optimization methods, cuckoo search (CS) and TLBO algorithms, to
solve five representative problems and found that CS exhibited superior accuracy and
exploitation capacity to DE and TLBO. Sadeghi et al. [36] employed an adaptive particularly
tunable fuzzy PSO (APT-FPSO) algorithm to solve the optimum path synthesis problem
of defect-free four-bar mechanisms. Mo et al. [37] applied a new metaheuristic algorithm,
known as the beetle antennae search (BAS) algorithm, to solve the path and function syn-
thesis problems of four-bar and Stephenson-III six-bar mechanisms. Eight examples with
and without prescribed timing were investigated, and the optimal results demonstrated
that the BAS method outperformed GA, PSO, and DE methods.

(2) Evolutionary-based algorithms:

These methods include GA, GA-KK, GA-CSP, DE, GA-FL, GA-DE, MUMSA, NSGA-
II, IOAs-at, ICA-SA, DE-SRT, TS-MBFOA, SAP-TLBO, ICA-GA, TLBO, CMDE, CPF-DE,
multi-start, HLIDE, ADELI, DEC, ImHS, GSA, ATLBO-DA, GSEF-IAA, ODSRA + CP,
REA, HCDJ, etc. Connor et al. [38] applied a genetic algorithm (GA) to solve optimal
path synthesis problems. Kunjur et al. [39] presented a GA-based approach (GA-KK)
for solving optimal path synthesis problems with prescribed timing. Zhou et al. [40]
presented an objective function based on the orientation structural error of the fixed
link of a crank-rocker path generating linkage, and applied GA to determine the op-
timal solutions. Cabrera et al. [41] presented a GA-based algorithm (GA-CSP) for the
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optimal synthesis of path-generating four-bar linkages. Shiakolas et al. [42] applied DE
method and a technique known as the geometric centroid of precision points to solve
optimal path synthesis problems with prescribed timing. Laribi et al. [43] proposed a
combined GA-fuzzy logic (GA-FL) method to solve optimal path synthesis problems.
Nariman-Zadeh et al. [44] employed a hybrid multi-objective GA for the Pareto syn-
thesis of a path-generating four-bar linkage, considering the simultaneous minimiza-
tions of two conflicting objective functions (tracking error and transmission angle error).
Bulatovic et al. [45] applied a DE algorithm and variable controlled deviations method to
synthesize a Grashof four-bar linkage with the motion of a coupler point along a large num-
ber of points on a straight line. Acharyya et al. [46] applied three metaheuristic optimization
algorithms, GA, PSO, and DE algorithms, for the optimal synthesis of a path-generating
four-bar linkage, and compared the performance of the three algorithms, finding that the
DE method exhibited the best performance. Lin [47] proposed a GA-DE hybrid evolution-
ary algorithm for the optimum synthesis of a four-bar path generator, and replaced the
GA with an improved difference vector, which can effectively retain better individuals
during the crossover operation of the GA, thus improving the efficiency and accuracy of
the solution. Cabrera et al. [48] proposed an evolutionary algorithm, named MUMSA,
which utilizes mutation steps to make the result closer to the global optimal solution for the
optimum synthesis of a path-generating four-bar mechanism. Peñuñuri et al. [49] applied
a DE algorithm to perform the optimal synthesis of hybrid-task and path generation of
four-bar linkages with and without prescribed timing. Khorshidi et al. [50] considered
the tracking error of a mechanism, the deviation of its transmission angle from 90◦, and
the maximum angular velocity ratio as the multi-objectives of an optimization problem,
and employed a hybrid Pareto GA with a built-in adaptive local search to optimally de-
sign a path-generating four-bar linkage. Matekar et al. [51] proposed a modified error
function and employed a DE algorithm to solve the optimal path synthesis problems.
Badduri et al. [52] proposed a GA-based method, named the NSGA-II method, for the
optimal coupler-curve synthesis of a planar four-bar linkage. Ortiz et al. [53] proposed a
DE-based algorithm, called Ingeniería Mecánica Málaga (IMMa) optimization algorithm
with self-adaptive control parameters technique, IOAs-at, to solve the dimensional synthesis
problems of five cases of four-bar and one case of six-bar path-generating mechanisms.
Lin [54] proposed a two-phase synthesis method in which the first phase involves shape
optimization followed by a scale-rotation-translation (SRT) synthesis optimization for the
synthesis of path-generating four-bar mechanisms. Next, Lin employed a GA-DE evolu-
tionary algorithm to solve the optimal synthesis problem, and two representative cases
were investigated to verify the higher accuracy of the solutions achieved by the proposed
method. Ebrahimi et al. [55] utilized an imperialist competitive algorithm (ICA) along
with a parallel simulated annealing (SA) algorithm, called the ICA-SA method, for the
dimensional synthesis of path-generating four-bar mechanisms with and without pre-
scribed timing, and compared the performance of the algorithms to those of some other
heuristic algorithms (GA, DE, and PSO). Lin et al. [56] proposed a one-phase synthesis
method without using the input angles as a design variable for optimum path synthesis
problems, and employed a DE algorithm with an SRT technique (DE-SRT) to improve
the solution reliability and accuracy. Hernandez-Ocana et al. [57] included two-swim
operators to the chemotaxis process of the modified bacterial foraging optimization al-
gorithm (TS-MBFOA), an evolutionary-based algorithm, to solve the optimal synthesis
problems of path-generating four-bar mechanisms. Sleesongsom et al. [58] proposed a
self-adaptive population size TLBO (SAP-TLBO) algorithm for the optimal path synthesis
of a four-bar linkage. Two traditional path generation test problems were conducted, and
the optimum results revealed the superiority of the SAP-TLBO algorithm compared to
original TLBO method. Mohamed et al. [59] simultaneously considered three conflicting
objective functions, which are the tracking error, the deviation of the transmission angle
from 90◦, and the maximum angular velocity ratio, as a multi-objective function for the
optimal synthesis of four-bar mechanisms using an ICA coupled with a GA (ICA-GA).
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Lin et al. [60] proposed a combined mutation differential evolution (CMDE) algorithm for
the optimum synthesis of path-generating four-bar mechanisms. The combined strategies
of the mutations: are DE/best/1, DE/current-to-best/1, and DE/rand/1. The enhanced
population diversity and search effectiveness of the CMDE algorithm compared to DE was
demonstrated using five representative problems. Kafash et al. [61] introduced an objective
function called circular proximity function (CPF), which exhibits the lowest number of
optimization variables, and DE, called the CPF-DE method, to solve the optimal path syn-
thesis problems. Singh et al. [62] proposed a TLBO algorithm to solve the optimal synthesis
problems of human knee exoskeletons and a crank-rocker four-bar path generating linkage.
Buskiewicz et al. [63] presented a one-phase synthesis method that can reduce the num-
ber of design parameters for the optimal synthesis of a four-bar mechanism generating
open/closed paths with prescribed timing. Three cases were investigated using a DE
algorithm to validate the effectiveness of the method. Sleesongsom et al. [64] applied a
TLBO method with a constraint-handling technique, named a path-repairing technique,
to address the constraints of both input crank rotation and Grashof’s criterion, and some
metaheuristic algorithms, including ABC, JADE, PBIL, ACOR, SCA, GWO, and TLBO,
were applied to determine the optimum solutions of path-generating four-bar linkages.
Three representative cases were investigated, and the optimum results revealed that TLBO
outperformed the other methods. Based on the optimal trajectory tracking control theory
of a shadow robot, Sabaapour et al. [65] proposed a contour-error-based proportional-
derivative objective function for synthesizing path-generating four-bar mechanisms, and
employed a global optimization method, known as the multi-start heuristic algorithm,
to solve the optimal synthesis problem. Zhang et al. [66] presented a hybrid Lagrange
interpolation differential evolution (HLIDE) algorithm to enhance the local exploitation
capability of DE for optimal synthesis problems. Five cases of optimal four-bar path gener-
ating linkages were tested and compared to those of three evolutionary algorithms (PSO,
TLBO, and DE), and the results demonstrated the significantly enhanced performance of
HLIDE compared to those of the other algorithms. Huang et al. [67] presented an adaptive
DE, and incorporated a local search with the Lagrange interpolation argument algorithm
(ADELI) to enhance the exploitation capability of DE. Thirty benchmark function sets in
the CEC 2014 were tested to verify the feasibility and effectiveness of ADELI, and a synthe-
sis problem of a path-generating four-bar linkage with prescribed timing was optimized.
Romero et al. [68] proposed a robust objective function formulation based on natural coordi-
nates and the Hermitian conjugate operator, and implemented a modified TLBO algorithm
for the optimal synthesis of a four-bar path generator. Sancibrian et al. [69] proposed a
search procedure for the optimal solution of the dimensional synthesis of planar linkages by
hybridizing a local search approach (generalized reduced gradient method) and DE. They
compared three hybrid strategies and verified that the cluster-based hybridization in DE
(DEC) is the best hybrid approach. Flores-Pulido et al. [70] proposed an improved harmony
search (ImHS) algorithm to solve the dimensional synthesis problems of a four-bar path
generator without prescribed timing. Zarkandi [71] proposed a population-based heuristic
algorithm called a gravitational search algorithm (GSA) to determine multiple cognate-
and defect-free optimal solutions for the path synthesis problems of planar four-bar and
slider-crank mechanisms. Zhang et al. [72] presented an error feedback method (EFM)
for linear constraint optimization problems. They optimized two path-generating four-
bar linkages using DE, PSO, and TLBO methods, and the objective function with linear
inequality constraints was optimized using the penalty function method and EFM. The
experimental results revealed that EFM exhibited significantly enhanced stability and faster
convergence than the traditional penalty function method. Bureerat et al. [73] proposed
a new constraint handling technique which deals with both input crank rotation and
Grashof’s criterion for the synthesis of path-generating four-bar linkages. In addition,
they solved several optimization problems using a new adaptive TLBO with a diversity
archive (ATLBO-DA) algorithm. Sardashti et al. [74] proposed a new objective function, the
geometrical similarity error function (GSEF), and applied an innovative adaptive algorithm
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(IAA) operator to form the GSEF-IAA methodology for the synthesis problem of a path-
generating four-bar mechanism. Valencia-Segura et al. [75] applied a differential evolution
variant (DE/best/1/bin) to solve the optimal dimensional synthesis of a four-bar path
generation mechanism using a relative angle and the Cartesian space link parameterization
(ODSRA + CP) method. Five study cases of dimensional synthesis for path generation
with and without prescribed timing were solved and comparatively studied with the well-
known vector loop-based synthesis method, and were solved by metaheuristic algorithms.
Huang et al. [76] proposed a repellency evolutionary algorithm (REA) to solve the di-
mensional synthesis of path-generating four-bar mechanisms. The REA consists of two
repulsive mutation behaviors, which exhibit two common characteristics: (i) the population
no longer learns from the current global optimum to prevent the population from falling
into the local optimum region; (ii) the offspring searches any direction except the location of
the parent. Sy et al. [77] proposed a hybrid-combined differential evolution and Jaya (HCDJ)
algorithm, which uses a modified initialization, a hybrid-combined mutation between the
DE and Jaya algorithm, and an elitist selection for the dimensional synthesis of path-
generating four-bar mechanisms with symmetrical motions. Five representative problems
were tested, and the HCDJ algorithm was confirmed to provide an improved optimal solu-
tion than the original DE and Jaya methods and some algorithms presented in the literature.
Yao et al. [78] developed a new constraint-handling method called the individual repairing
(IR) method as an alternative to the penalty function method and applied three metaheuristic
methods (GA, DE, and PSO) for the optimal synthesis of path-generating four-bar linkages. Two
cases with prescribed timing and one case without prescribed timing were tested to verify the
reliability of the IR method, and the results revealed that the optimal solutions of the IR method
are superior to those of the algorithms proposed by Acharyya et al. [46].

(3) Path-based synthesis methods:

These methods include the Fourier descriptors (FDs) method and Haar wavelet trans-
form method. McGarva [79] employed the harmonic analysis method and normalization
technique to create a library of path generation mechanisms of variable types to be gen-
erated and stored in terms of the normalized Fourier coefficients (NFCs) of the path they
generate. Ullah et al. [80] proposed an objective function based on FDs that evaluates
only the shape difference between desired and candidate coupler curves for an optimal
synthesis problem. The FDs method has the ability to decouple the nine design variables
involved in path generation problem, and Ullah et al. [80] first applied the FDs method to
reduce the dimension of the search space from nine to five. Vasiliu et al. [81] presented a
case-based approach using neural networks to synthesize the dimensions of planar four-bar
path generators, in which the shape of the desired path was represented using normalized
FDs. Liu et al. [82] proposed a refined numerical representation (RNR) method to describe
the shape character of path curves and define the objective function of the optimum path
synthesis problems. In addition, they determined the possible solutions using the artificial
immune network global searching (AIS) method. Starosta [83] utilized NFCs to represent a
closed curve, and employed GA, named the GA-FC method, for the synthesis of a four-bar
path generator. Galán-Marín et al. [84] developed a wavelet-based neural network method
to describe the close path shape and optimally synthesize crank-rocker path-generating
linkages. Buskiewicz et al. [85] utilized the NFCs of a curve curvature as a curve descrip-
tion for the optimal synthesis of a path mechanism. In their work, the distance norm
between two curves was considered as the distance between their NFCs, which was used
as the objective function, and GA was applied for the optimal path synthesis problems.
Khan et al. [86] proposed an approach where artificial neural networks (ANNs) were used
to establish a relationship between the FDs of a desired coupler curve and the correspond-
ing dimensions of a four-bar linkage. Sun et al. [87] presented a synthesis method for
the open path generation of a four-bar mechanism using the Haar wavelet transform and
normalization to extract the wavelet output feature parameters (WOFP) of an open path.
Lin et al. [88] presented a parametrization-invariant FD-based method for the optimal syn-
thesis of a path-generating four-bar mechanism. In addition, they determined the optimal
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values of the design parameters using a back propagation (BP) neural network algorithm.
Sharma et al. [89] proposed a non-uniform FD-based path synthesis algorithm with an opti-
mal parameterization scheme for a path-generating four-bar mechanism and determined
the optimal solution using the Nelder–Mead simplex optimization method. Kim et al. [90]
proposed a two-step optimization methodology for path-generating, crank-rocker four-bar
linkages based on first-order and second-order derivations of a specified coupler curve, and
a hybrid Taguchi-random coordinate search algorithm (HTRCA), which is an experimental-
based and free-derivative method, was applied to minimize the objective function (the
root mean square error) with the reference slope and its change in the angle of the slope.
Kim et al. [91] applied the HTRCA method to synthesize three cases of path-generating
four-bar linkages with and without prescribed timing. They compared the optimal results
of the HTRCA method with those of some evolutionary algorithms (GA-CSP, GA, PSO, DE,
and GA-DE) to verify the robustness and efficiency of the HTRCA method. Li et al. [92]
presented an analytical approach for four-bar path generation synthesis based on the FCs
of the path, named the Anal-FC method. Based on the Anal-FC method, the synthesis
problem was reduced to solving two polynomial equations without any limitation on the
number of the precision point.

(4) Other optimization methods:

Ahmadi et al. [93] applied a Stackelberg game-theoretic approach for the multi-
objective optimal synthesis of path-generating four-bar mechanisms. The tracking error
and the deviation of the transmission angle from 90◦ were considered as the bi-objective
function. Ahmadi et al. [94] proposed an approach based on the synergy of cooperative
game theory, reliability-based design optimization (RBDO), and Monte Carlo simulation
(MCS), called RBDO-MCS method, to solve the problem of the multi-objective optimal
synthesis of path-generating four-bar mechanisms. In the approach, three performance
criteria: tracking error, deviation of the transmission angle from 90◦, and probability of
failure of Grashof’s constraint, were considered as the three objective functions.

Owing to the random search characteristics of the optimization methods, the effi-
ciency (or effectiveness) and accuracy are significantly affected by the selected parameters
of the algorithms, such as the number of populations, crossover ratio, scale factor, and
iterative number used in the method. The obtained optimization results may differ at
each time; thus, effectively determining the performance of an optimization algorithm
is a critical problem. To find accurate and efficient global optimization algorithms for
solving high dimensional synthesis problems, such as the synthesis of a six-bar or eight-bar
path-generating linkage, is the intent of this preliminary study. In previous research on
optimization methods, comparison tests were often performed based on some benchmark
functions or representative problems, and the statistical mean value and standard deviation
(SD) were applied to judge the merits of the methods. In this study, five metaheuristic
global optimization methods were applied to solve five representative optimization prob-
lems in the dimensional synthesis of path-generating four-bar linkages, in which two of
these methods include a widely used intelligent algorithm and evolutionary algorithm
(i.e., PSO and DE methods), and three of these methods are improved PSO- and DE-based
methods (i.e., hybrid PSO (HPSO) [33], ensemble of parameters and mutation strategies in
differential evolution (EPSDE) [95], and linearly EPSDE (L-EPSDE) method). The HPSO,
EPSDE, and L-EPSDE methods would be verified to be suitable for application in middle
or high dimensional problems. In this study, one hundred trials of optimization design
were investigated to solve each case of the five representative synthesis problems. The ac-
curacy and efficiency (effectiveness) of these five metaheuristic optimization methods were
compared; moreover, they were also compared to those of previously reported algorithms
in the literature. The comparative results revealed that the accuracy and efficiency of the
adaptive improved methods, EPSDE and L-EPSDE, are superior to numerous previously
reported methods, and that they are suitable for application in middle or high dimensional
problems, and that DE with golden ratio (DE-gr) also exhibited a similar outperforming
characteristic as EPSDE and L-EPSDE in middle dimensional problems. In addition, HPSO
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exhibited improved accuracy and efficiency compared to the original PSO, and is suitable
for application in middle or high dimensional problems.

The remainder of this paper is organized as follows: Section 2 presents the formulation
of the synthesis problem of a path-generating four-bar linkage. Section 3 briefly describes
the five metaheuristic global optimization algorithms employed in this study. Section 4
presents the application of the five metaheuristic optimization algorithms for solving five
representative problems of a four-bar path generator and the comparative study of the
performance of the algorithms to those of previously reported algorithms. Section 5 briefly
discusses the overall optimal results of the five metaheuristic optimization methods. Lastly,
the conclusion is drawn in Section 6.

2. Position Analysis of the Planar Four-Bar Linkage

Figure 1 shows the vector loop diagram of the planar path generating four-bar link-
age [49], where r1 is the length of fixed link, r2 is the length of input link, r3 is the length of
the coupler link, r4 is the length of output link, and rcx and rcy are the projection and normal
distance of the coupler point C to the line connecting joint A and joint B, respectively. Angle
θ0 is the inclined angle of the fixed link on the horizontal axis, and (x0, y0) is the coordinate
of the fixed pivot O of the mechanism on the X–Y coordinate system.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 35 
 

tionary algorithm (i.e., PSO and DE methods), and three of these methods are improved 
PSO- and DE-based methods (i.e., hybrid PSO (HPSO) [33], ensemble of parameters and 
mutation strategies in differential evolution (EPSDE) [95], and linearly EPSDE (L-EPSDE) 
method). The HPSO, EPSDE, and L-EPSDE methods would be verified to be suitable for 
application in middle or high dimensional problems. In this study, one hundred trials of 
optimization design were investigated to solve each case of the five representative syn-
thesis problems. The accuracy and efficiency (effectiveness) of these five metaheuristic 
optimization methods were compared; moreover, they were also compared to those of 
previously reported algorithms in the literature. The comparative results revealed that 
the accuracy and efficiency of the adaptive improved methods, EPSDE and L-EPSDE, are 
superior to numerous previously reported methods, and that they are suitable for ap-
plication in middle or high dimensional problems, and that DE with golden ratio (DE-gr) 
also exhibited a similar outperforming characteristic as EPSDE and L-EPSDE in middle 
dimensional problems. In addition, HPSO exhibited improved accuracy and efficiency 
compared to the original PSO, and is suitable for application in middle or high dimen-
sional problems.  

The remainder of this paper is organized as follows: Section 2 presents the formula-
tion of the synthesis problem of a path-generating four-bar linkage. Section 3 briefly de-
scribes the five metaheuristic global optimization algorithms employed in this study. 
Section 4 presents the application of the five metaheuristic optimization algorithms for 
solving five representative problems of a four-bar path generator and the comparative 
study of the performance of the algorithms to those of previously reported algorithms. 
Section 5 briefly discusses the overall optimal results of the five metaheuristic optimiza-
tion methods. Lastly, the conclusion is drawn in Section 6. 

2. Position Analysis of the Planar Four-Bar Linkage 
Figure 1 shows the vector loop diagram of the planar path generating four-bar 

linkage [49], where r1 is the length of fixed link, r2 is the length of input link, r3 is the 
length of the coupler link, r4 is the length of output link, and rcx and rcy are the projection 
and normal distance of the coupler point C to the line connecting joint A and joint B, re-
spectively. Angle 0θ  is the inclined angle of the fixed link on the horizontal axis, and 

0( , )ox y  is the coordinate of the fixed pivot O of the mechanism on the X–Y coordinate 
system. 

0θ
2θ

4θ

3θ

2r


1r


4r


3r


cxr


cyr


O

( , )x yC CCrY

rX

Y

X

A

B

D
0x

0y

 
Figure 1. Vector loop diagram of a planar path-generating four-bar linkage. 

From the vector loop defined on the planar four-bar linkage, we obtain: 

3 1 4 2= + −r r r r   
  (1)

By taking the inner product of its own vector: 

Figure 1. Vector loop diagram of a planar path-generating four-bar linkage.

From the vector loop defined on the planar four-bar linkage, we obtain:

⇀
r3 =

⇀
r1 +

⇀
r4 −

⇀
r2 (1)

By taking the inner product of its own vector:

⇀
r3 ·

⇀
r3 = (

⇀
r1 +

⇀
r4 −

⇀
r2) · (

⇀
r1 +

⇀
r4 −

⇀
r2) (2)

The above equation can be expanded to:

r3
2 = r1

2 + r4
2 + r2

2 + 2r1r4 cos θ4 − 2r1r2 cos θ2 − 2r2r4 cos(θ2 − θ4) (3)

After expanding the trigonometric function, we obtain:

A cos θ4 + B sin θ4 = C (4)

where
A = 2r4(r1 − r2 cos θ2)
B = −2r2r4 sin θ2
C = r3

2 − r1
2 − r2

2 − r4
2 + 2r1r2 cos θ2

(5)
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Using the half-angle formula of tanθ we derive:

(C + A) tan2(
θ4

2
)− 2B tan(

θ4

2
) + (C− A) = 0 (6)

By solving for θ4

θ4 = 2 tan−1

[
B±
√

A2 + B2 − C2

A + C

]
(7)

By decomposing Equation (1) into the x–y components, θ3 can be solved and ex-
pressed as:

θ3 = tan−1
(

r4 sin θ4 − r2 sin θ2

r1 + r4 cos θ4 − r2 cos θ2

)
(8)

The coordinate components of the coupler point C on the Xr–Yr coordinate system,
(Cxr, Cyr), can be expressed as{

Cxr = r2 cos θ2 + rcx cos θ3 − rcy sin θ3
Cyr = r2 sin θ2 + rcx sin θ3 + rcy cos θ3

(9)

The trajectory of the coupler point C on the X–Y coordinate system,(Cx, Cy), can be
expressed as [

Cx
Cy

]
=

[
cos θ0 − sin θ0
sin θ0 cos θ0

][
Cxr
Cyr

]
+

[
x0
y0

]
(10)

3. Optimization Methods
3.1. Particle Swarm Optimization and Hybrid Particle Swarm Optimization Methods

The particle swarm optimization (PSO) method was proposed by Kennedy and Eber-
hart in 1995 [26], and it employs the social behavior of birds or fish when searching for
food as the searching solution concept of the optimization method. Particles correspond
to an individual in a school of birds or fish: when a flock of bird searches for food, the
moving velocity and direction of each individual are affected by three factors, namely
inertial velocity, individual experience, and group influence. Inertial velocity refers to
the flying velocity of birds during search, and it affects the search direction and velocity
of an individual. Individual experience refers to the accurate direction and velocity of
an individual based on past experience. Group influence refers to the effect of the group
behavior on individuals, and individuals move toward the individual closest to the food at
the moment. In the D-dimensional search space, each particle exhibits a position vector
xi = (xi1, xi2, . . . , xi D) with a velocity vector vi = (vi1, vi2, . . . , vi D). Particles are origi-
nally initialized in a uniform random manner through the search space, and the velocity is
also randomly initialized. The new position (xi+1

i ) and new velocity (vi+1
i ) of each particle

movement are as follows.

vt+1
i = vt

i + c1 × rand( )× (Pt
i − xt

i ) + c2 × Rand( )× (Pt
g − xt

i

)
(11)

xt+1
i = xt

i + vt+1
i

−Vmax ≤ vt
i ≤ Vmax

(12)

where i corresponds to each individual, t is the number of iterations (generations), xt
i is the

position of an individual, vt
i is the velocity of an individual, Pt

i is the best position (Pbest) of
an individual i at t-th iteration, Pt

g is the global best position (Gbest) of the swarm at t-th
iteration, c1 and c2 are the acceleration coefficients or learning factors, and they represent
the cognitive and social component, respectively, and are used to decide whether particles
prefer moving toward a Pbest position or Gbest position. Most studies utilize learning factors
of 2, which indicates that the same importance is given to cognitive searching and social
searching; rand( ) and Rand( ) are two uniformly distributed random numbers between
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0 and 1. The drawbacks of the original PSO method is the requirement for specifying
the velocity vt

i within [−Vmax, Vmax]. The flow chart of the PSO algorithm is shown in
Figure 2.
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The HPSO algorithm was proposed by Kang et al. in 2010 [33], and it incorporates
the concepts of inertia weight (ω) proposed by Shi et al. [96] and constriction factor (K)
proposed by Clerc [97]. Kang et al. [33] proposed the restriction of the comparison of
the fitness value to the top 30% of the best particles and keep them, and the remaining
particles are crossed-over and selected using a similar approach as the GA to prevent the
particles from being trapped in the local optimal region and to improve the convergence
and diversity of the original PSO. The three improvements of the HPSO to the original PSO
method are:

(1) The use of the linear inertia weight (ω) proposed by Shi et al., that is, multiply the
original velocity by an inertia weight to linearly change the original velocity to increase
the search ability of particles. This increases the versatility of PSO in the search and is
closer to the optimal solution. The improved velocity formula is:

vt+1
i = ω (t)× vt

i + c1 × rand( )× (Pt
i − xt

i ) + c2 × Rand( )× (Pt
g − xt

i

)
(13)

ω (t) = (ω1 −ω2)×
(Nt − t)

Nt
+ ω2 (14)

where,ω1, ω2 are the initial and final inertia weight, respectively, and Nt is the total number
of iterations.

(2) The use of a constriction factor (K) to improve the PSO algorithm. This can effectively
control the stability and trajectory of the particle search process without limiting the
maximum speed of the particle movement. The updated formula for the new velocity
of an individual in the HPSO method combines the merits of the methods proposed
by Shi et al. [96] and Clerc [97], and can be expressed as follows:
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vt+1
i = K

{
ω (t)× vt

i + c1 × rand( )× (Pt
i − xt

i ) + c2 × Rand( )× (Pt
g − xt

i

)}
(15)

K =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ ϕ = c1 + c2, ϕ ≥ 4 (16)

(3) The crossover of the two modified operations of GA and the incorporation of the top
30% selection rule into the algorithm.

The starting population is a set of design variables whose values are randomly gener-
ated within a searching space. Each individual (chromosome) of the population is a possible
solution to the problem and is formed by parameters (genes) that set the design variables
of the problem. All genes are grouped within a vector that represents a chromosome. The
swarm of the population is evaluated using the fitness function to determine the personal
and global best values of the entire swarm. Subsequently, the top 30% selection is used
to sift through the chromosomes with better fitness from the swarm, while the remaining
70% of particles are put into the modified crossover process to increase the diversity of
the population and to prevent the particles from being trapped in the local optimal region.
The modified crossover process consists of two approaches. First, a random single point is
selected to cut the chromosome into two parts. A uniform crossover method is performed
on the first half, in which the parents equally contribute each of their gene values to the
offspring chromosomes. This enables the mixing of the parent chromosomes at the gene
level rather than the segment level. A normal crossover method is performed on the second
half, in which the gene values of two parent chromosomes are interchanged at the crossover
point. The details of the modified crossover operator are illustrated in Figure 3, in which P1,
P2 refer to the parent chromosomes and C1, C2 indicate the generated children (offspring)
chromosomes. After the recombination process during the modified crossover, the fitness
values of the parent and offspring chromosomes are calculated for re-evaluations. These
chromosomes with fitness values will undergo a top 50% selection again to obtain improved
solutions, and the positions and velocities will be updated using a modified standard PSO
with inertial weight to determine the “Pbest” and “Gbest” solutions. The selection rule
for new generation particles is depicted in Figure 4. The detailed flow chart of the HPSO
algorithm is shown in Figure 5.
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3.2. Differential Evolution Algorithm

The differential evolution (DE) algorithm was proposed by Storn and Price in 1997 [30],
and it exhibits similar operation mechanism to GA, such as crossover, selection, and muta-
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tion. It differs from GA in the first mutation operation, and the concept of difference vector
is used in it to make the particles influence each other during movement. The DE algorithm
exhibits a high degree of stability and a stronger search ability than PSO and GA. In a
D-dimension real variable space, each vector, which is known as a genome/chromosome,
forms a potential solution for the optimization problem. The i-th parameter vector of the
population at the current iteration (t) can be denoted using:

Xi
t = [xt

i,1, xt
i,2, . . . . . . ., xt

i,D] (17)

The initial populations (t = 1) should cover the entire parameter space as much
as possible by uniformly randomizing distribution within the range constrained by the
prescribed minimum and maximum bounds. Xmin = [xmin, 1, xmin, 2, . . . , xmin, D] and
Xmax = [xmax, 1, xmax, 2, . . . , xmax, D] Hence, the j-th component of the i-th vector can be
initialized as

x1
i,j = xmin,j + randi,j(0, 1) ( xmax,j − xmin,j ) ( i = 1, 2, . . . , Np; j = 1, 2, . . . , D ) (18)

where randi,j(0, 1) is a uniformly distributed random number within the interval [0, 1],
Np is the number of populations, i is the index of the solution vector, and j is the index of
parameter in vector.

3.2.1. Mutation

After initialization, a mutant vector corresponding to each target vector (parent) Xi
t

in the current generation (t) is obtained according to the mutation operation. Numerous
scholars have proposed different mutation operation methods. The six most widely used
mutation strategies are described below:

DE/rand/1:
Vt

i = Xt
r1
+ F(Xt

r2
− Xt

r3
) (19)

DE/best/1:
Vt

i = Xt
best + F(Xt

r1
− Xt

r2
) (20)

DE/rand/2:
Vt

i = Xt
r1
+ F(Xt

r2
− Xt

r3
) + F(Xt

r4
− Xt

r5
) (21)

DE/best/2:
Vt

i = Xt
best + F(Xt

r1
− Xt

r2
) + F(Xt

r3
− Xt

r4
) (22)

DE/rand-to-best/1:

Vt
i = Xt

i + K(Xt
best − Xt

i ) + F(Xt
r1
− Xt

r2
) (23)

DE/current-to-rand/1:

Vt
i = Xt

i + K(Xt
r1
− Xt

i ) + F(Xt
r2
− Xt

r3
) (24)

where i represents an individual in the population, the indices r1, r2, r3, r4 and r5 are
mutually exclusive integers randomly generated within the range [1, Np] and r1 6= r2 6=
r3 6= r4 6= r5 6= ri. Xt

best is the best individual vector with the best fitness function in the
population at generation t. Xr1 − Xr2 is the difference vector, K is randomly selected within
the range [0, 1], and the mutation factor (scale factor) F is a positive control parameter for
scaling the difference vector and is generally selected within [0.4, 0.99].

3.2.2. Crossover

After the mutation, crossover operation is applied to each pair of the target vector
Xi

t and its corresponding mutant vector Vi
t to generate a trial vector (offspring) Ui

t =
[ut

i,1, ut
i,2, . . . , ut

i,D]. Common crossover methods include single, multi-point crossover,
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exponential crossover, and uniform crossover. Uniform (binomial) crossover is generally
used, and the formula is as follows:

ut
i,j =

{
Vt

i,j if randi,j(0, 1) ≤ Cr or j = jrand

xt
i,j otherwise,

j = 1, 2, . . . , D (25)

where j represents the dimension corresponding to the individual, Cr is the user-specified
crossover rate within the range [0, 1], Ui

t is the trial vector generated after crossover, and
randi,j(0, 1) is a uniform random number in [0, 1] and ensures that the trail vector Ut

i obtains
at least one component from the mutant vector Vi

t.

3.2.3. Selection

Selection operation determines whether the target vector or trial vector survives the
next generation by comparing the corresponding objective function value (fitness value),
retaining the better one. If the trial vector exhibits a better fitness value than the target vector,
the trial vector will replace the target vector and enter the next generation. Otherwise, the
target vector will be retained in the next generation. The selection method often used in the
DE algorithm is the competition method, which can be expressed as follows:

Xt+1
i =

{
Ut

i if f (Ut
i) ≤ f (Xt

i)
Xt

i otherwise
(26)

where Xt+1
i is the vector retained to the next generation, Ut

i is the trial vector and Xt
i is the

target vector. The aforementioned three operations are repeated generation after generation
by continuously leaving better vectors, through generation to generation (iterations) and
gradually converging, until a termination criterion (i.e., reaching the maximum iteration
number of objective function evaluations) is satisfied. The DE algorithm can rapidly
determine the best solution. The flow chart of the DE algorithm is shown in Figure 6.
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3.3. Linearly Ensemble of Parameters and Mutation Strategies in Differential Evolution

The EPSDE method was proposed by Mallipeddi et al. in 2011 [95], and it involves the
competition of a pool of mutation strategies with a pool of values corresponding to each
associated parameter to produce a successful offspring population. This method selects



Appl. Sci. 2022, 12, 7368 14 of 35

three mutation strategies in the DE algorithm to form a pool and enables each individual in
an initial population to be randomly assigned a mutation strategy and associated parameter
values (mutation and crossover factors) obtained from the respective pools. The mutation
strategy and associated parameter values producing a better trial vector (offspring) is
retained, with the trial vector emerging as the target vector (parent) in the next generation,
whereas those that fail to produce better trial vectors are randomly reinitialized with a new
mutation strategy and associated parameter values. The three mutation strategies selected
in the EPSDE method to form a pool with diverse characteristics for most optimization
problems are as follows:

(1) DE/rand/1
Exhibits stronger exploration capabilities, and it is faster, robust and is one of the most
widely used mutation strategies in the DE literature.

(2) DE/best/2
Utilizes two difference vectors, and it is more robust than a strategy that utilizes one
difference vector

(3) DE/current-to-rand/1
Takes advantage of its rotation-invariant characteristics, and does not require a
crossover operation.

In the EPSDE method, each vector is randomly selected using the aforementioned
three mutation methods, thereby utilizing the advantages of the three mutation methods.
Mallipeddi et al. [95] suggested that the population size should be kept constant throughout
the evolution process, and the value of mutation factor should be taken in the range of
[0.4, 0.9] at a step size of 0.1, and the value of the crossover factor should be taken in the
range of [0.1, 0.9] at a step size of 0.1. The flow chart of the EPSDE method is shown in
Figure 7.

The characteristic feature of the EPSDE method is that the designer does not need
to set too many algorithm parameters to adapt to the problem; however, this method
exhibits an incomplete convergence and slower speed when dealing with higher dimension
problems, resulting in the need to increase the number of groups or iterative number to
reach convergence. Tanabe et al. [98] proposed a linear-success-history-based adaptive DE
(L-SHADE) method to significantly improve the performance of SHADE using a linear
population size reduction (LPSR) method, a simple deterministic population resizing
method which continuously reduces the population size according to a linear function,
and which only requires the initial population size and population reduction frequency as
the user-defined parameters. In addition, it has been experimentally confirmed to exhibit
the best overall performance on 30 benchmark problems compared to other DE variants,
particularly for higher dimension (D ∈ [30, 50]) of the optimal design problem.

The LPSR formula for linear population reduction is as follows:

Nt+1 = round
(

Ninit −
NFEt

NFEmax
· (Ninit − Nmin)

)
(27)

where Nt+1 is the population size in the next generation, Nmin is the minimum number
of population size (at the end of the run), Ninit is the initial number of population size (at
t = 1), NFEt is the current number of fitness evaluations, and NFEmax is the maximum
number of fitness evaluations. In the EPSDE method, the population size (Np) is kept
constant throughout the evolution process; thus, in this study, based on the benefit of
LPSR in L-SHADE, the characteristic of LPSR was incorporated to improve the EPSDE
method to linearly reduce the population size during the evolution process to increase
the convergence rate to the optimal solution. This improved method was named linearly
EPSDE (L-EPSDE), and the flow chart of the L-EPSDE method is shown in Figure 7.
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4. Optimization of Path Generating Four-Bar Linkage
4.1. Objective Function and Constraint Conditions

During the dimensional synthesis of path-generating linkages, the traditional objective
function (fitness function) to be minimized is defined as the sum of the squares of the
Euclidean distance error between the generated coupler point of the designed four-bar
linkage and the desired (target) points. The optimal design involves the determination of
the minimum value of the tracing error, which can be expressed as follows:

Min f (X) =
Nd

∑
i=1

[(
Ci

xd − Ci
x

)2
+
(

Ci
yd − Ci

y

)2
]

(28)

where X is the vector of design variables, (Ci
x, Ci

y) is the Cartesian coordinate of the i-
th coupler point generated by the designed four-bar linkage, (Ci

xd, Ci
yd) is the Cartesian

coordinate of the i-th desired point, and Nd is the number of desired points.
While designing four-bar linkages, it is essential to consider the restriction relationship

of each link so that the motion can meet the requirement. For example, if the desired
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four-bar linkage is a crank-rocker mechanism, the constraint formula according to the
Grashof’s criteria [99] can be expressed as

h1 : 2[max(r1, r2, r3, r4) + min(r1, r2, r3, r4)] < sum(r1, r2, r3, r4) (29)

To prevent the occurrence of order defect (or branch problem), it is necessary to restrict
the rotation of the input link in the same order (CW or CCW) during motion. The sequential
constraint can be expressed as

h2 : θi
2 > θi+1

2 > θi+2
2 > . . . > θNd

2
or

h2 : θi
2 < θi+1

2 < θi+2
2 < . . . < θNd

2

(30)

Once the sequential constraint of the path synthesis problem has been satisfied, the
order defect can be avoided. The objective function for the optimal synthesis of a path-
generating four-bar linkage is highly constrained and contains two parts. The first part
represents the position error between the target points and the generated trajectories of the
coupler point of an optimized four-bar linkage, and the second part refers to the restrictions
with a penalty function. By adding constraint Equations (29) and (30) to the origin objective
function Equation (28), we can obtain:

Min f (X) =
Nd

∑
i=1

[(
Ci

xd − Ci
x

)2
+
(

Ci
yd − Ci

y

)2
]
+ M1h1(X) + M2h2(X) (31)

where h 1(X) = 0 indicates that the Grashof’s condition is true and h 1(X) = 1 indicates
that the Grashof’s condition is false; h 2(X) = 0 indicates that the sequence condition for θ2
is true and h 2(X) = 1 indicates that the sequence condition for θ2 is false. M1 and M2 are
very large values that penalize the objective function when the constraints fail. Here, those
constraints are inserted into the objective function as “penalty terms”, and both M1, M2 are
considered as a large value of 106. This is a classical method of handling the constraints
of the optimization problem. In this study, the minimization of the objective function
subjected to some constraints was investigated for the coupler curves of path-generating
four-bar linkages with various numbers of target points.

4.2. Parameters of Optimization Methods

In this study, the aforementioned five metaheuristic global optimization methods
were applied to solve five representative dimensional synthesis problems of planar path-
generating four-bar linkages, which have been widely investigated in the literature. The
five investigated cases include various types of coupler curves, such as non-aligned points
curve (Case 1), irregular closed curves (Cases 2), semi-circular arc curves (Case 3), straight-
line segment curves (Case 4), and elliptical path curves (Case 5). In Cases 1, 2, and 3, the
coupler curves were synthesized with a prescribed timing, indicating that, not only does
the sequence of the input angles need to meet the restriction of Equation (30), it also must
satisfies some specified angular positions. However, in Cases 4 and 5, the coupler curves
were synthesized without prescribed timing.

The parameter settings of the five metaheuristic global optimization methods are
shown in Table 1. For each case problem, the number of particle or populations (Np)
was 100, the number of maximum iterations (Nitmax) was 1000 (except in Case 4, where
Nitmax was 2000), and the number of objective function evaluation (NF) was
NF = NP × Nitmax. The number of trials performed for each case was 100, and the sta-
tistical values (best value, worst value, mean value, median value, and standard deviation
(SD)) were evaluated. In each case, the kinematic simulation and the trajectories of the
coupler point of the optimal path-generating four-bar linkages obtained using the five meta-
heuristic optimization methods were executed using the MATLAB 2011R coded program.
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The computer used to execute the cases was equipped with Intel(R) Core(TM) i7-4790 CPU
@ 3.60 GHz, RAM: 20 GB.

The crossover rate and mutation factor in the conventional DE algorithm are generally
assigned randomly or are modified by self-adaptation at each generation. However, in this
study, the ratio of the crossover rate to the mutation factor in the DE algorithm was specified
as the golden ratio numbers (0.618:0.382), and the fixed values of the crossover rate (0.618)
and mutation factor (0.382) lied in and neared the recommended range of [0.1, 0.9]
and [0.4, 0.9] [95], respectively. This DE method with specified values of crossover
rate (0.618) and mutation factor (0.382) can be called the DE-gr method. To the best
of our knowledge, this is the first application of the golden ratio numbers as the crossover
rate and mutation factor, and the comparison of the optimal results of the five metaheuris-
tic optimization methods revealed that this special ratio can increase the accuracy and
efficiency of the DE-gr method to converge to the optimal solution.

Table 1. Parameters of five optimization methods.

Optimization Method PSO HPSO DE-gr EPSDE L-EPSDE

Number of particles or
population (NP) 100 100 100 100 100

Number of iterations (Nitmax) 1000 1000 1000 1000 1000

Minimum group (NPmin) – – – – 5

Crossover method – Single point-
uniform Multi-point Multi-point Multi-point

Crossover rate (Cr) – – 0.618 0.1~0.9 0.1~0.9

Mutation method – – DE/best/1

DE/best/2
DE/rand/1

DE/current-to-
rand/1

DE/best/2
DE/rand/1

DE/current-to-
rand/1

Mutation factor (F) – – 0.382 0.4~0.9 0.4~0.9

Selection method – – Competition law Competition law Competition law

Learning factor (c1, c2) 2.05 2.05 – – –

Inertia weight (ω) 0~1 0~1 – – –

4.3. Five Problems of the Dimensional Synthesis of the Path-Generating Four-Bar Linkages

Several previous researchers have investigated these five representative synthesis
problems using different algorithms. The comparative study of the results of the meta-
heuristic optimization methods (DE-gr, PSO, HPSO, EPSDE, and L-EPSDE) employed in
this study to those of more than ten other algorithms utilized in previous studies will be
discussed in this section. The statistical results (Best, Worst, Median, and Mean values,
and SD) of the five metaheuristic methods applied to solve the five selected problems
undergoing 100 experimental trials are shown in Table 2. The accuracy and efficiency
(effectiveness) of those metaheuristic methods were compared using the SD, mean value,
and convergence rate. In Table 2, the bold numbers on each column for all cases are the
minimum values of the statistical results of 100 optimal solutions obtained using the five
metaheuristic methods.

Table 2. Results of optimized values and statistical analyses of five representative cases.

Case 1: 5 Target Points, Non-Aligned Point Curve Case 2: 18 Target Points, Irregular Closed Curve

Best Worst Median Mean SD Best Worst Median Mean SD

PSO 1.16E−05 1.92E−03 4.21E−05 1.12E−04 2.83E−04 1.92E−02 2.53E+00 4.67E−02 2.43E−01 6.33E−01

HPSO 8.01E−06 6.37E−05 4.21E−05 3.95E−05 1.32E−05 1.09E−02 8.43E−01 4.64E−02 1.03E−01 1.50E−01

DE-gr 7.42E−07 2.36E−05 7.42E−07 2.36E−06 2.35E−05 1.09E−02 2.53E+00 4.53E−02 2.32E−01 5.93E−01
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Table 2. Cont.

Case 1: 5 Target Points, Non-Aligned Point Curve Case 2: 18 Target Points, Irregular Closed Curve

Best Worst Median Mean SD Best Worst Median Mean SD

EPSDE 7.42E−07 7.42E−07 7.42E−07 7.42E−07 9.64E−20 9.91E−03 2.60E−01 1.14E−01 1.18E−01 5.88E−02

L-EPSDE 7.42E−07 7.42E−07 7.42E−07 7.42E−07 1.08E−19 9.91E−03 4.53E−01 4.53E−02 7.77E−02 8.08E−02

Case 3: 6 target points, semi-circular arc curve Case 4: 6 target points, straight-line segment curve

Best Worst Median Mean SD Best Worst Median Mean SD

PSO 3.26E+00 1.91E+02 7.55E+00 1.21E+01 2.16E+01 5.74E−03 1.68E+01 2.99E+00 4.00E+00 3.38E+00

HPSO 2.95E+00 1.40E+02 8.27E+00 1.55E+01 1.89E+01 4.54E−03 1.43E+01 6.32E+00 6.12E+00 3.09E+00

DE-gr 2.58E+00 7.16E+01 4.67E+00 1.02E+01 1.62E+01 2.32E−04 2.50E+01 2.36E+00 3.53E+00 4.10E+00

EPSDE 2.58E+00 1.37E+01 2.58E+00 3.47E+00 1.90E+00 2.59E−04 8.84E+00 1.00E−01 1.17E+00 2.43E+00

L-EPSDE 2.58E+00 7.16E+01 2.58E+00 2.91E+00 5.26E+00 4.71E−04 7.12E+00 1.09E−01 3.24E−01 8.15E−01

Case 5: 10 target points, elliptical path curve

Best Worst Median Mean SD

PSO 2.30E−01 3.44E+02 9.59E+01 1.21E+02 9.81E+01

HPSO 5.42E−03 2.92E+02 1.71E+01 4.96E+02 7.35E+01

DE-gr 8.00E−03 3.73E+02 4.37E+01 7.51E+01 8.42E+01

EPSDE 1.83E−02 2.77E+02 4.15E+01 6.47E+01 7.13E+01

L-EPSDE 7.02E−03 1.89E+02 5.44E+00 1.31E+01 1.85E+01

Case 1: Five non-aligned points (5 target points, 6 design variables).
This is a path generation problem with prescribed timing, whose coupler point must

trace a path with five non-aligned points. This problem was originally proposed by
Kunjur and Krishnamarty [39]. The four-bar mechanism exhibits a crank-fixed point in the
coordinate system, and the direction of fixed link is collinear to the X-axis, that is θ0 = 0,
x0 = 0, y0 = 0. The problem can be defined as follows:

The coordinates of five target points:{
Ci

d

}
= {(3.000, 3.000) , (2.759, 3.363) , (2.372, 3.663) , (1.890, 3.862) , (1.355, 3.943)}

The input crank positions for prescribed timing:{
θi

2

}
= {π/6, π/4, π/3, 5π/12, π/2} (i = 1, 2, .., 5)

The vector of six design variables:

X = [r1, r2, r3, r4, rcx, rcy]

The limits of the design variables:

r1, r2, r3, r4 ∈ [1/20, 12], rcx, rcy ∈ [−15, 15].

The synthesized optimal parameters and the corresponding values of the objective
function for each method are listed in Table 3. In this work, the design domain was
medium-sized with five target points. It is important to note that there was a slight
difference in the limits of design variables in previous literature, such as GA-CSP [41]
and IOAS-at [53] methods, r1, r2, r3, r4 ∈ [0, 50], MUMSA [48] and HLIDE [66] methods,
r1, r2, r3, r4 ∈ [0, 5], rcx, rcy ∈ [−5, 5].
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Table 3. Optimal results of EPSDE, L-EPSDE, and ten other optimization methods for Case 1.

GA-KK
[39]

Exact Grad.
[41]

GA-CSP
[41]

MUMSA
[48]

IOAS-at

[53]
HLIDE

[66]
BAS
[37]

ODSRA
+ CP [75]

REA
[76]

HCDJ
[77]

EPSDE
This Work

L-EPSDE
This Work

Np 100 – 50 50 25 100 – 50 – 50 100 100

NF 5000 39 5000 5000 5000 3900 10,000 5000 3900 5000 100,000 100,000

r1 (mm) 3.50964 2.85813 3.06304 3.77327 2.80361 3.670110 3.713526 3.6537 1.996566 4.293081 3.66973 3.66973

r2 (mm) 1.85791 1.99965 1.99596 2.00000 1.99226 1.99781 1.997874 1.9977 3.901976 1.997832 1.99781 1.99781

r3 (mm) 4.72584 3.06518 3.30582 4.11697 3.30461 3.99675 4.046953 3.9780 2.679281 4.73741 3.99632 3.99632

r4 (mm) 3.51872 2.46329 2.52471 2.74616 2.47412 2.70500 2.719239 2.7000 1.669044 2.94173 2.70489 2.70489

rcx (mm) 1.95754 1.71710 1.64516 1.67849 1.64413 1.67206 1.67414 1.6677 1.684562 1.70741 1.67205 1.67205

rcy (mm) 1.55890 1.63089 1.70896 1.67098 1.71454 1.68011 1.67796 1.6844 0.0000009 1.64417 1.68013 1.68013

Error 9.54E−04 6.80E−05 1.83E−06 1.77E−06 4.27E−06 7.42E−07 7.467E−07 7.67E−07 8.64E−07 1.924E−06 7.42E−07 7.42E−07

The comparison of the optimal solutions of EPSDE and L-EPSDE for Case 1 to those of
the three other metaheuristic optimization algorithms and ten other methods are shown
in Tables 2 and 3, respectively. The comparison results revealed that the optimal value
(7.42E−07) of L-EPSDE was the same as those of the EPSDE and DE-gr (Table 2) and
HLIDE methods (Table 3), slightly superior to those of the BAS, ODSRA + CP, and REA
methods (Table 3), and superior to those of the PSO, HPSO (Table 2) and GA-KK, Exact
gradient, GA-CSP, MUMSA, IOAS-at, and HCDJ methods (Table 3). However, based on the
SD and mean value in Table 2, both the L-EPSDE and EPSDE were superior to DE-gr. The
trajectories of the coupler point obtained by the five metaheuristic algorithms in Case 1,
simulated by a MATLAB coded program, are shown in Figure 8, in which the curves of
HPSO, EPSDE, and L-EPSDE coincide with one another, as their optimal solutions were the
same. The trajectory of the coupler point and the optimal mechanism obtained by L-EPSDE
method are shown in Figure 9. The convergence rates of the five metaheuristic methods
are shown in Figure 10. The HPSO method exhibited the best convergence rate to the
optimal solution and almost achieved an optimal fitness value at the eleventh generation,
and the convergence rate of L-EPSDE was slightly slower than PSO, HPSO, EPSDE, and
DE-gr. However, all five metaheuristic optimization methods converged rapidly (under
20 iterations) because the number of design variables was six, which is easier than four
other cases.
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Case 2: Irregular closed curve (18 target points, 10 design variables).
This is a representative problem for the synthesis of path generation with prescribed

timing, where 18 target points are specified in an irregular closed curve. This well-known
problem was originally proposed by Kunjur and Krishnamarty [39], and has been solved
by numerous researchers. The problem is defined as follows:

The coordinates of eighteen target points (unit: mm):
{

Ci
d
}
= {(0.5, 1.1) , (0.4, 1.1) , (0.3, 1.1) , (0.2, 1.0) , (0.1, 0.9) , (0.05, 0.75), (0.02, 0.6) , (0, 0.5) , (0, 0.4) ,

(0.03, 0.3) , (0.1, 0.25), (0.15, 0.2), (0.2, 0.3) , (0.3, 0.4) , (0.4, 0.5) , (0.5, 0.7) , (0.6, 0.9) , (0.6, 1.0)}

The first input crank position, θ1
2 , is a design parameter and prescribed timing with:

θi
2 = θ1

2 +
π

9
(i− 1), i = 1 to 18.
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The vector of ten design variables:

X =
[
r1, r2, r3, r4, rcx, rcy, x0, y0, θ0, θ1

2

]
The limits of the design variables:

r1, r2, r3, r4 ∈ [0, 12]; x0, y0, rcx, rcy ∈ [−15, 15], θ0, θ1
2 ∈ [0, 2π]. (32)

In this study, the design domain exhibits a large size with 18 target points. There
are slight differences in the limit of design parameters in various studies, such as the GA-
CSP [41], GA-DE [47], MUMSA [48], IOAS-at [53], HCDJ [77] methods, r1, r2, r3, r4 ∈ [0, 50];
x0, y0, rcx, rcy ∈ [−50, 50], DE-SRT [56] and BAS [37] methods, r1, r2, r3, r4 ∈ [0, 5]; rcx, rcy,
x0, y0 ∈ [−5, 5]. Hereafter, in the following cases, the existence of difference in the limits of
design variables will not be mentioned again.

The comparison of the optimal solution of L-EPSDE for Case 2 to those of the PSO,
HPSO, DE-gr, and EPSDE algorithms and twenty-two other methods are shown in
Tables 2 and 4a,b, respectively. The comparison results revealed that the optimal value
(9.91E−03) of L-EPSDE was nearly the same as those of the EPSDE (Table 2), DE-SRT, and
MKH methods (Table 4a), the CMDE, CS, BAS, and ODSRA + CP methods (Table 4b),
but superior to those of the DE-gr, PSO, HPSO methods (Table 2) and the GA-KK, Ex-
act gradient, GA-CSP, Tabu-gradient, Ant-gradient, GA-FC, GA-DE, MUMSA, IOAS-at

(Table 4a), DE (with reduced design parameters number), ADELI, multi-start, Stackelberg
game theory, Anal-FS, and HCDJ methods (Table 4b), and was also superior to those of
the TLBO and ATLBO-DA methods (Bureerat et al. [73]). However, the optimal value
(9.91E−03) of L-EPSDE was slightly inferior to the optimal value (4.6E−03) of GSA [71].
The obtained optimal parameters of L-EPSDE in this work and ODSRA + CP [75] exhibited
nearly the same global minimum solution; however, the efficiency of the L-EPSDE method
was higher than those of ODSRA + CP, CS, and CMDE methods, as the utilized population
size of L-EPSDE was 100, whereas those of the ODSRA + CP, CS, and CMDE methods were
400, 200, and 200, respectively. Furthermore, both the optimal solutions of GA-DE [54] and
ADELI [67] methods were not really optimal solutions, as the length ratio rmax/rmin reached
an unreasonable value of 194 and 192, respectively. The trajectories of the coupler point
obtained by the five metaheuristic algorithms in Case 2 are shown in Figure 11, in which
the curves of EPSDE and L-EPSDE coincide each other, as their optimal solutions were
the same. The trajectory of the coupler point and the optimal mechanism obtained by the
L-EPSDE method are shown in Figure 12. The convergence rates of the five metaheuristic
methods are shown in Figure 13, in which the convergence rate of L-EPSDE was slightly
faster than that of EPSDE, but slower than those of PSO, HPSO, and DE-gr.
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0x  (mm) 1.13206 0.95928 1.77681 0.5856 0.5616 0.074 44.1750 −1.30924 1.8918 0.26765 0.26886 0.26244 

0y  (mm) 0.66343 −1.19645 −0.64199 0.7346 0.7409 0.191 −23.9643 2.80696 −0.7613 0.15465 0.17715 0.14396 

0θ  (rad.) 4.35422 0.76398 1.00217 2.9719 −2.9283 −2.4433 5.37543 2.73874 1.1877 0.28482 0.29249 0.33656 
1
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CMDE 

[60] 
CS 
[35] 

DE 
[63] 
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Multi- 
Start [65] 

Game 
[93] 

BAS 
[37] 

Anal-FC 
[92] 

GSA 
[71] 

ODSRA 
 + CP 
[75] 

HCDJ 
[77] 

L-EPSDE 
This 
Work 

Np 200 200 50 -- -- -- 40 -- -- 400 50 100 
NF 2000,000 400,001 500,000 -- -- -- 200,000 -- 100,000 400,000 5000 100,000 

1r  (mm) 1.05395 1.05394 1.5395 1.15326 1.40 0 063 11.968126 1.054180 1.1309 0.9695 1.0587 49.80089 1.05875 

2r  (mm) 0.42387 0.42388 0.4102 0.23181 0.402133 0.478725 0.423871 0.4326 0.4246 0.42567 0.28817 0.42557 

3r  (mm) 0.91425 0.91425 1.2166 44.54400 1.362497 8.469510 0.914564 0.9709 0.8209 0.9447 48.47614 0.94469 

4r  (mm) 0.59890 0.59892 1.1230 44.55035 0.540046 8.469510 0.598871 0.5934 0.5955 0.5779 1.63364 0.57794 

cxr  (mm) 0.37060 0.37060 0.5279 0.70441 0.547398 4.432594 0.3707 0.3765 0.3325 0.3887 −23.41281 0.38873 

cyr  (mm) 0.39935 0.39935 0.5822 1.10756 0.677040 0.762830 0.3995 0.4086 0.3487 0.3947 7.66449 0.39467 

0x  (mm) 0.26766 0.26766 0.3630 1.29094 0.399159 1.833678 0.267700 0.2409 0.2560 0.2624 −14.83615 0.26244 

0y  (mm) 0.15465 0.15465 −0.0874 −0.10367 −0.170030 4.912576 0.154427 0.1429 0.2214 0.1440 20.14022 0.14396 

0θ  (rad.) 0.28483 0.28482 0.1110 6.22254 0.529247 3.402143 0.285040 0.2878 0.2371 0.3366 2.52861 0.33656 
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Table 4. (a,b) Optimal results of L-EPSDE and twenty-two other optimization methods for Case 2.

(a)

GA-KK
[39]

Exact Grad.
[41]

GA-CSP
[41]

Tabu-
Grad. [21]

Ant-
Grad. [22]

GA-FC
[83]

GA-DE
[54]

MUMSA
[48]

IOAS-at

[53]
DE-SRT

[56]
MKH
[34]

L-EPSDE
This Work

Np 100 – 100 – – 100 100 50 50 200 – 100

NF 5000 240 5000 550 479 20,000 5000 5000 5000 200,000 25,000 100,000

r1
(mm) 1.87966 2.85452 3.05788 10.2629 4.1928 1.01 49.9592 4.45377 4.0404 1.05393 1.00429 1.05875

r2
(mm) 0.27485 0.36355 0.23780 0.3297 0.3333 0.28 0.21861 0.29706 0.2452 0.42388 0.4218 0.42557

r3
(mm) 1.18025 2.91374 4.82895 0.5012 0.5202 0.36 42.4842 3.91301 6.3829 0.91425 0.87821 0.94469

r4
(mm) 2.13821 0.49374 2.05646 10.191 4.0224 0.98 32.7470 0.84937 2.6205 0.59892 0.58013 0.57794

rcx
(mm) −0.83359 1.03122 0.76704 0.100 −0.2183 −0.1407 −47.9660 −2.06734 1.1391 0.37060 0.35907 0.38873

rcy
(mm) −0.37877 1.71747 1.85083 0.3805 −0.3040 −0.3314 15.3586 1.66106 1.8661 0.39934 0.38081 0.39467

x0
(mm) 1.13206 0.95928 1.77681 0.5856 0.5616 0.074 44.1750 −1.30924 1.8918 0.26765 0.26886 0.26244

y0
(mm) 0.66343 −1.19645 −0.64199 0.7346 0.7409 0.191 −23.9643 2.80696 −0.7613 0.15465 0.17715 0.14396

θ0
(rad.) 4.35422 0.76398 1.00217 2.9719 −2.9283 −2.4433 5.37543 2.73874 1.1877 0.28482 0.29249 0.33656

θ1
2 (rad.) 2.55863 0.51172 0.22619 −2.4483 3.4519 – 1.88551 4.85354 0.0000 0.8916 0.88595 0.83767

Error 4.30E−02 1.68E−02 3.37E−02 1.37E−02 1.09E−02 3.78E−02 4.61E−02 1.96E−02 3.49E−02 9.03E−03 9.11E−03 9.91E−03

(b)

CMDE
[60]

CS
[35]

DE
[63]

ADELI
[67]

Multi-
Start [65]

Game
[93]

BAS
[37]

Anal-FC
[92]

GSA
[71]

ODSRA
+ CP [75]

HCDJ
[77]

L-EPSDE
This Work

Np 200 200 50 – – – 40 – – 400 50 100

NF 2000,000 400,001 500,000 – – – 200,000 – 100,000 400,000 5000 100,000

r1
(mm) 1.05395 1.05394 1.5395 1.15326 1.400063 11.968126 1.054180 1.1309 0.9695 1.0587 49.80089 1.05875

r2
(mm) 0.42387 0.42388 0.4102 0.23181 0.402133 0.478725 0.423871 0.4326 0.4246 0.42567 0.28817 0.42557

r3
(mm) 0.91425 0.91425 1.2166 44.54400 1.362497 8.469510 0.914564 0.9709 0.8209 0.9447 48.47614 0.94469

r4
(mm) 0.59890 0.59892 1.1230 44.55035 0.540046 8.469510 0.598871 0.5934 0.5955 0.5779 1.63364 0.57794

rcx
(mm) 0.37060 0.37060 0.5279 0.70441 0.547398 4.432594 0.3707 0.3765 0.3325 0.3887 −23.41281 0.38873

rcy
(mm) 0.39935 0.39935 0.5822 1.10756 0.677040 0.762830 0.3995 0.4086 0.3487 0.3947 7.66449 0.39467
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Table 4. Cont.

(b)

CMDE
[60]

CS
[35]

DE
[63]

ADELI
[67]

Multi-
Start [65]

Game
[93]

BAS
[37]

Anal-FC
[92]

GSA
[71]

ODSRA
+ CP [75]

HCDJ
[77]

L-EPSDE
This Work

x0
(mm) 0.26766 0.26766 0.3630 1.29094 0.399159 1.833678 0.267700 0.2409 0.2560 0.2624 −14.83615 0.26244

y0
(mm) 0.15465 0.15465 −0.0874 −0.10367 −0.170030 4.912576 0.154427 0.1429 0.2214 0.1440 20.14022 0.14396

θ0
(rad.) 0.28483 0.28482 0.1110 6.22254 0.529247 3.402143 0.285040 0.2878 0.2371 0.3366 2.52861 0.33656

θ1
2

(rad.)
0.89155 0.89156 0.8721 1.189290 – 3.937901 1.176411 0.8622 1.1692 0.8377 5.06442 0.83767

Error 9.03E−03 9.03E−03 1.86E−02 2.778E−02 8.971E−02 1.21E−02 9.03E−03 1.195E−02 4.6E−03 9.91E−03 1.608E−02 9.91E−03
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Case 3: Semi-circular arc curve (6 target points, 9 design variables).
This is a synthesis problem of path generation with prescribed timing where six

target points are specified in a semi-circular curve. This problem was first solved by
Acharyya et al. [46] and has been studied by several researchers. The problem can be
defined as follows:

The coordinates of six target points:{
Ci

d

}
= {(0.00, 0.00), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.5106), (18.09, 5.8779), (20.00, 0.00)}

The input crank positions for prescribed timing:{
θi

2

}
= {π/6, π/3, π/2, 2π/3, 5π/6, π} (i = 1, 2, ..., 6)

The vector of nine design variables:

X =
[
r1, r2, r3, r4, rcx, rcy, x0, y0, θ0

]
.

The limits of the variables:

x0, y0, rcx, rcy ∈ [−50, 50];r1, r2, r3, r4 ∈ [5, 50]; θ0 ∈ [0, 2π].

The comparison of the optimal results of L-EPSDE for Case 3 to those of the PSO,
HPSO, DE-gr, and EPSDE methods and eleven other methods are shown in Tables 2 and 5,
respectively. It revealed that the optimal value (2.58036) of L-EPSDE was similar to those of
the DE-gr and EPSDE methods (Table 2) and MUMSA, HLIDE, and REA methods (Table 5),
and superior to those of the PSO and HPSO methods (Table 2), the DE, GA-DE, ICA and



Appl. Sci. 2022, 12, 7368 24 of 35

HTRCA methods (Table 5), and inferior to those of the DE (reduced number of design
parameters) [63], IOAS-at, BAS, and HCDJ methods (Table 5) and the ATLBO-DA method
(Bureerat et al. [73]). The trajectories of the coupler point obtained by five metaheuristic
algorithms in Case 3 are shown in Figure 14, in which the curves of DE-gr, EPSDE, and
L-EPSDE coincide one another, as their optimal solutions were same. The trajectory of
the coupler point and optimal mechanism obtained by the L-EPSDE method is shown in
Figure 15. The convergence rates of the five metaheuristic methods are shown in Figure 16,
which indicated that the convergence rate of L-EPSDE was faster than those of PSO, EPSDE,
and HPSO, but was slightly slower than DE-gr.

Table 5. Optimal results of L-EPSDE and eleven other optimization methods for Case 3.

DE
[46]

GA-DE
[47]

MUMSA
[48]

IOAS-at

[53]
ICA
[55]

HTRCA
[91]

DE
[63]

HLIDE
[66]

BAS
[37]

REA
[76]

HCDJ
[77]

L-EPSDE
This Work

Np 100 100 100 50 – – 80 100 40 – 50 100

NF 1000 100,000 100,000 100,000 – – 800,000 50,000 120,000 90, 000 50,000 100,000

r1 (mm) 50.00000 50.00000 50.00000 49.96897 50.00000 49.46 43.30492 50.00000 47.23450 49.999992 49.999980 50.00000

r2 (mm) 5.00000 5.00000 5.00000 4.78566 5.00000 5.504 11.1149 5.00000 8.84740 5.000002 1.348432 5.00000

r3 (mm) 5.90535 6.97009 7.03105 6.49103 7.08248 8.015 42.6226 7.03091 25.04747 7.031010 1.348451 7.03105

r4 (mm) 50.00000 48.1993 48.13418 48.39394 48.05733 47.165 11.9381 48.13432 50.00000 48.134251 50.000000 48.13418

rcx (mm) 18.81931 17.045 16.97669 16.44478 16.4264 17.9 51.9215 16.9770 42.02840 16.976890 11.384434 16.97669

rcy (mm) 0.00000 12.638 12.95214 11.98809 13.7111 15.3 −7.1475 12.95115 −27.08529 12.952033 4.442436 12.95214

x0 (mm) 14.37377 12.2377 12.19749 12.04659 11.88034 12.0 −43.3598 12.19769 16.55312 12.197689 10.194752 12.19749

y0 (mm) −12.44430 −15.8332 −15.99820 −14.7749 −16.08766 −18.7 −0.0067 −15.9978 −48.14738 −15.99843 −3.694134 −15.9982

θ0 (rad.) 0.463633 0.05085 0.04282 0.03868 6.28319 6.2832 6.2819 0.04286 0.82260 0.042844 6.215880 0.04282

Error 5.52 2.58286 2.58035 2.491 2.5998 3.571 2.10037 2.58036 0.78637 2.58036 1.216212 2.58036
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Case 4: Straight-line segment curve (6 target points, 15 design variables)
This is a synthesis problem for the path generation without prescribed timing where

six target points are specified in a vertical line segment. This problem was first presented by
Cabrera [41] and has been investigated by several researchers. The problem can be defined
as follows:

The coordinates of six target coupler points:{
Ci

d

}
= {(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)}

The vector of fifteen design variables:

X =
[
r1, r2, r3, r4, rcx, rcy, x0, y0, θ0, θ1

2 , θ2
2 , θ3

2 , θ4
2 , θ5

2 , θ6
2

]
.

The limits of the variables:

r1, r2, r3, r4 ∈ [5, 60]; rcx, rcy, x0, y0 ∈ [−60, 60]; θ0, θi
2(i = 1, 2, . . . , 6) ∈ [0, 2π].

The comparison of the optimal synthesis results of the DE-gr and L-EPSDE methods
for Case 4 to those of the PSO, HPSO, and EPSDE methods and sixteen other methods
are shown in Tables 2 and 6a,b, respectively. The optimal value (4.71E−04) of L-EPSDE
was superior to those of the PSO and HPSO methods (Table 2), the GA-CSP, DE, GA-DE,
HPSO, ICA, and HTRCA methods (Table 6a), the SAP-TLBO, TLBO, ImHS, GSEF-IAA, and
RBDO-MCS methods (Table 6b), and the ATLBO-DA method (Bureerat et al. [73]), but was
inferior to those of the MUMSA, IOAS-at, and MKH methods (Table 6a), and the HLIDE,
ODSRA + CP, and HCDJ methods (Table 6b). In addition, although the optimal solutions
(2.32E−04 and 2.59E−04) of both the DE-gr and EPSDE methods were slightly superior to
that of the L-EPSDE method, the mean value (0.324) and SD (0.815) of L-EPSDE were the
lowest, indicating that L-EPSDE exhibited the best accuracy and efficiency. The trajectories
of the coupler point obtained by the five metaheuristic algorithms in Case 4 are shown in
Figure 17, and the trajectory of the coupler point and optimal mechanism obtained by the
L-EPSDE method are shown in Figure 18. In this case, the maximum iterative number was
2000. The convergence rates of the five metaheuristic methods are shown in Figure 19, the
convergence rate of L-EPSDE was faster than those of HPSO and EPSDE, which converged
to an optimal solution of more than 1500 iterations, but slightly slower than those of DE-gr
and PSO, which converged to optimal solution less than 100 iterations.
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Table 6. (a,b) Optimal results of DE-gr, L-EPSDE, and sixteen other optimization methods for Case 4.

(a)

GA-CSP
[41]

DE
[46]

GA-DE
[47]

MUMSA
[48]

IOAS-at

[53]
ICA
[55]

MKH
[34]

HTRCA
[91]

DE-gr
This Work

L-EPSDE
This Work

Np 100 100 100 100 50 – 25 – 100 100

NF 100,000 100,000 100,000 100,000 100,000 – 25,000 – 200,000 200,000

r1 (mm) 39.46629 35.02074 33.5959 31.78826 54.71582 60.0000 34.36458 18.42 44.9998 58.94653

r2 (mm) 8.56291 6.40420 5.02972 8.20465 18.73099 17.51102 7.97728 35.14 16.2478 10.35726

r3 (mm) 19.09486 31.60722 11.1847 24.93213 31.22310 60.0000 26.95316 56.42 34.5751 35.62035

r4 (mm) 47.83886 50.59949 28.0878 31.38593 42.22374 33.2268 32.28634 49.99 36.5490 34.77291

rcx (mm) 13.38556 20.80324 −24.1755 34.19372 −27.2984 −28.6280 36.96182 55.08 −1.8620 24.58724

rcy (mm) 12.21961 41.54364 5.51479 14.41567 31.65051 −52.7299 19.66793 −59.52 41.7710 35.03822

x0 (mm) 29.72255 60.00000 39.7799 −6.36652 43.07086 60.0000 −11.09434 −25.92 45.5386 43.14491

y0 (mm) 23.45454 18.07791 24.7195 56.83676 27.41706 −1.45505 58.82813 42.12 18.1837 −2.77085

θ0 (rad.) 6.20163 0.00000 5.45884 4.01596 5.97746 0.93032 4.02771 5.9313 0.1859 0.64073

θ1
2 (rad.) 6.11937 6.28319 0.524005 1.36655 6.42411 5.54638 1.50348 2.34740 −0.1661 4.93899

θ2
2 (rad.) 0.19304 0.26494 0.853145 2.33077 6.53496 5.70544 2.38566 2.58490 −0.0325 5.74501

θ3
2 (rad.) 0.44083 0.50038 1.16505 2.87104 0.36230 5.85061 2.91751 2.84754 0.0933 6.11814

θ4
2 (rad.) 0.68467 0.73532 1.49253 3.39459 0.46906 5.99041 3.42257 3.11772 0.2174 0.17071

θ5
2 (rad.) 0.958335 0.99653 1.87456 3.97096 0.57765 6.13185 3.96923 3.37658 0.3449 0.54382

θ6
2 (rad.) 1.35533 1.33355 2.44206 4.96349 0.69047 6.28318 5.18616 3.61158 0.4812 1.27020

Error 2.62 E−02 1.23E−01 7.37E−04 2.06E−04 2.37E−04 2.0E−03 2.37E−05 5.6E−03 2.32E−04 4.71E−04

(b)

SAP-
TLBO

[58]

TLBO
[62]

HLIDE
[66]

ImHS
[70]

GSEF-
IAA[74]

ODSRA
+ CP [75]

RBDO-
MCS
[94]

HCDJ
[77]

DE-gr
This Work

L-EPSDE
This Work

Np 100 150 100 – – 100 – 100 100 100

NF – 82,500 100,000 – 25,000 100,000 – 100,000 200,000 200,000

r1 (mm) 59.9864 60.0000 9.50437 49.334 30.3659 24.7256 55.7371 14.20137 44.9998 58.94653

r2 (mm) 52.6078 14.6488 5.32006 12.095 10.1183 12.6722 9.3933 8.01431 16.2478 10.35726

r3 (mm) 56.7209 47.6577 50.79235 35.234 41.018 29.4207 41.8429 16.30992 34.5751 35.62035

r4 (mm) 59.3396 59.9128 52.45868 38.446 43.0375 34.5590 41.8429 12.25387 36.5490 34.77291

rcx (mm) 53.0988 66.7653 17.28743 26.466 −25.8055 58.6473 42.3130 27.79772 −1.8620 24.58724

rcy (mm) −56.6734 −63.5825 −31.80356 0.75083 33.9840 0.1583 37.7486 11.30541 41.7710 35.03822

x0 (mm) −39.3209 −55.5544 −10.87584 47.33 −12.548 −24.7229 59.1841 −2.30953 45.5386 43.14491

y0 (mm) 59.9851 1.8752 36.94543 0.5213 29.0686 1.3009 −7.3972 45.69508 18.1837 −2.77085

θ0 (rad.) 3.6177 4.4871 5.53592 – –3.4795 1.7411 7.0812 4.51724 0.1859 0.64073

θ1
2 (rad.) 2.9048 3.5408 1.92725 – 3.43788 2.8192 – 6.25324 −0.1661 4.93899

θ2
2 (rad.) 2.9995 3.9269 2.50525 – 3.2624 3.1006 – 2.40390 −0.0325 5.74501

θ3
2 (rad.) 3.0942 4.2133 3.08097 – 3.10181 3.3863 – 2.93624 0.0933 6.11814

θ4
2 (rad.) 3.1890 4.4653 3.66536 – 2.9464 3.6770 – 3.49056 0.2174 0.17071

θ5
2 (rad.) 3.2837 4.7052 4.24372 – 2.78698 3.9769 – 4.06508 0.3449 0.54382

θ6
2 (rad.) 3.3784 4.9469 4.82479 – 2.61095 4.2996 – 5.20950 0.4812 1.27020

Error 8.82E−04 1.48E−01 5.18E−07 8.76E−03 7.95E−04 8.66E−06 6.0E−04 8.84E−29 2.32E−04 4.71E−04

Case 5: Elliptical path curve (10 target points, 19 design variables)
This is a synthesis problem for path generation without prescribed timing [46]. The

ten target points are specified in an elliptical path, whose major and minor axes consisted of
20 and 16 units, respectively, and the center is kept at (10,10). The problem can be defined
as follows:

The coordinates of ten target points:{
Ci

d
}
= { (20.00, 10.00), (17.66, 15.142), (11.736, 17.878), (5.00, 16.928), (0.60307, 12.736),

(0.60307, 7.2638), (5.00, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20.00, 10.00)}
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The vector of nineteen design variables:

X =
[
r1, r2, r3, r4, rcx, rcy, x0, y0, θ0, θ1

2 , θ2
2 , θ3

2 , θ4
2 , θ5

2 , θ6
2 , θ7

2 , θ8
2 , θ9

2 , θ10
2

]
.

The limits of the variables:

r1, r2, r3, r4 ∈ [5, 80]; rcx, rcy, x0, y0 ∈ [−80, 80];θ0, θi
2(i = 1, 2, . . . , 10) ∈ [0, 2π].

The comparison of the optimal synthesis results of the HPSO and L-EPSDE methods
for Case 5 to those of the PSO, DE-gr, and EPSDE methods and eleven other methods are
shown in Tables 2 and 7, respectively. It revealed that the optimal value (7.02E−03) of
L-EPSDE was superior to those of the DE-gr, PSO, and EPSDE methods (Table 2) and the DE,
GA-DE, IOAS-at, HTRCA, and GSA methods (Table 7), and that it was also superior to those
of the SAP-TLBO (Sleesongsom et al. [58]) and ATLBO-DA methods (Bureerat et al. [73]),
but was slightly inferior to those of the HPSO, MUMSA, DE-SRT, CMDE, HLIDE, GSA,
and REA methods (Table 7) and the TLBOE method (Zhang et al. [72]). In addition,
although the optimal value (5.42E−03) of HPSO was superior to that of L-EPSDE, the mean
value (1.31) and SD (1.85) of L-EPSDE (Table 2) were smaller than those of the four other
metaheuristic methods, indicating that L-EPSDE exhibited the best accuracy and efficiency.
The trajectories of the coupler point obtained by the five metaheuristic algorithms in Case 5
are shown in Figure 20, in which the curves of PSO, HPSO, EPSDE, and L-EPSDE are
very close, and the trajectory of the coupler point and optimal mechanism obtained by the
L-EPSDE method are shown in Figure 21. The convergence rates of the five metaheuristic
methods are shown in Figure 22. The convergence rate of L-EPSDE was closer to that of
HPSO compared to that of EPSDE, but slower than those of DE-gr and PSO.
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Table 7. The optimal results of HPSO, L-EPSDE, and eleven other optimization methods for Case 5.

DE
[46]

GA-DE
[47]

MUMSA
[48]

IOAS-at

[53]
DE-SRT

[56]
HTRCA

[91]
CMDE

[60]
TLBO

[64]
HLIDE

[66]
GSA
[71]

REA
[76]

HPSO
This Work

L-EPSDE
This Work

Np 100 100 100 50 100 – 100 500 50 – – 100 100

NF 100,000 100,000 100,000 100,000 100,000 – 100,000 50,000 100,000 100,000 100,000 100,000 100,000

r1 (mm) 54.36089 80.0000 79.51607 65.42877 79.9985 54.857 80.00000 42.0053 80.00000 63.0882 79.99431 66.14036 79.98736

r2 (mm) 8.68335 8.24689 9.72397 8.01639 8.72535 9.725 8.04566 8.0876 8.203235 9.5896 8.117863 8.02857 8.72534

r3 (mm) 34.31863 45.8968 45.84252 47.22166 51.8801 49.925 50.81902 28.2600 52.34788 39.7516 51.10882 37.27658 40.04208

r4 (mm) 79.99617 58.5404 51.43285 44.13656 43.3619 23.375 42.20801 24.1099 41.17572 34.4096 42.17296 38.55923 59.08385

rcx (mm) 0.00019 −6.40389 8.21392 −11.5709 −6.63658 7.840 −10.6370 −4.4860 −10.9879 6.5766 −10.9301 −6.61025 −4.38869

rcy (mm) 1.46525 −9.12264 −2.95396 −1.90491 8.2734 −4.320 −2.29109 −4.7935 1.97982 2.3035 −0.00687 −3.30141 7.55335

x0 (mm) 10.95440 6.52409 2.02111 10.63541 15.9712 1.440 8.49481 11.1765 6.74348 3.9094 7.575251 3.68216 14.92300

y0 (mm) 11.07453 20.5220 13.21659 −1.67548 18.5445 12.160 −0.75797 3.5870 −0.60110 7.0455 −0.61085 9.42430 16.98752

θ0 (rad.) 2.12965 0.136532 5.59694 3.86733 1.34791 6.1135 3.88921 2.73892 4.12317 0.6061 4.009837 2.63731 1.22009

θ1
2 (rad.) 6.28319 6.05991 0.63769 2.41993 5.04915 0.14828 2.44944 6.26862 2.24025 0.0480 2.344066 2.65557 5.17437

θ2
2 (rad.) 0.61673 0.488453 1.32553 3.10927 5.73644 0.82561 3.15397 0.66488 2.95502 0.07579 3.054448 3.35029 5.86615

θ3
2 (rad.) 1.31025 1.17805 2.00803 3.81295 0.13974 1.52053 3.83711 1.33889 3.64900 1.4689 3.742718 4.01064 0.27374

θ4
2 (rad.) 2.19357 1.88339 2.69557 4.50644 0.832578 2.23681 4.52017 2.01652 4.33396 2.1897 4.426518 4.69612 0.96047

θ5
2 (rad.) 2.91717 2.59806 3.38458 5.18114 1.53611 2.90660 5.20480 2.70122 5.01670 2.9098 5.109552 5.38508 1.66772

θ6
2 (rad.) 3.49075 3.28585 4.08294 5.88342 2.24424 3.56508 5.89854 3.42419 5.70450 3.6268 5.799614 6.08002 2.37867

θ7
2 (rad.) 4.13202 3.96674 4.79845 0.29626 2.96272 4.29519 0.316204 4.13519 0.11548 4.2894 0.214054 0.5060 3.08000

θ8
2 (rad.) 4.92208 4.65966 5.51171 0.99115 3.66871 5.02152 1.023356 4.84542 0.81571 4.9616 0.917886 1.22339 3.79256

θ9
2 (rad.) 5.69537 5.35231 6.21279 1.70779 4.36455 5.71896 1.73899 5.57812 1.52796 5.6481 1.631829 1.94338 4.49363

θ10
2 (rad.) 6.28297 6.06263 0.63719 2.41887 5.04915 0.14283 2.44944 6.26817 2.24025 0.0481 2.344052 2.65573 5.174236

Error 1.952326 3.12E−02 4.70E−03 1.91E−02 4.56E−04 1.65E−01 4.02E−04 1.92E−02 5.77E−04 2.88E−03 4.17E−04 5.42E−03 7.02E−03

5. Discussion

The golden ratio numbers (0.618:0.382) were selected as the parameters of the cross
rate and mutation factor in the traditional DE method, and this so-called DE-gr method
increased the rapid exploitation ability for searching for an optimal solution, as shown in the
convergence rate of each case. In addition, all the five metaheuristic optimization methods
exhibited a similar convergence trend; however, DE-gr generally converged more rapidly
to the optimal solution than other methods. According to the statistical results shown in
Table 2, in Cases 1 to 3, which are middle dimensional problems (the numbers of design
variables are lower or equal to 10), the EPSDE, and L-EPSDE methods obtained the same
optimal values, though EPSDE slightly outperformed DE-gr and L-EPSDE, as it exhibited
the smallest SD. Further, DE-gr was superior to PSO and HPSO. However, in Cases 4 and 5,
which are high dimensional problems (15 and 19 design variables, respectively), L-EPSDE
exhibited smaller optimal solutions and a smaller SD than EPSDE, indicating the slight
superiority of the accuracy and efficiency of L-EPSDE than those of EPSDE; however, both
of them were superior to DE-gr and PSO. In contrast, HPSO exhibited smaller optimal
values and SD than PSO in all five cases, indicating that it exhibited enhanced accuracy and
efficiency than PSO; however, in high dimensional problems, it exhibited a more enhanced
performance than DE-gr. Moreover, HPSO obtained a more enhanced optimal solution
than EPSDE and L-EPSDE in Case 5. A comparative ranking of the five metaheuristic
optimization methods for solving the five representative synthesis problems of a path-
generating four-bar linkage is shown in Figure 23. For each term in all cases, the score of
the first is 5, the second is 4, and it decreased sequentially. The total score is the summation
of each term in the five cases. In this study, L-EPSDE exhibited the highest best and worst
values, and the mean value and SD of L-EPSDE were higher and lower than those of EPSDE,
respectively; however, both the mean value and the SD of EPSDE and L-EPSDE were larger
than those of DE, PSO, and HPSO. In addition, the best value of EPSDE, L-EPSDE, and
DE-gr were slightly different, but the difference in the mean value of L-EPSDE and EPSDE
was larger than that in the SD of L-EPSDE and EPSDE, indicating the enhanced accuracy,
efficiency, and stability of L-EPSDE and EPSDE than DE-gr, PSO, and HPSO; however,
L-EPSDE was slightly more efficient and stable than EPSDE in high dimensional problems.
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and HPSO exhibited improved accuracy and efficiency than that of PSO method. More-
over, the HPSO, EPSDE, and L-EPSDE methods are potential applications in complicated 
middle or high dimensional optimization problems, such as the optimum dimensional 
synthesis of path-generating six-bar or eight-bar linkages. 
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6. Conclusions

Metaheuristic optimization methods are developing rapidly and have been widely
applied to numerous optimization design problems, such as the optimum dimensional
synthesis of the path-generating four-bar linkages in this study. However, the selection of
an accurate, effective, and fast converge optimization method is still worth exploring. This
research comparatively studies the exploration and efficiency of five selected metaheuristic
optimization methods, including two swarm intelligence-based algorithms (PSO and
HPSO) and three evolutionary-based algorithms (DE-gr, EPSDE, and L-EPSDE), which
are widely used and are easily implemented metaheuristic optimization methods, by
performing five representative synthesis problems of path-generating four-bar linkages.
The five representative problems (three examples with prescribed timing and two examples
without prescribed timing) were investigated using 100 experimental trails, in which each
has a maximum iteration of 1000 (except Case 4, which has 2000). The accuracy and
efficiency of the five metaheuristic methods were compared through the statistical analyses
of the extensive optimal results and were also compared to those of previously reported
algorithms in the literature. The results revealed that the five metaheuristic methods
employed in this study can only require the execution of several optimization iterations
and effectively converge to a global optimal solution of the dimensional synthesis problems
of path-generating four-bar linkages. In summary, both the adaptive EPSDE and L-EPSDE
methods outperformed the PSO, HPSO, and DE-gr methods and some previous algorithms
presented in literature with higher accuracy (lower mean values) and efficiency (lower
SDs). In addition, L-EPSDE outperformed EPSDE in the high dimensional problem owing
to its ability to linearly reduce the population size in the next generation. However, DE-gr
(the golden ratio numbers were selected as the parameters of the cross rate and mutation
factor) exhibited similar outperforming characteristics such as EPSDE and L-EPSDE in the
middle dimensional problem, and HPSO exhibited improved accuracy and efficiency than
that of PSO method. Moreover, the HPSO, EPSDE, and L-EPSDE methods are potential
applications in complicated middle or high dimensional optimization problems, such as
the optimum dimensional synthesis of path-generating six-bar or eight-bar linkages.
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