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Abstract: Official air quality (AQ) stations are sporadically located in cities to monitor the anthro-
pogenic pollutant levels. Consequently, their data cannot be used for further locations to estimate
hidden changes in AQ and local emissions. Low-cost sensors (LCSs) of particulate matter (PM) in a
network can help in solving this problem. However, the applicability of LCSs in terms of analytical
performance requires careful evaluation. In this study, two types of pocket-size LCSs were tested
at urban, suburban and background sites in Budapest, Hungary, to monitor PM1, PM2.5, PM10, and
microclimatic parameters at high resolutions (1 s to 5 min). These devices utilize the method of
laser irradiation and multi-angle light scattering on air-suspended particulates. A research-grade
AQ monitor was applied as a reference. The LCSs showed acceptable accuracy for PM species in
indoor/outdoor air even without calibration. Low PM readings (<10 µg/m3) were generally handi-
capped by higher bias, even between sensors of the same type. The relative humidity (RH) slightly
affected the PM readings of LCSs at RHs higher than 85%, necessitating field calibration. The air
quality index was calculated to classify the extent of air pollution and to make predictions for human
health effects. The LCSs were useful for detecting peaks stemming from emissions of motor vehicular
traffic and residential cooking/heating activities.

Keywords: low-cost air pollution sensor; optical particle counter; laser optical detection; method
calibration; fine and coarse atmospheric aerosol; air sampling; indoor and outdoor suspended
particulate matter

1. Introduction

Anthropogenic pollution in ambient air, especially in the form of suspended particu-
late matter (PM), is of general concern worldwide, due to its negative effects on human
health [1], global climate change [2], and various buildings related to cultural heritage
preservation [3]. Besides these, high levels of outdoor air pollution can trigger bad indoor
air quality, deteriorating people’s comfort and health [4]. Consequently, the degree of
anthropogenic pollution in terms of the detection and identification of air components
as well as their concentrations and size distributions should be monitored with as high a
spatial and temporal resolution as possible, to reveal the hidden atmospheric processes of
pollution episodes.

Official (e.g., state-sustained) air quality (AQ) stations are in general sparsely located
in city and provincial sites of Hungary, which is true for most of other countries worldwide
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as well. In this sense, in populated areas situated further from these air quality stations,
using their monitor data, it is difficult, and in general highly biased, to assess the changes in
local emissions and pollutant levels, stemming, for instance, from intensified motor vehicle
traffic, wood/coal-based heating, and/or biomass burning activities. For this type of
estimation, atmospheric air pollution dispersion models play a supportive role, providing
high-resolution concentration maps of aerosols [5]. On the other hand, the application of the
complex atmospheric pollution models demands knowledge on the exact environmental
variables of air quality and weather parameters for the area of interest to be as detailed as
possible to approach/calculate local air quality scenarios with good accuracy and to make
predictions on changes of air quality as well as PM deposition [5]. Extended measurement
networks based on low-cost sensors (LCSs) for air quality, commercially available to the
population at large, can help in solving the above addressed problem and can provide
datasets detailed enough for checking official air quality legislation and for providing the
necessary input data for atmospheric dispersion models of high resolution as well.

So far, several methods have been reported in the relevant literature, dealing with
the extension of air quality network/nodes by the use of commercial sensors [6–22]. For
example, Moltchanov et al. [6] demonstrated the feasibility of an air quality network to
capture the spatio-temporal concentration variations with exceptionally high resolution,
but they also highlighted the need for frequent in situ calibration of each node to maintain
the consistent reading of the sensors, for which they developed a procedure, based on
mathematical correction.

Jerret et al. [7] validated low-cost, personal AQ sensors for CO, NO and NO2 to reduce
exposure measurement errors in epidemiological studies and compared their data with
those obtained from more costly governmental instruments. They observed moderate-to-
high correlations for NO and CO, but low-to-moderate correlations for NO2. Mead et al. [8]
applied miniature electrochemical LCSs in a high-density network for monitoring urban
gaseous pollutant levels at ppb mixing ratios in Cambridge, UK. These systems allowed the
deployment of a high-density AQ sensor network with high spatial and temporal scales,
and in static (wider Cambridge area) and mobile (e.g., personal exposure) configurations.

Castell et al. [9] evaluated 24 units of a commercial LCS platform (AQMesh) for
the measurement of CO, NO, NO2, and O3 against official reference analyzers (CEN—
European Standardization Organization). The analytical performance of the LCSs changed
from unit to unit, spatially and temporally, depending on the atmospheric composition and
meteorological conditions, which demanded a necessary scrutiny of measurement data of
each node, before monitoring application.

Thorpe and Walsh [10] compared the performance of portable, real-time dust monitors
(SKC Split 2, Microdust Pro, DataRam) inside a calm air dust chamber using industrial
and aluminum oxides as model dusts. The response of the monitors to respirable PM was
linear when operating the sampler either passively or actively with cyclone inlets. They
observed a lower response when operated actively, as compared to the passive operation,
and still lower when used with porous foam inserts. Inhalable dust measured with Split 2
agreed closely with reference IOM inhalable samplers, whereas the Microdust CIS-adaptor
underestimated the inhalable PM concentration compared to the reference.

In another study, Salimifard et al. [11] investigated the performance of low-cost optical
particle counters (OPCs) (OPC-N2, Alphasense Ltd., Essex, UK; IC Sentinel, Speck, Dylos)
in monitoring individual aerosols that were commonly found indoors in a controlled
chamber environment. Biological (dust mite, pollen, cat, and dog fur) and non-biological
(monodisperse silica, melamine resin) particulate was applied for exposure studies in the
aerosol chamber. The PM concentration had the most dominant effect on the linearity of
the sensors’ response, whereas the particle size and type had a lower influence on it.

Hagan et al. [12] applied an integrated multi-pollutant LCS system and a co-located
research-grade instrument for characterizing gaseous and particulate pollution sources in
Delhi, India, for six weeks in winter. They utilized non-negative matrix factorization to
deconvolve the sensor data into unique factors that were identified after then by using the
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factor composition of measurements extracted from the data of the research-grade monitor.
They found three factors: one combustion related, showing high levels of CO and two
characterized by the sampled PM. The important goal of their work was to show that by
multipollutant LCS monitoring—despite the instrumental restrictions of these devices—one
can obtain insight into sources of fine PM in urban environments.

Oluwadairo et al. [13] tested LCSs for PM2.5 in urban environments with different road
traffic conditions in Houston, Texas, and observed linear relationship of the monitoring data
with those from research-grade instruments. The regression slopes and coefficients differed
across the investigated environments, whereas the mean bias was similar. They concluded
that the use of correct slopes of LCS calibration was key for attaining accurate PM2.5
readings in an urban environment. Wahlborg et al. [14] applied AQMesh type AQ monitor
for field calibration of NO, NO2 and PM10 species in summer and autumn campaigns in a
busy street in the mid-size city of Gävle, Sweden. By means of linear calibration methods
(i.e., post-scaled, bisquare, and orthogonal), they attained more accurate results compared
to the raw monitoring data. These improvements were sufficient to satisfy the EU Data
Quality Objective for indicative measurements during the autumn period. The bisquare
procedure improved the root mean square error by the same extent as other studies using
complex multivariate calibration methods.

Crilley et al. [15] evaluated, on field, the OPC-N2 for monitoring ambient PM on urban
background sites in the UK. This sensor demonstrated a significant positive artefact in
particle mass during events of high ambient relative humidity (RH) (>85%) when compared
to reference OPCs and TEOM-FDMS. Therefore, the authors suggested a calibration factor
for OPC-N2, which was developed based on the κ-Köhler theory, using average bulk
particle aerosol hygroscopicity. This factor increased the accuracy to within 33% of that of
TEOM-FDMS. The precision for 14 OPC-N2 sensors was 22 ± 13% for PM10.

Yuval et al. [16] applied a network of OPCs, in a year-long campaign of continuous
measurements of particle number concentration (PNC) in a couple of locations in Elad,
Israel, and its vicinity, to assess the influence of a close quarry on the AQ of the city. They
investigated the OPCs’ accuracy, coherency, and capability to detect the quarry’s impact on
the urban PNC levels. Using temporal PNC series in two-size channels from a network of
five nodes, PM2.5 and PM10 records from a nearby reference AQ station, and meteorological
data, they found a low impact of the quarry on the city, as compared to the background
PNC. They also demonstrated the use of a network of low-cost OPCs for responding to
an environmental issue for which the sparse standard AQ monitoring observations were
found to be insufficient.

Markowicz and Chiliński [17] studied co-located OPCs (Dfrobot SEN0177 and OPC-
N2) for the determination of the aerosol scattering coefficient (ASC) and Ångström exponent
(AE), which are important in understanding aerosol optical properties and their direct
effects. For PM10, the ASC function was found to be linear with strong correlation for
Dfrobot and non-linear for OPC-N2, each providing the ASC with similar difference: ≈27%
of the mean value. Interestingly, the relative measurement uncertainty was independent
of the PM level. Moreover, the ratio of PNC between different bins showed a significant
correlation (at 95% confidence level) with the scattering AE. Comparisons of an estimated
scattering AE from a low-cost sensor with the reference instrument of Aurora 4000 were
given with a mean square error of 0.23–0.24, corresponding to 16–19% deviation.

Sousan et al. [18] demonstrated the application of four LCSs (OPC-N3, SPS30, Air-
Beam2 and PMS A003) and calibration differences between environmental and occupational
settings. The air levels of salt, road dust, and oil were measured and compared with a
reference instrument. They found OPC-N2 and SPS30 to be highly correlated with the ref-
erence device for each aerosol type in the environmental settings. In occupational settings,
only the data of OPC-N3 showed variation. The bias varied by particle size and aerosol
type. The SPS30 and OPC-N3 sensors were characterized by a low bias for environmental
settings. On the other hand, each studied sensor showed a high bias for occupational
settings. The findings suggest that SPS20 and OPC-N3 can provide a reasonable estimate of
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air PM levels, providing that they are calibrated for either environmental or occupational
settings using apt site-specific factors. Huang and co-workers [19] also studied Air-Beam2
sensors in urban offices, a mass-transit railway station (platform and lobby), and at the
seaside, using TSI DustTrak DRX monitor as a reference. High linearity between the data of
the LCSs and the reference monitor was observed using various measurement cycles (5 s to
30 min). Weather conditions affected the accuracy and bias of the sensor readings, especially
during rainy days, and/or fog/high-RH events. Sampling sites with a high hygroscopic
salt content of the PM (e.g., seaside) experienced similar behavior. The machine learning
procedure, Random Forest, was found to be advantageous over multiple linear regression
for PM data calibration on days without rain.

Wang et al. [20] investigated the analytical performance of three kinds of LCSs—
PPD42NS, DSM501A, and GP2Y110AU0F—against various reference instruments, follow-
ing US EPA 2013 recommendations for the evaluation of the performance of the LCSs. They
also observed the effects of climatic parameters, PM size and concentration important to
the linearity of the monitor data. Jayaratne et al. [21] and Sayahi et al. [22] reported similar
findings on the effect of high ambient RH on PM readings of LCSs using PMS-type devices.
Besides the above summarized studies, reviews from recent years extensively discussed
the peculiarities of LCSs for air PM monitoring purposes [23–25].

As it comes from the above overview, the accurate response of low-cost sensors to local
air pollution is not obvious. In general, broad assessment of the analytical performance,
often involving field calibration/resloping, is necessary to obtain accurate readings from
these types of field-deployable devices. Consequently, in this study, we have evaluated the
performance of two types of pocket-sized, low-cost air quality sensors, which have not yet
been studied in the relevant literature. For monitoring purposes, we selected three sites of
different anthropogenic influence in Budapest, Hungary. The resultant PM data series were
compared and statistically evaluated on the base of each monitoring node outdoors and
indoors. Moreover, some predictions for health effects were made based on the air quality
index (AQI) and following the recommendation of US EPA.

2. Materials and Methods
2.1. Description of the Sampling Sites

Three sites of different anthropogenic impacts in Budapest, Hungary, have been
selected and used for sampling the ambient air and collecting air quality data. These sites
represent urban, suburban, and background locations regarding air pollution. The first
sampling site (geocoordinates: 47◦26′39.40” N, 19◦07′11.51” E) is in Pesterzsébet, which is a
district on outskirts of Budapest. The site is a typical urban location with residential houses
and gardens, in general, with medium traffic density, due to nearby main roads. There are
some anthropogenic activities in nearby car/mechanical workshops. In winter, the heating
is based on wood/fossil fuel, favored by the local population. The outdoor sampling spot
was chosen in a dwelling house, located about 15 m along a main road, with its front garden
with several pine trees and bushes providing a kind of shield against traffic-released PM.
At this site, the anteroom (area: ≈12 m2, opening to a garden, a kitchen, and a hall) and the
living room (area: ≈20 m2) were used for indoor air sampling. The second sampling site is
situated in a suburban area (geocoordinates: 47◦32′48.63” N, 18◦58′2.79” E) close to a large
forest in the Buda hills, in the district of Hűvösvölgy (“Cool Valley” in Hungarian). This
site is at the farther side of a dead-end street, about 200 m from the closest major road, thus
possessing a very low density of local motor vehicular traffic. Due to the proximity of the
forest, the ambient air of this site is frequently refreshed.

The third sampling site has been selected to be at one of the buildings of the Wigner
Research Centre for Physics (KFKI Campus), which is situated in the Buda hills (geoco-
ordinates: 47◦29′26.51” N, 18◦57′22.13” E), but much farther from the former sampling
point. This site is characterized by a low anthropogenic impact considering the low density
of traffic and negligible industrial activities. This location can be the best described as an
urban background site. The campus’ buildings are located amongst the trees of the forest,
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which surround the area and provide fresh air. The anthropogenic pollution activity in this
area can be characterized by some emissions from its own gaseous-based heating center in
winter, the low-frequency of local motor vehicular traffic including personal cars, and at the
end station, of one bus line on the opposite side to the main gates, as well as two kitchens
for the on-site cafeterias and some low-emission activities of chemical–physical research, a
car repair shop, and general workshops, causing only low emissions of gases and aerosols
(e.g., by releasing welding fumes). At this site, the indoor sampling was performed in
one of the offices (area: 15 m2), equipped with regular furniture (e.g., a couple of desks
and bookshelves).

2.2. Instrumentation

In the present study, low-cost PM monitors of the Geekcreit® (China) model PM1.0/PM2.5
/PM10, based on a PMS5003 Plantower PM sensor (herein referred to as “GPM sensor”),
and Bohu Model BH1 (Bohu-Tech, China) were purchased and applied for daily aerosol
monitoring. Both types of sensors are lightweight (GPM: 118 g, but 270 g with Al-housing,
BH1: 324 g) and cost about USD 45 and USD 220, respectively. These devices utilize the
method of continuous air sampling, laser irradiation, and multi-angle light scattering on
air-suspended particulate. In brief, according to the intensity and angle of the scattered
light, temporally varying curves can be recorded, which are processed by the built-in 32-bit
microcomputer. The results are obtained as equivalent aerodynamic particle diameters, and
the number of suspended PM with different sizes in a unit volume of air can be obtained.
For indoor air monitoring, the LCSs were used as purchased. For outdoor purposes, the
BH1 sensors were placed under rain shelters. Additionally, the GPM sensors were equipped
with a supportive, closed aluminum housing to prevent the ingress of daily precipitation
and/or soil dust by wind throughout the open parts of the device (Figure 1). With this
housing, a hard plastic wall was also built in between the flow inlet and outlet to prevent
internal mixing of the sampled air. To assure the accurate readings for PM, the performance
of each housed LCS unit was tested against non-housed devices of the same type. The
monitors were placed at least 1.5 m (outdoors) and 1.2 m (indoors) above the ground, and
about 0.4 m from the walls of the buildings. The distance of the monitors from each other
was about 0.2–0.3 m at every sampling spot.
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Figure 1. Pictures of the Dylos air quality monitor and a GPM sensor without housing at the
background site (a) and a GPM sensor with aluminum housing next to a BH1 unit at the urban
site (b).

For air quality monitoring, PM1, PM2.5, and PM10 were sampled with a resolution
of 1–60 s (GPM) or 1–5 min (BH1). The minute, five-minute, hourly, and daily averages
and their fluctuations, expressed as standard deviations (SDs), were calculated. The air-
monitoring devices are also equipped with air temperature (Ta) and RH sensors, whose
collected data were compared too. The BH1 monitor is supplied with a 128 MB removable
SD card and a built-in rechargeable battery; thus, it is capable of recording the monitoring
data directly, i.e., without any PC-based support. However, for the purpose of continuous
operation, it was attached to a laptop PC via its micro-USB port during the sampling
campaigns. The battery has a capacity of 5000 mAh (power: 5 V DC, charging current:
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1000 mA), which supports the monitor with electricity for about 9–10 h, implying contin-
uous operation of the sensor with the highest sampling/output rate, i.e., 1–5 min, while
about 30 h-long operation can be accomplished by lower sampling rates (e.g., 25–30 min).
Moreover, this device provides various transfer protocols (Wi-Fi, IoT, etc.) for the moni-
toring data. On the other hand, each GPM sensor, for power supply (5 V DC), operation,
and data recording, was connected through its micro-USB port to a laptop PC, which was
running the manufacturer’s control and PM2.5 data-handling software. This software was
also utilized to save the recorded data series daily. It should be noted that BH1 is also
equipped with CO2, CH2O, and VOC sensors, which were not utilized in this study due to
a lack of reference methods.

Besides the above devices, a research-grade Dylos DC-1700 (Dylos Corporation, River-
side, CA, USA) AQ monitor was applied to check and compare the performance of the LCSs
and temporal trends of fine and coarse PNC. This monitor applies the same measurement
principle as the studied LCSs. The sampling/measurement rate with this instrument was
set to be continuous, which corresponded to one–one fine and coarse particle count data
per minute. The PNC data were converted to PM concentrations using a second-order poly-
nomial approach as recommended by Semple et al. [26]. Some of the monitoring results ob-
served with the LCSs were also compared to those observed at a nearby AQ/meteorological
station at Gilice Square (Budapest) of the Hungarian Air Quality Network [27].

2.3. Data Evaluation and Statistical Methods

The raw data from the LCSs were exported and converted into Excel. After that,
they were first assessed for readings/measurement values inconsistent with persisting
microclimatic conditions or related to calibration/diagnostic purposes or resetting of the
sensors’ software. These values were discarded from the datasets before further processing.
The 1–5 min data for GPM were calculated by averaging the registered data collected with
a 1–60 s sampling rate.

The resultant “cleaned” data series were compared and statistically evaluated using
Pearson’s bivariate correlation analysis and linear fits to the measurement points, using
the multivariate least square method. The correlation coefficient (R) of the linear fit and
related probability (p) values were calculated at a 99% confidence level. The AQI data were
calculated using the stepwise function and the statistics of PM2.5 concentrations. Some
predictions are made for human health effects at each sampling site on the base of the AQI,
following the recommendation of US EPA [28]. The analytical performance parameters of
the LCSs (e.g., bias, limit of detection) were calculated as described elsewhere [20].

3. Results
3.1. Monitoring Data from LCSs of the Same Type
3.1.1. GPM Sensors

As a very first experiment of this study, the performance of each air quality sensor of
the same type was compared and evaluated. For this purpose, two GPM sensors were run
simultaneously, each with synchronized internal clocks at the urban sampling site, indoors.
As can be seen from the results compiled in Table 1, the air concentration of PM1, PM2.5,
and PM10 ranged from non-detectable (n.d.) up to 29, 45, and 60 µg/m3, respectively, with
averages of 4.9, 6.9, and 7.8 µg/m3, which correspond to low aerosol pollutant levels. As
seen, slightly lower values could be attained by the use of the other GPM sensor.

The observed PM2.5 concentration is equal to an AQI maximum of 124, with an average
of 28 (median: 25). These values correspond to mostly clean air quality, though the AQI of
124 already falls into the category of “Unhealthy for sensitive groups”, as classified by the
US EPA [28]. The Ta and RH fluctuated between 20.6 and 25 ◦C and 40–60%, respectively,
with averages of 23 ◦C and 50.8%, respectively, corresponding to rather stable indoor
microclimatic conditions.
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Table 1. Air-monitoring data for GPM sensors collected indoors at the urban sampling site (living
room) between 27 and 30 May 2021 (sampling rate: 10 s, n = 28,750).

Parameter Concentration (µg/m3) Ta (◦C) RH (%) AQI

GPM-1 GPM-2

PM1 PM2.5 PM10 PM1 PM2.5 PM10
Min n.d. n.d. n.d. n.d. n.d. n.d. 20.6 40 0
Max 27 43 57 29 45 60 25 60 124

Average 4.3 6.2 6.8 4.9 6.9 7.8 23.0 50.8 28
Median 4.0 5.0 6.0 4.0 6.0 7.0 23.0 51.0 25

SD 3.2 4.6 5.3 3.5 4.9 5.8 0.9 4.1 15
RSD 75 74 77 70 71 74 4 8 55
Q1 3.0 4.0 4.0 3.0 4.0 5.0 22.5 49 17
Q3 5.0 7.0 7.0 5.0 8.0 8.0 23.6 54 33

Note: n.d.—not detectable, SD—fluctuation expressed as standard deviation, Q1 and Q3—first and third quartile,
Ta—air temperature; RH—relative humidity of air.

Looking at the experienced bias between the two GPM sensors (see Table 2), the two
LCSs sometimes showed highly differing values in terms of high bias for PM1, PM2.5,
and PM10, ranging from 0 to 400%, but with an average of 21–24% (median: 20–21%).
These mean values are acceptable for monitoring purposes. Moreover, they are similar
to those reported for LCSs in the literature [15,17]. The reason for the sometimes-high
bias lies in the experienced low levels of indoor air PM, which in turn resulted in higher
uncertainty between the monitoring data of the two concurrently operated sensors due to
measurements performed close to the limits of detection of these devices.

Table 2. Bias (%) for GPM sensors calculated for indoor air monitoring data recorded at the urban
site (living room) between 27 and 30 May 2021 (sampling rate: 10 s, n = 28,750).

Parameter PM1 PM2.5 PM10 Ta RH AQI

Min 0.0 0.0 0.0 0.0 0.0 0.0
Max 300 300 400 5 17 300

Average 21.8 20.7 24.4 1.5 8.8 20.7
Median 20.0 20.0 21.4 1.3 9.1 20.0

SD 21.8 18.1 20.9 0.9 2.2 18.1
RSD 100 88 86 56 25 88
Q1 0.0 3.8 11.8 0.9 7.5 3.6
Q3 33.3 30.8 33.3 2.1 10.2 33.3

On the other hand, indoor air parameters such as Ta and RH showed less bias: 1.5%
and 8.8% on average, due to their less fluctuations in the indoor air. Nevertheless, when
looking at the correlation graphs of the two sensors (Figure 2), strong correlations can
be found between the monitoring data for each PM species, and the indoor microclimate
data as well. The R value of the linear fit ranged between 0.93 and 0.97. However, a
broader spread for AQI values lower than ≈70 could be seen. A similar data pattern was
experienced for low values of PM, but to a much lesser degree (Figure 2).

Here, it is important to note that when measuring PM1, PM2.5, and PM10 concentra-
tions below 20 µg/m3, the linear fits to simultaneous readings of the two GPM monitors
showed decreased R values of 0.89, 0.89, and 0.82, respectively (Figure 3). Accordingly, a
similar, lower correlation was found for the AQI (0.89), whereas for microclimatic param-
eters such as Ta and RH, still very high correlation coefficients were observed, i.e., 0.98
or higher.
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 Figure 3. Correlation between the data series of GPM sensors for indoor air monitoring (living room)
at the urban site, for 26 May 2021 (sampling rate: 10 s, n = 4660).

3.1.2. BH1 Sensors

Secondly, the performance of one–one BH1 sensor was compared through the outdoor
air sampling and analysis conducted at the urban site. This experiment was performed like
that reported above, i.e., LCSs were operated concurrently, and the recorded air quality
data were compared. As seen in Table 3, the concentration of PM1, PM2.5, and PM10
observed with the BH1(A) sensor ranged from 5 to 92, 7 to 114, and 7 to 128 µg/m3, with
averages of 10.9, 14.3, and 15.8 µg/m3, respectively, which corresponds to low pollutant
levels. These ranges do not differ significantly from those observed by the other sensor,
BH1(B), i.e., 3–88, 4–103, and 4–122 µg/m3 and the related average values of 10.8, 14.2, and
15.6 µg/m3, respectively.
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Table 3. Statistics of air monitoring data recorded with BH1 sensors collected outdoors at the urban
sampling site between 15 and 18 April 2022 (sampling rate: 1–5 min, n = 3920).

Parameter Concentration (µg/m3) Ta (◦C) RH (%) AQI

BH1(A) BH1(B)

PM1 PM2.5 PM10 PM1 PM2.5 PM10
Min 5.0 7.0 7.0 3.0 4.0 4.0 4.1 28 8
Max 92 114 128 88 103 122 21 72 181

Average 10.9 14.3 15.8 10.8 14.2 15.6 12.3 49.1 56
Median 10.0 13.0 14.0 9.0 13.0 14.0 12.4 50.0 55

SD 4.4 5.3 5.9 3.9 4.7 5.2 4.2 11.8 14
RSD 40 37 38 36 33 34 34 24 26
Q1 9.0 11.0 13.0 9.0 12.0 13.0 8.7 41.0 46
Q3 14.0 16.0 18.0 12.0 15.0 16.0 15.1 58.0 63

The Ta and RH fluctuated at relatively broad ranges, i.e., 4.1–21 ◦C and 28–72%,
respectively, with averages of 12.3 ◦C and 49%, respectively, reflecting changing climatic
conditions in the spring. In this sampling, the AQI values fluctuated between wide limits
of 8 and 181, with a mean value of 56, corresponding to “Moderate” air quality. However,
it should be recognized that the maximum AQI value of 181 falls in the “Unhealthy” range
of US EPA classification [28].

As it appears in Figure 4, the data series of the two BH1 sensors for PM1, PM2.5, and
PM10 correlate strongly with R values of 0.93 or better. The intercepts of the linear fit of
the equations for PM1, PM2.5, and PM10 were observed to be 1.87, 2.41, and 2.55 µg/m3,
respectively, showing consistency in the readouts of the sensors. Similarly good correlations
could be observed for the AQI datasets. The microclimatic parameters of Ta and RH
demonstrated even better correlation with R values higher than 0.98.
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3.2. Monitoring Results for LCSs of Different Types

As the next stage of the study, the performance of different types of air quality LCSs
was compared and evaluated indoors and outdoors. For this purpose, GPM and BH1
sensors were run simultaneously for about a week in indoor and outdoor environments.

3.2.1. Urban Site

According to the statistical data for indoor sampling compiled in Table 4, the moni-
toring results acquired by the application of BH1 are somewhat higher than those values
acquired with the GPM sensor. The PM1, PM2.5, and PM10 concentrations observed with
BH1 ranged between 4 and 42, 6 and 51, and 6 and 61 µg/m3, respectively, whereas for the
GPM sensor, the range was n.d.–30, 1–45, and 1–57 µg/m3, respectively. On the other hand,
there are significant differences between the average values obtained with the BH1 and the
GPM sensors for PM1, PM2.5, and PM10, e.g., 8.3, 10.8, 12.2 µg/m3, and 2.7, 4.2, 4.8 µg/m3,
respectively. These data still correspond to good air quality for this indoor environment. It
can also be seen that the microclimatic conditions change modestly, e.g., Ta ranged from
23 to 26 ◦C with an average value of 24 ◦C, while RH fluctuated between 39 and 62% with
an average of 48%.

Table 4. Statistics of air monitoring data for GPM-type and BH1 sensors collected indoors (anteroom)
at the urban sampling site between May 24 and 30 2021 (sampling rate: 1 min, n = 7015).

Parameter Concentration (µg/m3) Ta (◦C) RH (%) AQI

BH1(C) GPM-3

PM1 PM2.5 PM10 PM1 PM2.5 PM10
Min 4 6 6 n.d. 1 1 23 39 25
Max 42 51 61 30 45 57 26 62 139

Average 8.3 10.8 12.2 2.7 4.2 4.8 23.9 48.0 44
Median 8.0 10.0 12.0 2.3 3.6 4.1 23.7 49.0 42

SD 1.7 2.3 2.4 2.4 3.5 4.1 0.8 4.4 7
RSD (%) 20 21 20 88 84 86 3 9 16

Q1 7.9 10.0 11.6 1.4 2.3 2.7 23.2 44.5 42
Q3 9.0 12.0 13.0 3.2 4.8 5.5 24.5 51.0 50

When scrutinizing the correlation graphs of the PM data recorded by the GPM and
BH1 sensors (Figure 5), the correlation coefficients of the linear fits show that the two data
series correlate rather well, with R values of 0.78, 0.81, and 0.78, respectively (p = 0 at
0.01 confidence level).
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n = 7015).

However, it can also be seen that there is a positive bias in favor of the data series
recorded by the BH1 sensor. This is manifested in the intercept of each equation of the linear
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fit to PM1, PM2.5, and PM10 data, being 6.57, 9.37, 11.46 µg/m3, respectively. As can be
seen on Figure 5, most of these indoor air data series have a low reading due to the low air
pollution levels for this spring sampling campaign. Consequently, when neglecting the low
monitor readings (e.g., <5 µg/m3) for both sensors and reiterating the comparison of the
newly obtained data series, better correlations for PM1, PM2.5, and PM10 are experienced,
i.e., with R values of 0.76, 0.79, and 0.8, respectively.

An overview of the statistical data for outdoor sampling at the urban site by means of
BH1 and GPM sensors is presented in Table 5. As expected, based on the indoor air mea-
surements, higher values were usually experienced for the BH1 sensor as compared to those
observed with the GPM monitor. The air levels of PM1, PM2.5, and PM10 observed with
BH1 ranged from non-detectable (n.d.) up to 48, 60, and 67 µg/m3, respectively, whereas
the corresponding ranges recorded with the GPM were 1–23, 1–37, and 1–45 µg/m3, re-
spectively. Interestingly, there were no significant differences seen between the average
(and median) values of PM1, PM2.5, and PM10 acquired by BH1 and GPM, i.e., 6.6, 9.1, and
9.8 µg/m3 and 6.1, 8.4, and 9.0 µg/m3, respectively. These data correspond to rather good
air quality, though the AQI of 153 already falls into the “Unhealthy” category, according to
the US EPA’s classification [28]. In this campaign, the outdoor microclimatic parameters
the Ta fluctuated rather smoothly, i.e., between 7 and 22 ◦C (average: 14.3 ◦C), whereas the
RH varied between broad limits, i.e., from 34 to 99% (average: 60%).

Table 5. Statistics of air monitoring data for GPM and BH1 sensors collected outdoors at the urban
sampling site between 24 and 30 May 2021 (sampling rate: 1–5 min, n = 2300).

Parameter Concentration (µg/m3) Ta (◦C) RH (%) AQI

BH1(B) GPM-4

PM1 PM2.5 PM10 PM1 PM2.5 PM10
Min n.d. n.d. n.d. 1 1 1 7 34 8
Max 48 60 67 23 37 45 22 99 153

Average 6.6 9.1 9.8 6.1 8.4 9.0 14.3 60.6 37
Median 6.0 8.0 9.0 5.6 7.5 8.0 14.0 61.0 33

SD 2.6 3.0 3.6 3.6 5.0 5.4 3.4 14.2 10
RSD 40 33 37 58 60 60 24 23 27
Q1 4.0 7.0 7.0 3.2 4.3 4.7 11.9 48.0 29
Q3 8.0 10.0 12.0 8.1 10.9 11.6 17.5 69.0 42

By examining the correlation graphs of various PM species obtained by the GPM
and BH1 monitors outdoors (Figure 6), the regression coefficients of the linear fits demon-
strates that the data series correlate rather well with R values of about 0.79. On the
other hand, again, as for indoor air sampling, a slight positive bias can be experienced
in favor of the data series registered with the BH1 monitor. This is well demonstrated
in the intercept of each equation of the linear fit to PM1, PM2.5, and PM10 data, being
0.80, 3.48, 2.81 µg/m3, respectively.

However, it should be noted that these intercepts are much lower than those expe-
rienced for indoor air sampling of the same campaign/site (cf. Figure 5). As it appears
in Figure 6, the data series of two different monitors applied for the outdoor climatic
conditions also showed good correlations, e.g., for Ta and RH with R values of 0.99 and
0.98, respectively. The bias between them is about 4.4 ◦C and 5.08%, respectively, which
may be due to their distance and local microclimatic fluctuations. On the other hand, the
AQI series obtained with the two types of monitors showed significant difference in terms
of the intercept and slope, whose result stems from the difference obtained in readings for
low PM2.5 levels, e.g., <10 µg/m3.
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Figure 6. Correlation between the data series of the GPM and BH1 sensors for outdoor air monitoring
at the urban site, recorded between 24 and 30 May 2021 (sampling rate: 1–5 min, n = 2300).

3.2.2. Background Site

The summary of the statistical data for indoor sampling at the background site by
means of BH1 and GPM sensors is presented in Table 6. Interestingly, the concentration
of PM1, PM2.5, and PM10 recorded with the BH1 sensor is similar to that of observed
with the GPM, ranging from 5 to 33, 7 to 42, and 7 to 48 µg/m3, respectively, whereas the
corresponding ranges, recorded with the GPM, are 3–26, 5–41, and 5–52 µg/m3, respectively.
The average values for BH1 are a bit higher for PM1, i.e., 15.2 µg/m3, compared to GPM
(13.5 µg/m3), whereas lower mean values are experienced for PM2.5 and PM10, i.e., 19.5 and
21.7 µg/m3, respectively, with the corresponding GPM data of 21.1 and 24.7 µg/m3,
respectively. The calculated AQI index calculated from PM2.5 values ranged between 29 and
117, reflecting the good air quality of the office in general, though an AQI higher than
100 shows “Unhealthy for Sensitive Groups” according to US EPA recommendation [28].
According to the registered microclimatic data, the indoor air showed slight fluctuations in
terms of temperature and humidity (Table 6).

Table 6. Summary of air monitoring data for GPM and BH1 sensors collected indoors (office room) at
the urban background site between 6 and 12 December 2021 (sampling rate: 1–5 min, n = 1740).

Parameter Concentration (µg/m3) Ta (◦C) RH (%) AQI

BH1(D) GPM-5

PM1 PM2.5 PM10 PM1 PM2.5 PM10
Min 5 7 7 3 5 5 17 28 29
Max 33 42 48 26 41 52 22 38 117

Average 15.2 19.5 21.7 13.5 21.1 24.7 19.3 31.5 66.0
Median 14.0 18.0 19.0 13.4 20.8 23.6 19.2 31.4 63.4

SD 5.3 6.5 7.4 4.9 8.2 10.6 0.6 1.3 14.5
RSD 35 33 34 36 39 43 3 4 22
Q1 11.0 15.0 16.0 10.0 15.1 17.0 18.8 30.6 57.1
Q3 18.0 23.0 26.0 16.2 26.4 30.4 19.6 32.4 73.8

The correlation of the data series, recorded by the BH1 and GPM sensors, was exam-
ined for the urban background site too. As seen in Figure 7, the R values of these fits is



Atmosphere 2022, 13, 1218 13 of 23

about 0.95 or better, demonstrating a strong correlation between the two datasets. The
slopes of the linear fits for PM1, PM2.5, and PM10 are 0.94, 1.29, and 1.47, respectively. The
intercept of the linear fit to the PM1 data series is found to be positive (0.17 µg/m3) in favor
of the GPM sensor, showing slightly lower readings for BH1, being rather negligible. On
the other hand, negative intercepts for PM2.5 (–2.43 µg/m3) and PM10 (–5.1 µg/m3) were
attained, which demonstrated slightly increased bias. As also seen in Figure 7, the two
types of monitors developed strong correlations in terms of microclimatic parameters, such
as Ta and RH, and for AQI, with R values of 0.74, 0.82, and 0.95, respectively.
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Figure 7. Correlation between the data series of the GPM and BH1 sensors for indoor air (office room)
monitoring at the urban background site, recorded between 6 and 12 December 2021 (sampling rate:
1–5 min, n = 1740).

3.2.3. Suburban Site

The correlation between the data series of BH1 and GPM sensors was evaluated at the
suburban site, as depicted in Figure 8. The R values of the linear fits to the same kind of
PMx data points are between 0.89 and 0.92, demonstrating that these parameters are well
correlated. However, a stepwise increase in the intercept of the linear fit for PM1, PM2.5, and
PM10 was observed, i.e., 7.6, 11.0, and 17.7 µg/m3, respectively. The positive values show
the bias in terms of higher readings for the GPM. The slope of the linear fits for PM1 was
slightly low (0.58), while for PM2.5 and PM10, it was acceptable, 0.82 and 1.15, respectively,
which demonstrates the similar, linear response of the two different sensors to ambient
aerosol concentrations. Nevertheless, it should be noticed that this site was characterized
by high ambient RH, in the range of 40–95% (average: 83%). Thus, it is supposed that the
high RH influences the readings of the two types of sensors, which is a likely assumption
based on the literature [19–22]. Consequently, this possible effect was studied in the present
work too (see Section 3.3). For AQI data, a similarly strong correlation was observed as
above (R = 0.92) with a slope of 0.83 and an intercept of 27.

As seen in Figure 8, the two kinds of monitors developed significant correlations for
the microclimatic parameters of Ta and RH with R values of 0.91 and 0.96, respectively.
The slopes of the fit equations are also good, 0.92 and 1.03, with aptly small intercepts
of 1.99 and 6.4, respectively. It should be noted here that the Ta readouts of BH1 below
0 ◦C could not be properly converted into the datasets somehow. For replacing those
values, the concurrent data from the co-located GPM sensor was applied, where it was
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necessary. These results suggest that both LCSs appear to be adequate to monitor local PM
and microclimatic changes indoors and in the outdoor air.
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Figure 8. Correlation between the data series of the GPM and BH1 sensors for outdoor air at the
suburban site, recorded between 6 and 12 December 2021 (sampling rate: 1–5 min, n = 1170).

3.3. Effects of Microclimatic Parameters on PM Readings

As a further step of the study, the effects of RH on the PMx readings of the LCSs were
evaluated at the suburban site (Figure 9). This site has higher RH conditions due to the
proximity of the forest. As seen, for the BH1 sensor, fairly low slopes of the linear fits
were observed with values of 0.07, 0.08, and 0.1, but with high intercepts of 23.8, 29.8, and
33.0 for PM1, PM2.5, and PM10, respectively. Low correlation could be seen between the RH
values and the concentrations of various PM species. For PM1, PM2.5, and PM10, the linear
fits were observed with R values of about 0.1, showing a weak correlation. On the other
hand, for the GPM sensor, the slopes of the linear fits to the measurement points showed
an increasing trend from PM1 (0.11), PM2.5 (0.23), and PM10 (0.43), while the corresponding
intercepts were 14.6, 20, and 26.1, respectively. Moreover, the correlation coefficients were
slightly higher (0.20–0.28) than in the case of the BH1 sensor. This shows the slight influence
of the air RH on the readings of the GPM sensor, especially over 85% RH, as seen in Figure 9.
Nevertheless, for each type of studied LCS, a relative humidity over 85% should be taken
into account when evaluating PMx levels. For these cases, the use of a reference monitor
and field calibration is necessary. It should be noted that RHs over 95% can have more
influence on the PM readings from the LCSs, a condition that was also reported in the
literature [15]. On the other hand, this experimental condition was not assessed in the
present study, since the persisting meteorologic conditions during the sampling campaigns
did not make it possible.

Besides the effects of RH, the influence of Ta on PMx readings of the LCSs were evalu-
ated (Figure 10). As seen, the slopes of the linear fits for BH1 monitor ranged from −0.41
to −0.61 µg/m3 ◦C, while for the GPM they ranged between −0.49 and −2.24 µg/m3 ◦C,
showing higher PM readings for low temperature values, e.g., below 5 ◦C. On the other
hand, the intercepts of the equations ranged between 25 and 69 µg/m3, with increasing
values towards the coarser PM fractions. The monitoring data from BH1 show insignificant
correlation with the Ta changes, which is manifested in the low R values of about 0.14 for
each PM fraction. On the other hand, the PM data obtained from the GPM sensor devel-
oped very weak dependency on varying Ta, which can be seen in the R values gradually
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increasing from 0.2 to 0.33 with increasing PM size fractions. Interestingly, a reverse trend
for the dependency of PMx on changing Ta was observed for the spring period (data not
shown here) as compared to the winter campaign.
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Figure 9. Effects of air relative humidity (RH) on PMx readings of BH1 (upper graphs) and GPM
(lower graphs) sensors studied at the suburban site between 6 and 12 December 2021 (sampling rate:
1–5 min, n = 2018).
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3.4. Calibration of the Sensors

For calibration purposes, the PM2.5 readings of the LCSs were plotted against those
values observed with the assistance of Dylos reference monitor (Figure 11). As it appears,
the calibration fit of each BH1 sensor is linear over the studied PM2.5 concentration range
with calibration slopes of 0.92 and 1.1, respectively, and with low intercepts of −5.25 and
−2.38, respectively. The correlation coefficients of these fits are also acceptable, with R
values of 0.87 and 0.83, respectively, showing strong correlation between the dataset pairs.
On the other hand, the PM2.5 data from the GPM monitor develop a rather second-order
function, which is due to the deviation in the readings in the low concentration range, i.e.,
for values of lower than about 20 µg/m3. When excluding these data from the evaluation,
it can be seen that the datasets can be approached well with a linear equation (slope: 1.08,
intercept: −2.91). Overall, the GPM and BH1 sensors follow the PM2.5 readings of the
reference monitor quite well. Consequently, these LCSs do not usually require calibrations
against reference monitors, apart from the air pollution levels falling into the low PM range
and when measuring ambient air under high RH conditions as noted above.
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Figure 11. Linear and nonlinear calibration plots of PM2.5 readings for BH1 (left) and GPM (right)
sensors against the Dylos reference monitor studied at the suburban site between 15 and 18 April
2022 (sampling rate: 1–5 min, n = 3640).

3.5. Temporal Trends of Indoor and Outdoor Air Quality
3.5.1. Urban Sampling Site

The time series for the spring campaign (24–30 May 2021) observed with one–one BH1
and GPM sensors at the urban site is depicted in Figure 12.

As seen, the air quality follows the daily trend of air pollution during the weekdays:
peak hours encountered in the mornings (e.g., from 6 a.m. to 9 a.m.) and the evenings (from
4 p.m. to 8 p.m.), whereas at the weekend, only Saturday morning and Sunday evening
have somewhat higher peaks for each three PM species. Some high night PM readings are
also experienced in this period. Though the daytime emissions are mostly ruled by those
originating from the passing of local motor vehicular traffic, it is also possible that biomass
burning, in the form of barbecues, occurred during the campaign, and a contributing factor,
especially at the weekend.

The indoor data series of the same campaign is depicted in Figure 13. As seen, the
local outdoor air contributes to the indoor trends, exemplified in the appearance of higher
readings for the monitored PM species during the peak traffic hours as above. On the other
hand, some midday peaks can be seen, reaching values as high as 54–65 µg/m3. These
sharp increases in the indoor PM levels are due to related cooking activities in the kitchen
and the proximity of the kitchen to the sampling spot (anteroom), and likely ingress of
particles into the latter.

It could also be seen that the GPM sensor gave rather sharper peaks of aerosol concen-
tration changes than BH1, likely due to the higher resolution of the former (1 min), thus
resulting in more accurate average PM values for local air quality.
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The outdoor air quality was also assessed for a winter campaign week (6–12 Decem-
ber 2021), as depicted in Figure 14. As can be seen, the daily concentration of PM1, PM2.5,
and PM10 fluctuated between 10 and 69, 15 and 113, and 17 and 138 µg/m3, with averages
of 27, 44, and 54 µg/m3, respectively. These PM2.5 data correspond to an AQI range of
58–181, with an average of 119, which is already a high value, classified as “Unhealthy
for sensitive groups” according to the US EPA [28]. The temporal PM trend suggests the
periodic influence of local traffic on the local air quality, manifested in the periodically en-
hanced PM concentration during the morning and the afternoon rush hours. Moreover, the
effects of wood-fueled heating could be observed too, which caused increased background
aerosol levels and a few peaks for each PM species, mostly experienced during the evening
and the night hours. Overall, these data exhibit far higher PM levels than those obtained
for the same sampling site in the spring campaign (cf. Figure 12).
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3.5.2. Background Site

The temporal trends observed during the winter campaign (6–12 December 2021), with
the application of the GPM sensor at the background site, outdoors, is depicted in Figure 15.
As seen, elevated levels of PM1, PM2.5, and PM10 were experienced, reaching as high
values as 30, 50, and 75 µg/m3, respectively. The enhanced PM background can be seen
on weekdays, while on weekends, lower aerosol concentrations were obtained. Therefore,
it is supposed that the emissions of the local heating station of the campus is a main
source of this enhanced background PM levels. Moreover, during winter, several people
living in residential houses of the nearby settlements apply wood-/coal-fueled heating
for their homes. This type of anthropogenic emission can deteriorate the air quality at the
concerned sampling site for each three PM fractions by enhancing the local background
PM levels. Fairly high RH values of about 80–92% were observed at this sampling site with
air temperatures as low as close to freezing. The AQI values for outdoor air of this site
ranged between 28 and 152 (average: 97, median: 100).

The indoor data recorded for the same sampling campaign are depicted in Figure 16.
As can be seen, the pattern of fluctuation in the concentration of various PM species is
similar to those observed for outdoor air. During this indoor sampling, the GPM sensor
detected peaks of PM1, PM2.5, and PM10 as high as 26, 40, and 50 µg/m3, respectively. The
increase in PM2.5 levels and the related AQI values point towards being “Unhealthy for
sensitive groups”, which is a concern for a group of people attending the campus and
related offices.
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3.5.3. Suburban Site

The temporal evolution of PM species and the microclimatic parameters observed
during the winter campaign (6–12 December 2021) with the application of the GPM sensor at
the suburban site, outdoors, are depicted in Figure 17. As shown, the concentrations of PM1,
PM2.5, and PM10 fluctuated and showed peak values of 55, 107, and 190 µg/m3, respectively.
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recorded between 6 and 12 December 2021 (sampling rate: 5 min, n = 2018).

This site also showed the influence of nearby motor vehicular traffic, on a main road,
and as a result, enhanced background PM levels. Rush hours were characterized by
somewhat increased levels of air pollution, though the local background PM level was
generally high. An increase in PM concentrations was also observed during evening and
night hours, when the local residential houses were heated, most likely with wood/coal
combustion, manifested also in the large increase in coarse PM fractions. According to the
detected PM2.5 levels, the AQI of this site was also assessed, the value of which ranged
between 55 and 178 with an average of 113. These values are relatively high, corresponding
to the air quality class “Unhealthy for sensitive groups”. On some sampling days, the
AQI falls into the “Unhealthy” category, according to the US EPA classification [28]. This
demonstrates similar air quality for the investigated suburban site, as compared to the
urban and the background sites. This is most likely due to the combined effects of the
nearby emissions of the motor vehicular traffic and wood/coal fueled heating in the
residential houses.

3.6. Analytical Performance of the Sensors

The analytical performance of the LCSs was assessed through the examination of
several air quality readings and observations for suspended PM, such as the lowest and
highest readouts in indoor air campaigns, for instance, when the pollution load could be
much higher than that of the outdoor, due to poor ventilation of the house and cooking
activities during sampling. On the basis of these data, for the GPM and BH1 sensors, a
maximum of 256 and 450 µg/m3 was found as the highest ultimate PM values, respectively.
As regards the sensitivity of the two types of sensors, GPM possesses higher sensitivity
(limit of detection: 2 µg/m3) than BH1 (limit of detection: 7 µg/m3), manifested also in
changes in the readouts for lower PM concentrations. The GPM sensor, exhibiting as high a
temporal resolution as 1 s, is more sensitive for slight changes in air quality than the BH1
monitor, which possesses only 1–5 min as the highest resolution.

The observed PM readings by the LCSs were also tested against the Dylos air quality
monitor, for instance, in the winter campaign. The readout pattern for the particle count of
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fine and coarse suspended particulate matter is found to be very similar to those observed
with the LCSs as above, specifically for PM2.5 and PM10 (see Figure 16a vs. Figure 16b).
To assess the accuracy of the monitoring data by LCSs, the PM concentrations recorded
in spring were assessed from hourly average series of a nearby official air quality station,
located at Gilice Square, Budapest (Table 7). As seen, the average/median values approach
fairly well those data observed at the urban sampling site with the assistance of BH1
monitors for the same sampling period (Table 3).

Table 7. Statistics of hourly air monitoring data recorded by an official air quality station (Gilice
Square, Budapest) between 15 and 18 April 2022.

Parameter Concentration (µg/m3)

PM2.5 PM10

Min 2.0 2.0
Max 24 37

Average 9.1 15.6
Median 8.0 13.0

SD 5.2 11.1
RSD 58 71
Q1 4.8 5.0
Q3 12.3 25.0

4. Conclusions

In the present study, two types of LCSs (Geekcreit PMx and Bohu BH1) were tested
and evaluated for indoor and outdoor sampling of air suspended PM, performed at three
sites of different anthropogenic influence in Budapest, Hungary. In general, both LCSs were
found to be well applicable to indoor and outdoor monitoring. It could also be experienced
that the GPM sensor gave rather sharper peaks of aerosol concentration changes than BH1
due to the higher temporal resolution applicable with this type of device (e.g., down to
1 s). Moreover, this monitor gave lower PM values in some instances, at the urban and
suburban sampling sites as compared to those observed with the BH1 sensor. This is most
likely due to a more sensitive detection assembly though lower aerosol load, and thus
a lower upper limit of the aerosol concentration detectable by the use of this device. A
definite drawback of the GPM sensor is the mandatory use of a control PC with software
for data collection and storage, which limits the field applications. On the other hand, the
BH1 sensor has its own built-in battery, data storage, and control software, which features
provide it with the facility of self-standing operation for several hours, depending on the
adjusted sampling rate.

The analytical performances of the studied LCSs were found to be similar, though
the BH1 had in general somewhat higher readings for PM levels lower than 10–15 µg/m3,
especially outdoors at the urban site, where the emissions from the local motor vehicu-
lar traffic prevailed as an air pollution source during the campaigns. Nevertheless, the
bias found between the two types of sensors is negligibly low at higher readings, the
concentration range of aerosols being important from a human health point of view. The
relative humidity had some influence on PMx readings for both sensors, from which the
GPM sensor was more sensitive to changes in this microclimatic parameter. A relative
humidity higher than 85% had an additive effect on the PMx values. On the other hand,
the ambient air temperature had negligible/low effects on PM data. Recalibration of the
LCSs at each specific site against a reference AQ monitor is recommended to attain more
accurate PM readings.

The studied LCSs have also been found to be well applicable for tracking the impact
of local traffic, the related peak hours, and to reveal the cooking and wood-fueled heating
activities nearby. For the three study sites, rather low health impacts of atmospheric
suspended matter can be expected on the basis of the present study. However, indoor
air quality could be seen as deteriorating quickly, for instance, due to local heating and
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cooking activities, though its background level was also found to be highly dependent on
the outdoor air quality.

Summarizing the above acquired results, they suggest that both types of air quality
sensors are adequate to monitor local PM and microclimatic changes indoors and in the
outdoor air, towards supporting the measurements of official air quality stations as well as
using their data series as input parameters for atmospheric dispersion models.
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