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Comparative survey of the relative impact of mRNA
features on local ribosome profiling read density
Patrick B.F. O’Connor1, Dmitry E. Andreev1,2 & Pavel V. Baranov1

Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates,

is characterized by the presence of infrequent high peaks in ribosome footprint density and by

long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple

normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and

outperforms other normalization techniques in the presence of heterogeneous noise.

We illustrate how RUST can be used for identifying mRNA sequence features that affect

ribosome footprint densities globally. We show that a few parameters extracted with RUST

are sufficient for predicting experimental densities with high accuracy. Importantly the

application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation

in sequence determinants of ribosome footprint frequencies, questioning the reliability of

Ribo-seq as an accurate representation of local ribosome densities without prior quality

control. This emphasizes our incomplete understanding of how protocol parameters affect

ribosome footprint densities.
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T
he advent of ribosomal profiling (ribo-seq) has provided
the research community with a technique that enables the
characterization of the cellular translatome (the translated

fraction of the transcriptome). It is based on arresting translating
ribosomes and capturing the short mRNA fragments within
the ribosome that are protected from nuclease cleavage. The
high-throughput sequencing of these fragments provides
information on the mRNA locations of elongating ribosomes
and thereby generates a quantitative measure of ribosome density
across each transcript. Accordingly, ribosome profiling data
contain information that could be used to infer the properties that
affect ribosome decoding (or elongation) rates. Unsurprisingly,
a large number of studies analysing ribosome profiling data for
this purpose have been published recently1–21.

There is a considerable discordance among some of the
findings in these works that is unlikely to be wholly caused by
differences in the biological systems used. It may also be
attributed to the computational methods used for estimating
local decoding rates, which are often based on elaborate models of
translation that use certain assumptions regarding the process.
The abstraction required for modelling necessitates the
generalization of the process across all mRNAs, although we
are aware of numerous special cases22. Even if the generalized
models provide an accurate representation of the physical process
of translation in the cell, they do not model the ribosome
profiling technique itself, which may introduce various technical
artefacts. Oft-cited potential artefacts include the methods used to
arrest ribosomes (the result is affected by the choice8,23 and the
timing7,21,24 of antibiotic treatment), the sequence preferences of
enzymes involved in the library generation1,25 and the quality of
alignment. These artefacts may distort the output and it may not
be easy to disentangle their effects in the presence of biologically
functional and sporadic alterations in translation.

Ribosome profiling data are characterized by high hetero-
geneity caused by alignment gaps and sporadic high-density
peaks due to technical artefacts and ribosome pauses4,26. These
fluctuations, even if caused by genuine ribosome pauses, are
thought to negatively impact the ability of some methods to
accurately characterize factors that influence ribosome read
density globally. With this rationale we developed a data
smoothing method, that we term RUST (Ribo-seq Unit Step
Transformation). We first demonstrate that RUST is resistant to
the presence of heterogeneous noise using simulated data and
outperforms other normalization techniques in reducing data
variance. Then we analyse real data from 30 publicly available
ribosome profiling data sets obtained using samples (cells or
tissues) from human14,27–39, mice7,37,40–42 and yeast1,6,8,12,43–45.

We show that a few parameters extracted with RUST are
sufficient to predict experimental footprint densities with high
accuracy. This suggests that RUST noise resistance allows
accurate quantitative assessments of the global impact of mRNA
sequence characteristics on the composition of footprint libraries.

The comparison of RUST parameters among different data sets
revealed a considerable discordance in the relative impact of the
sequence factors determining frequencies of ribosome footprints
in the libraries. This most likely can be attributed to the
differences in experimental protocols, suggesting that the variance
in the data, rather than in the analytical approaches used is
responsible for the current contradictions regarding the sequence
determinants of the decoding rates.

Results
Ribo-seq Unit Step Transformation (RUST). The probability of
finding a ribosome decoding a particular codon of an mRNA
(and by extension the expected number of corresponding ribo-seq
reads in a library) depends on three variables: the mRNA

expression level, the translation initiation rate for the corre-
sponding open reading frame (ORF) and the time that the
ribosome spends at that codon (dwell time). The latter (as an
invert) is usually described as a codon elongation rate or a codon
decoding rate. Estimating the true decoding rates with ribo-seq is
made difficult by the absence of precise measurements of initia-
tion rates. Therefore, studies (including this one) using ribo-seq
for this type of analysis typically attempt to measure the relative
dwell time of codons instead of the actual dwell time. A frequent
and intuitive approach is the normalization of the local ribo-seq
signal by the average signal across the coding region4,9. This
approach has been described as conventional4 and we will refer to
it as CN for conventional normalization. It is based on the
reasonable assumption that the transcript expression levels and
ORF initiation rates are the same for all codons from that ORF.
CN is perceived to have two major shortcomings: it is expected to
be very sensitive to the high-density peaks which frequently occur
due to functional ribosome pauses4 (Fig. 1a) and it is typically
applied only to the transcripts with high ribosome coverage, as
the relative impact of a single-read alignment on CN is excessive
with sparse profile data (Fig. 1a).

Various approaches have been tried to reduce the impact of
density outliers (Fig. 1b). Dana and Tuller4 removed atypical
densities based on expected distribution of densities. Artieri and
Fraser1 used logarithmic mean instead of the arithmetic mean to
produce a ‘corrected ribo coverage’. Gardin et al.6 developed an
intricate approach for calculating a statistics that they called
‘ribosome residence time (RRT)’. The approach involves CN like
sampling, but only from specific segments of RNA that satisfy
certain sequence and coverage requirements6 (Fig. 1b). Pop
et al.12 introduced a sophisticated model that is based on the
assumption that the ribosome footprint density profile must
satisfy flow conservation constraints, that is, the translation is at
steady state and that all ribosomes translated the entire coding
region. While flow conservation constraints may be true for the
ribosome densities, they may not hold for footprint densities
because of technical artefacts such as sequencing biases and
misalignments.

We reasoned that a practical approach for the analysis of
ribosome profiling data should be (i) simple, (ii) robust to the
presence of heterogeneous noise, (iii) able to use all available data
(that is, no restriction to genes with high-read coverage) and (iv)
be able to produce statistics that would allow accurate prediction
of experimental densities. With this in mind, we developed a
procedure that we term RUST where the ribosome footprint
densities (the number of reads corresponding to the position of
the A-site codon) are converted into a binary step unit function
(also known as Heaviside step function). Individual codons are
given a score of 1 or 0 depending on whether the footprint
density at these codons exceeds the average for the corresponding
ORF (Fig. 1a and Supplementary Fig. 1). In addition to codons,
the procedure could be applied to any other potential
determinant of read density such as individual nucleotides,
encoded amino acids, their combinations as well as their
properties, such as a charge or hydrophobicity of encoded
peptides or free energy of RNA secondary structures. The average
RUST value for each putative determinant of decoding rates may
be compared with the expected RUST value to measure its effect,
see Methods. As a result of the transformation the impact of every
site has a small influence on the final RUST value. The value is
influenced primarily by the consistent presence of reads at
numerous sites. For example, no differentiation is made between
a stall site where the ribosome density just exceeds the average to
one where the average is grossly exceeded. For the details of
transformation, see Methods and the RUST pipeline in
Supplementary Fig. 1.
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Evaluation of normalization methods with simulated data. In
order to evaluate RUST performance, we tested its ability to
estimate decoding rates from simulated data. We simulated the
data under a simplifying assumption that the local decoding rates
depend only on the identity of a codon in the A-site. To simulate
the data we used real transcript sequences and experimental
distribution of footprints per transcript, but modelled the
distribution of footprints within a transcript by specifying the
dwell time of each of 61 codons and introducing different levels of
heterogeneous noise (see Methods and below for how the noise
was simulated). We compared its performance to the RRT
approach, the CN method and to a logarithmic mean
normalization (LMN) similar to that obtained with the ‘corrected

ribo coverage’ (see Methods). Unlike in the original approach in
LMN ribo-seq density is not normalized by the mRNA-seq
density. The CN method was used in two modes with filtering
requiring a minimal coverage threshold (average transcript
footprint density of 41 read/nucleotide) CN41, and without
any threshold, CN40. The parameters of the simulation were
selected either to produce data similar to the experimental data or
the data with reduced quality (see Methods). For example, the
sequencing depth was either equal or lower than what has been
obtained with actual data.

Figure 1c compares the performance of the five methods for
three different simulated sets of data with different sequencing
depth and levels of noise simulated as sporadic high-density
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Figure 1 | Comparison of ribosome profiling normalization approaches. (a) A stylized footprint density profile for MTIF3 gene transcript from ‘Andreev’

data set (left) is transformed into a binary function with RUST (centre). Each sequence feature, such as AAA codon in the case shown, could be

characterized by its frequency as 1 or 0 (right). (b) The distributions of normalized codon densities for all AAA codons in ‘Andreev’ data set using different

approaches, conventional normalization CN (left), ribosome residence time, RRT (top right) and logarithmic mean normalization, LMN (right). Note that

due to intrinsic differences the scale of possible normalized densities (axis x) varies among the methods and that due to the selection criteria of each

approach the number of datapoints used (axis y) is also variable. (c) Performance of five normalization approaches (RUST, CN of transcripts with average

gene density 41/nucleotide (CN41) and CN of all expressed transcripts (CN40), LMN and RRT) at estimating codon dwell times The box plots show the

distribution of log values of the estimated/simulated dwell times for all 61 codons. The deviations of these values from 0 occur due to under or

overestimation of simulated dwell times. The better methods are those that have distributions with a smaller variance. Each subpanel represents a specific

scenario. The simulation scenarios differ by coverage that reduces from top to the bottom and the level of noise modelled as high peaks of density that

increases from left to right, except for the right-most column where noise is modelled as missing data at 20% of the coordinates. Asterisks used to indicate

insufficient data for CN41.
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peaks (3� the value of the highest footprint density for the
original simulated profile) or as a loss of density that could arise,
for example due to removal of ambiguous mappings. For these
simulations the relative time that ribosome dwell at each of
61 codons tc was pre-set (see Methods) and the normalization
approaches were compared in their ability to accurately detect
codon dwell times (tc) from the simulated data. The estimated-to-
simulated dwell time log ratios were obtained for 61 codons.
We assessed the performance of each method by showing the
distribution obtained using box plots. For accurate methods the
values for each codon should be zero, that is, the observed
and simulated values should be the same. We also provide the
coefficient of determination, R2, between the estimated and
simulated dwell times as a measure of the normalization
approaches accuracy, with values closer to one indicating better
accuracy. We find that all approaches estimate relative tc values
very accurately in the absence of noise provided that coverage is

high. However, in the presence of noise or under reduced
coverage the performance worsens. In this regard, RUST appears
to be the most resilient to the reduced coverage and both types of
noise. While its ability to accurately predict simulated relative
dwell times drops under high levels of noise, the combined
inferred values still correlate remarkably well with the simulated
values (Fig. 1c).

We conjectured that the accuracy of the normalization
approaches may depend on codon-specific properties, such as a
relationship between codon usage and dwell times. Therefore, we
simulated the data under three different sets of tc parameters.
In the first two simulations the range of tc values were set to rank-
correlate with the codon usage (see Methods and Supplementary
Fig. 2), that is, the lowest tc was set for the rarest codon and the
highest tc for the most abundant codon. In one set, the tc range
spans one order of magnitude and in the other, two orders of
magnitude. In the third set, the tc parameters were set to
negatively correlate with the codon usage. For the scenario where
the range of decoding rates is increased to span two orders of
magnitude (Supplementary Fig. 2, middle and bottom plots) the
effect of noise on the accuracy of tc inference is similar.

Interestingly, in all simulations (Fig. 1c and Supplementary
Fig. 2) the logarithm ratios between estimated and simulated
values are not uniform among 61 codons, that is, the estimations
are not equally accurate for each codon. The estimated relative
dwell times of quickly decoded codons were found to be
consistently overestimated by all methods tested, that is, inferred
as slower. This is more acute when the decoding rates span 2
orders of magnitude but is also observed even when the decoding
rates span 1 order of magnitude (Supplementary Fig. 2, top plots).
We also found that the R2 values were consistently lower when
the codon usage negatively correlated with the simulated dwell
time than when they were positively correlated (Supplementary
Fig. 2, middle and bottom plots). However, the difference is small
suggesting that relationship between the codon usage and
decoding rates appears to have a relatively minor influence on
the correct estimation of the relative dwell time.

Counterintuitively in most simulations CN40 performs
similar or even better than CN41 and the LMN was found to
be inferior to both CN normalizations. Under almost all scenarios
tested RUST was found to outperform other normalization
techniques in the presence of noise.

The impact of technical biases varies among data sets. The
velocity of a ribosome could be influenced by the sequence of
mRNA in several ways (outlined in the scheme in Fig. 2a).
Codons in the E-, P- and A-sites of the ribosome determine the
identity of corresponding tRNAs (and amino acids) inside the
ribosome. The mRNA sequence in the cavity between subunits
could affect ribosome movement by directly interacting with its
components. In addition, the sequence upstream of the A-site
codon (up to 90 nucleotides) could influence the progressive
movement of the ribosome through the interactions between
the peptide it encodes and ribosome peptide tunnel. Lastly, the
sequence downstream of the ribosome could alter its velocity
through the formation of stable RNA secondary structures46,47 or
the presence of RNA–protein complexes.

In addition to these intrinsic factors affecting ribosome
velocities, there are technical factors that influence the distribu-
tion of sequencing reads in ribo-seq data sets. First, the drugs
used to block-elongating ribosomes could act on ribosomes only
at a specific conformation8 or could also alter their distribution
along mRNAs23,24. Second, various enzymes used for cleaving
mRNA, for generating cDNA libraries and for their sequencing
exhibit sequence-specificity especially at the boundaries of
ribosome footprints1. Third, the accuracy of the alignment step
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Figure 2 | Evaluation of ribo-seq data sets with RUST. (a) Anatomy of the

ribosome footprint displaying position-specific mRNA sequence influence

on ribo-seq read density. (b) RUST codon metafootprint profiles of selected

ribo-seq and mRNA-seq data sets used in this study. The individual RUST

ratio values of 61 sense codons across the mRNA are displayed. The

resulting grey area is a superposition of each 61 curves. The corresponding

Kullback–Leibler divergence (K–L) is shown in blue. The protocol details for

each data set are summarized in Table 1. (c) Heatmap displaying the

pairwise similarity of codon RUST ratios at the A-site, as measured by the

Pearson’s correlation, for ribo-seq data sets of human (green), yeast (red)

and mouse (orange). Also included are human mRNA-seq data (violet). The

data sets are indexed by the name of the first author. The clustering was

done with Scipy using the ‘Euclidean’ distance metric with ‘single’ linkage.
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depends on the existence of paralogs and transcript sequence
complexity and the way how ambiguous alignments are treated.
Fourth, the occurrence of alternative splicing, ribosome drop-off,
ribosome stacking and alternative translation initiation may all
affect the distribution of reads across individual transcripts.

To analyse how sequence of mRNA effect density of footprints
in different locations relative to the A-site in experimental data
we used an approach similar to the one used by Artieri and
Fraser1. We calculated observed-to-expected RUST ratios for each
codon position within a window of 60 codons (see Methods and
Supplementary Fig. 3). This window encompasses the ribosome
protected fragment (codons -5 to þ 5), the region encoding the
nascent peptide (codons � 30 to 0) and the region downstream of
the ribosome (þ 5 to þ 20), where zero coordinate corresponds
to the A-site codon. To measure the contribution of local mRNA
positions to the density of footprints correspondingly derived
from a ribosome decoding a particular codon, we measured the
relative entropy at each position using the Kullback–Leibler (K–
L) divergence.

Figure 2b shows the relative entropy and normalized observed-
to-expected RUST ratios ro/re (see Methods) for each individual
codon for two of the ribosomal profiling data sets explored in this
work. By analogy with metagene profiles we refer to the plots of

ro/re RUST ratios as metafootprint profiles. The areas of reduced
entropy (increased K–L divergence) are mostly contained within
a window of 10 codons upstream and downstream of the A-site,
approximately matching to the position of the actual ribosome
footprint. In almost all cases three local K–L maxima are
observed, one corresponds to the decoding centre (Fig. 2b), the
other two maxima roughly correspond to the 5’ and 3’ ends of
ribosome footprints. The same procedure carried out on mRNA-
seq libraries reveals decreased entropy in the same area with two
maxima corresponding to the mRNA fragment ends (Fig. 2b).
This suggests that the main contributing factors to footprint
frequency at the corresponding location are the identity of the
codons in the A- and/or P-sites and the sequence-specificity of
the enzymes used during library construction. The metafootprint
analysis for all human studies explored in this study are available
in Fig. 3, see Supplementary Figure 4 for non-human studies and
mRNA-seq controls. The degree of variation in the relative
impact of these factors among different data sets is surprising. In
some of the ribo-seq data sets, the density of footprints depends
on the identity of the codon at the ends of footprint more than on
the identity of the codon in the A- or P-sites. This is suggestive of
a high level of sequencing biases introduced during the cDNA
library generation in some of the tested data sets.
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Figure 2c shows a heatmap produced as a result of pairwise
comparison of observed-to-expected RUST ratios for the 61
codons when they are located in the A-site. Most apparent is the
high reproducibility for most ribosomal profiling data sets
produced in yeast under cycloheximide pretreatment (Fig. 2c
and Supplementary Fig. 5). The comparison of the protocol
conditions (Table 1) points to the consistency in the protocols
used in these studies. The variance across the data sets obtained
from mammalian sources is more substantial as are the
differences in the protocols (Table 1). We found that variance
in RUST ratios of nonsynonymous codons is greater than that of
synonymous codons. In other words, the identity of decoded
amino acid has a greater influence on read density than the
identity of the specific codon. Analysis of variance revealed that
this was statistically significant in 28 of the 30 ribo-seq samples.
We carried out similar analysis for mRNA-seq controls for
codons located at the same distance from the 5’-end as the A-site
codons in ribosome footprints. As expected, the degree of
variation among all 61 codons was much smaller. However
synonymous codons also exhibited statistically significant higher
variation (Supplementary Fig. 6). This casts some doubts on
biological relevance of this observation.

Some of the studies produced the data with a change to a single
parameter: the samples were either pretreated or not with
cycloheximide before lysis7,8,14,38. We found that ‘Stadler’14 data
sets are similar for both types of treatments, while ‘Lareau’8,
‘Ingolia’7 and ‘Stern-Ginnoassar’38 are different (Fig. 2c).
Supplementary Fig. 7 provides the analysis of RUST ratios for
‘Lareau’ and ‘Ingolia’ data sets under both conditions, clearly
indicating that cycloheximide substantially alters the distribution
of footprints on mRNA. This is consistent with the observation
that cycloheximide blocks ribosomes in a specific conformation
and this ribosome arrest has certain codon preferences16. A more
focused and detailed analysis of this phenomenon23 was
published while this manuscript was in preparation.

Prior studies explored the effects of different antibiotic
treatments in mammalian cells7 and in yeast8,23,24. The effect of
buffer conditions on triplet periodicity was also explored to some
extent38,43 as well as conditions of nuclease treatments48. We
agree with a plea for standardization of ribosome protocols25,
however, as recently argued21 it is clear that a more systematic
study of protocol dependency of ribosome profiling data is
needed for this.

Influence of RNA secondary structure and nascent peptide.
To illustrate RUST capacity at analysing mRNA features that may
affect ribosome velocities, we chose three studies, ‘Andreev’27,
‘Rubio’36, ‘Pop’12. These data sets exhibit a low level of K–L
divergence at the ends of the footprints and a high K–L
divergence at the decoding centre, suggesting low-sequencing
bias at the end of footprints. However, while these data sets are
relatively free of sequencing artefacts, the distribution of
footprints could still be skewed for other reasons discussed in
the previous section and caution needs to be applied in the
interpretation of the results described below.

To estimate the effect of RNA secondary structure we
calculated the RUST ratios for RNA sequences that can form
secondary structures at a particular free energy threshold as
calculated with RNAfold49, see Methods. Supplementary
Figure 8a shows the distribution of RUST ratios for RNA
secondary structures predicted within 80 nucleotides window
with different free energies. It can be seen that sequences
predicted to contain stable structures are underrepresented (low
RUST ratios) in windows that overlap with sequencing reads.
This is observed for both ribo-seq and mRNA-seq reads and
therefore is likely to be an artefact related to cDNA library

generation and sequencing. This is not explained by a putative
nucleotide bias. The distribution of individual nucleotides
at the footprint location does not deviate significantly with the
exception for the location of the decoding centre (Supplementary
Fig. 8b).

The RUST ratios for individual amino acids and dipeptides
(Supplementary Fig. 9) do not reveal evidence of universal
nascent peptide effect on ribosome velocity from the positions
distant from the peptidyl transferase centre. Although, such
effects can be seen in individual data sets, for example, strong
influence of two Prolines in close proximity to the peptidyl
transferase centre in ‘Andreev’ data set (Supplementary Fig. 9).
Such nascent peptide interactions may also be facilitated by
specific physicochemical properties of the peptide, as suggested
earlier2. In this case the RUST ratio of individual amino acids
may not provide an accurate representation of the nascent
peptide effect on ribosome movement. Therefore, we measured
RUST ratios for peptide fragments (10 residues) with particular
physicochemical properties (number of positive charges, net charge
and number of hydrophobic amino acids) (Supplementary Fig. 10).
Under high positive charge we observed deviations for the
distributions of these physicochemical properties in the data sets.
However, it is not clear whether they are caused by their direct
effects on decoding rates.

We also examined whether tripeptides could affect ribosome
velocity differently than may be expected from their individual
components. We detect such synergetic effects by comparing the
RUST values for tripeptides to what would be expected from
independent RUST values of corresponding residues using the
standard score (Z-score). We carried out this analysis for adjacent
amino acids only and thus explored synergetic effects for 464,000
tripeptides (20� 20� 20 residues � 58 positions). Approxi-
mately 0.2% (B1,000) of the tripeptides were found to have a
standard score 44 (Sijk44 or Sijko -4) in any individual data set.
These synergistic interactions were found to occur mostly near
the decoding centre or at the reads termini (Supplementary
Fig. 11b). They also had a relatively small influence with the
majority of interactions having less than a twofold change
between observed and expected values (Supplementary Fig. 11c).
In the ‘Andreev’ data set the motifs that displayed positive
synergetic effects (slower than expected) were overrepresented
with Proline. This is a poor substrate for peptide bond formation
(see Supplementary Fig. 11a, for examples) and therefore a good a
priori candidate for such synergistic effects. However, there was
poor convergence between the results obtained from the 30 data
sets, overall 7,854 examples of synergistic interaction were found
with the majority (5,850) of candidates found only in a single data
set (Supplementary Fig. 11d).

Accurate prediction of experimental footprint densities. We
proceeded to test whether we can reconstruct ribosome densities
using RUST ratios obtained for codon positions relative to the
decoding centre. Figure 4 shows the comparison of experimental
densities to predicted densities based on RUST ratios for the
A-site codon or 12 codons comprising the ribosome footprint
and the codons immediately adjacent to them. Predictions
made based only on the A-site RUST values correlate with the
real profiles (Pearson’s r¼ 0.451, Spearman’s r¼ 0.503 for
Andreev et al. data set27). The incorporation of RUST ratios for
all codon sites in the footprint improves the predictive power
even further, with an average Pearson’s r¼ 0.62. These values
may improve further with increased sequencing depth. Note that
this is not an example of overfitting of a model, as the RUST
metafootprint profile is relatively unaffected if it is obtained from
a subset of genes (Supplementary Fig. 12) different from those
used to evaluate the profiles. We also compared the profiles to
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those obtained from another ribo-seq sample of the same study.
This had an average Pearson’s r of 0.78, the difference between
the samples probably reflects the stochastic nature of RNA-seq.
The ability to predict ribosome profiles was replicated for other
data sets, with an average Pearson’s correlation coefficient 40.5
in 16 out of 30 data sets. The accuracy of these predictions
support our earlier findings of a limited influence of the nascent
peptide, mRNA structure or synergistic effects on read density.
Figure 4 shows comparison of predicted ribosome profiles with
experimental profiles for five mRNAs with different degrees of

correlation. It is clear from the example shown that the poor
correlation is a result of technical artefacts in the data, rather than
poor prediction.

Comparison of the data sets. We designed a website http://lapti.
ucc.ie/rust, that provides detailed characteristics (metafootprint
analysis, RUST ratios, triplet periodicity and so on) of each data
set explored in this study, an example for an individual data set is
shown in Fig. 5. It also hosts executable scripts to implement the
RUST analysis.

Table 1 | Ribosome profiling protocol conditions for the studies described in this work.

Description PMID
(reference)

SRA
accession

Biological
source

Lysis buffer Lysis
method

RNase Separation RNase
digestion

stage
CHX pre-

treatment,
mins

Mg2þ

mM
Mþ

mM
Drugs

Human
Andreev 2562176427 SRR1173909

SRR1173910
HEK293T No 1.5 250 NaCl CHX Detergent I GR Lysate

Cenik 2629748628 SRR1803149 LCL No 5 150 NaCl CHX Freeze A,T1 CS Lysate
Gonzalez 2512289329 SRR1562539 Brain No 15 250 NaCl CHX Dounce

homogenizer,
freeze

I GR Lysate

Guo 2070330030 SRR057512 HeLa 8 5 100 KCl CHX Detergent I GR Lysate
Hsieh 2236754131 SRR403883 PC3 ? ? ? ? ? ? ? ?
Lee 2292742932 SRR618771 HEK293 30 5 100 KCl CHX Detergent I GR Polysome
Liu 2329091656 SRR619083 HEK293 3 5 100 KCl CHX Detergent I GR Polysome
Loayzo-Puch 2359452433 SRR627620 BJ fibroblast 8 10 100 KCl CHX Detergent I GR Lysate
Rooijiers 2430102035 SRR935448 BJ fibroblast 5 10 100 KCl CHX Detergent I GR Lysate
Rubio 2527384036 SRR1573934 MDA-MB-231 No 15 220 NaCl CHX Detergent I CS Lysate
Shalgi 2329091537 SRR648667 HEK293T 5 5 100 KCl No Freeze I CS Lysate
Stadler CHX. 2204522814 SRR407637 HeLa No 1.5 140 KCl CHX Freeze I GR Lysate
Stadleruntr. 2204522814 SRR407643 HeLa No 1.5 140 KCl No Freeze I GR Lysate
Stern-Ginossar,
CHX

2318085938 SRR609197 human
foreskin
fibroblasts

1 15 250 NaCl CHX Detergent I CS Lysate

Stern-Ginossar,
untr

2318085938 SRR592961 human
foreskin
fibroblasts

No 15 250 NaCl No Detergent I CS Lysate

Stumpf 2412066539 SRR970561 Hela 2 5 ? CHX Detergent I CS Lysate

Mouse
Howard 2369664140 SRR826795 Liver No 10 300 KCl CHX Homogenizer I CS Lysate
Ingolia, CHX 220560417 SRR315601 Embryonic

stem cell
1 15 250 NaCl CHX Detergent I CS Lysate

Ingolia, untr. 220560417 SRR315616 Embryonic
stem cell

No 15 250 NaCl No Detergent I CS Lysate

Reid 2521549241 SRR1066893 Embryonic
fibroblast

No 15 100 KoAc CHX Detergent
(digitonine)

MN CS Lysate

Shalgi 2329091537 SRR649752 3T3 5 5 100 KCl No Freeze I CS Lysate
Thoreen 2255209842 SRR449467 Embryonic

fibroblast
5 7.5 300 KCl CHX Detergent I GR Lysate

Yeast
Artieri 252942461 SRR1049093 2 1.5 140 KCl CHX Freeze I GR Lysate
Brar 2219441343 SRR387871 2 1.5 140 KCl CHX Freeze I GR Lysate
Gardin 253470646 SRR1506632 No ARTseq ARTseq CHX Freeze I SC Lysate
Ingolia 1921387744 SRR014374

SRR014375
SRR014376

2 1.5 140 KCl CHX Freeze I GR Lysate

Lareau, CHX 248429908 SRR1363415
SRR1363416

Yes 1.5 140 KCl CHX Freeze I GR Lysate

Lareau, untr. 248429908 SRR1363412
SRR1363413
SRR1363414

No 1.5 140 KCl No Freeze I GR Lysate

McManus 2431873045 SRR948555 5 1.5 140 KCl CHX Freeze I CS Lysate
Pop 2553813912 SRR1688547 2 1.5 140 KCl CHX Freeze I CS Lysate

CHX, cycloheximide; CS, sucrose cushion; GR, sucrose gradient; MN, micrococcal nuclease; SC, spin-column chromotography. Additional information is provided in Supplementary Table 1. ?—not known.
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Discussion
Here, we described a simple computational technique RUST for
the characterization of ribosome profiling data based on a simple
smoothing transformation of ribosome density profiles into a
binary function. Using simulated data we show that this
technique is robust in the presence of sporadic heterogeneous
noise (modelled as extra high density and missing data) and
outperforms previous methods. Using experimental data, we
show that the characteristics of ribosome profiling data extracted
with RUST can explain much of the variation observed in
experimental ribosome footprint densities.

We applied this technique to 30 publicly available ribo-seq data
sets (obtained from yeast, mammalian cultured cells and tissues)
and uncovered substantial variability among them in sequence
features that determine footprint frequencies at individual
locations. The most similar data sets are those obtained with
cycloheximide pre-treatments of yeast cells and no or minimal
variations in protocols used. For the data sets obtained in
mammalian systems we found substantial variation that is likely
to be related to the timing of cycloheximide treatments as well as
conditions of buffers used for lysis and nuclease digestion.
The position specificity of sequencing biases (they affect the
boundaries of ribosome footprints) enabled us to determine
their relative impact on composition of footprints in individual
data sets.

Our simulations suggest that potential uncharacterized
artefacts of the computational analysis of ribo-seq data are
unlikely to be a major cause in the current difficulties for the
determination of the true ribosome decoding rates. However,

it appears that all current approaches including RUST
overestimate the dwell time of quickly decoding determinants
of elongation (codons in the case of simulations). A number of
attempts were made to supersede CN approach. Surprisingly, in
this study we find that for many applications, such as the analysis
of the enrichment rate of individual codons, the simplest variant
CN40 provides surprisingly accurate results. In our simulation
we found that it was only marginally worse than RUST
irrespective of the relationship between codon usage and dwell
times. For real data CN40 provided results broadly similar to
that obtained with RUST, except that the noise reductions
achieved with RUST is counterbalanced with a lower signal,
(Supplementary Fig. 13). It is likely that the superiority of CN40
normalization over CN41 is due to larger volume of data used.
While it seems reasonable to filter out lowly expressed genes
before the analysis because their individual ribosome profiles
are unrealistic representations of the real ribosome density,
collectively these profiles produce a statistically reliable signal and
their analysis is highly informative.

The RUST approach maximizes the chances that detected
signal is real in two ways. On one hand it is based on gathering
information from all transcriptome coordinates increasing the
chance that the signal is not arising due to stochastic reasons. The
benefit of this becomes greatest when examining the influence of
relatively infrequent determinants, such as certain dipeptides and
tripeptides. On the other hand, by reducing the impact of each
individual site, RUST ensures that a signal is not a product of a
rare outlier (whether due to technical or biological reasons).
The smoothing achieved by RUST could also be applied to other
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high-throughput methods that are characterized by the presence
of heterogeneous noise. In this work, for example, we were able to
detect that sequencing reads that form RNA secondary structures
are underrepresented not only in ribosome profiling data but also
in mRNA-seq data. Thus RUST could have a broader impact if
adopted.

The conversion of regular profile to a binary profile leads to
an unavoidable loss of information. The approach is therefore
‘blind’ to individual special cases where infrequent motifs may
pause the ribosome for a long period. This, however, can be used
to identify such special cases by looking for large discrepancies
between the densities in the real data and in simulations based on
parameters extracted with RUST. This application, however, is
challenged by the presence of technical artefacts as illustrated
in Fig. 4.

We illustrated the applicability of RUST for measurement of
mRNA features that impact decoding rates using data sets with
lower sequencing bias. The results suggest that sites other than at
the decoding centre have a relatively minor influence on the
decoding rate globally. This observation does not contradict the
well characterized pauses modulated by nascent peptide signals
and RNA secondary structures at specific locations of individual
mRNAs. However, we also showed that in addition to identity of
codons in the decoding centre of the ribosome, sequences
surrounding the ends of footprints are major determinants of
footprint densities. The influence of these regions on read density

greatly vary among different data sets, in some exceeding that of
the sequences in the decoding centre. We suggest that this feature
could be used for quality assessment of ribosome profiling
data sets for the presence of cDNA library construction biases.
Cross-platform implementation of RUST is freely available at
RiboGalaxy (http://ribogalaxy.ucc.ie).

Methods
Ribo-seq data sets used in this study and their processing. The data sets (and
SRA repository accession numbers) are summarized in Supplementary Table 1. For
simplicity these data sets are indexed in the text using the first author name of the
original article. The processing of the reads consisted of clipping the adapter
sequence and removal of ribosomal RNA reads followed by the alignment of the
mammalian reads to the RefSeq transcriptome50 and the yeast reads to the
Saccharomyces cerevisiae genome (sacCer3 assembly). The weakly updated human
RefSeq catalogue was downloaded on the 13 August 2014 from the NCBI ftp
website ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/ and the mouse RefSeq
catalogue was downloaded on the 18th March 2014 from ftp://ftp.ncbi.nlm.nih.
gov/refseq/M_musculus/. The yeast genome (sacCer3 assembly) and annotation
data were downloaded on 13th Aug 2014 from the UCSC genome browser51

website, http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.2bit
(genome), http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/database/
sgdGene.txt.gz (annotations).

Bowtie version 1.0.0 (ref. 52) was used to carry out the alignments. The reads
were aligned using Bowtie to the entire human or mouse catalogue with the
following parameters (-a, -m 100 -norc). Except where otherwise indicated the
reads that mapped unambiguously to a gene (but not necessarily to a single
transcript) were brought forward for further analysis. For the yeast data sets
reads were aligned to the yeast genome allowing only unambiguous alignments
(-a, -m 1).
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Ribo-seq simulation. The simulated alignment data were modelled using real
human mRNA sequences obtained from the RefSeq database and with the average
transcript read density similar to that of real ribosome profiling data. We simulated
the data under the simplistic model where the local decoding rate depends
exclusively on the identity of a decoded codon (A-site codon). The number of
footprints at each codon position was determined by sampling from the following
Poisson probability mass function:

pm;c;d ¼

tc DmP
C¼ AAA ... TTTð Þ nc;mtc

 !d

e

� tc DmP
C¼ AAA ... TTTð Þ

nc;m tc

d !
ð1Þ

where pm,c,d is the probability of finding d number of footprints at a specific
location at mRNA m at a codon c from the set of 61 sense codons C. Dm is the total
number of footprints aligning to mRNA m; nc,m is the number of codons c in the
coding region of mRNA m; and tc is the relative dwell time for the codon c. The
dwell times tc for the 61 sense codons were set to span either a B10 or B100 fold
range with equal increments of 0.15 or 1.5, (the fastest codon was given a score of 1,
the slowest was 10.15 or 92.5). To model the noise arising from high-density peaks
the number of reads at a certain percentage of randomly selected coordinates
(irrespective of where it originally contained a mapped read) was substituted with a
3� the value of the highest footprint density for the original simulated profile. The
number of codons selected was calculated as a percentage (either 5 or 20%) of the
number of codons with a mapped read. To model the absence of mapped reads
because of discarding of ambiguous alignments reads were removed from 20% of
codons with mapped reads. The selection of codons was carried out using a
probability distribution, therefore for individual mRNA density profiles the
number of altered codons may differ from 5 to 20%.

The normalization approaches were used to estimate relative dwell times as
described below. The normalized estimated/simulated values obtained for all 61
sense codons were used to produce the box plots in Fig. 1 and Supplementary
Fig. 2. The normalization consisted of dividing each of 61 values by their mean to
enable comparison between values from data sets and normalization approaches.
The coefficient of determination between the estimated and simulated values was
also used as a measure of the accuracy of the approaches.

To explore how the data set specific factors (for example, coverage, sequencing
biases) affect performance of different normalization approaches we carried out
simulations using Hsieh et al.31 (4 million mapped reads of which 530,051 reads
passed selection criteria) and Rubio et al.36 (61 million mapped reads of which
6,470,387 reads passed selection criteria). The simulations on Fig. 1 are based on
Rubio et al. data, those in Supplementary Fig. 2 were based on the Hsieh
data set.

Determining offset to the A-site. An important factor for the analysis described
in this work is the application of the correct offset for inferring the position of the
A-site codon relative to the footprint 5’ end. This is typically estimated with a
metagene profile of either initiating or terminating ribosomes. This may not always
allow for a precise estimation of the offset and it is possible that initiating or
terminating ribosomes do not protect mRNAs in the same way as elongating ones
because of conformational differences, for example, when release factor eRF1 binds
to the ribosome53. With the premise that the combined A-site and P-sites should
have the greatest influence on decoding rates we set out to estimate the offset using
RUST codon metafootprint profiles with the largest K–L divergence at adjacent
offsets. We carried out three RUST metafootprint profiles (using the same
approach described below) at multiple offsets (usually 16, 17, 18 nucleotides). For
these profiles we determined the combined K–L divergence from two adjacent
codons. The codon pair in any of the profiles with the largest K–L (that was not at
the ends of the reads) was assumed to correspond to the P and A-sites. It was
necessary to take the combined K–L divergence from two adjacent sites as in some
data sets the divergence of the P-site was greater than that of the A-site. For one of
the data sets (with low-sequencing bias) we confirmed that the maximal K–L
divergence nucleotides corresponded to the A-site offset determined with initiating
ribosomes (Supplementary Fig. 14). The offsets used for each data set are listed in
the Supplementary Table 1.

Normalization approaches. For this analysis the alignment data to the longest
coding transcript of every expressed gene were used. Owing to possible atypical
translation at the beginning or the end of coding regions, the analysis was carried
out on coding regions with the A-site position within 120 nucleotides (40 codons)
downstream of the annotated start codon and 60 nucleotides upstream of the
annotated stop codon. With exception to one of the ‘Lareau’ data sets the analysis
was carried using reads of the predominant length. An offset to the A-site was
determined as described earlier. The exclusive selection of reads of one length was
necessary to minimize the effect of variation in a distance between footprint ends
and the A-site. In this analysis, reads were used irrespective of the subcodon
position to which they aligned. The exclusive selection of reads that align to a
particular subcodon position may further improve the signal. Because of these
criteria B15% of total (non-rRNA) mapped reads were used to produce
metafootprint profiles (Supplementary Table 1). To check whether exclusion of
unambiguously aligned reads had a large influence on the result we repeated the

analysis with the unambiguous reads, the obtained results are nearly the same
(Supplementary Fig. 15).

The RUST pipeline is described in Supplementary Fig. 1. The first step of ‘RUST
phase’ is the conversion of ribosome density profile to a binary profile based on
whether the number of alignments at each determinant (codon, nucleotide and
amino acid) exceeds the gene average. The RUST value at each location l is denoted
as (rocl), c stands one of 61 codons (when codons are examined as determinants).
For each sequence determinant the expected value recl is also obtained. recl is
obtained by averaging local RUST values across a single coding region. For lowly
expressed genes it is expected to be close to 0 and for highly expressed genes it is
substantially higher. Normalization over expected values is carried out to control
for the non-random distribution of codons (or other determinants) across the
genes with different expression levels. If all codons had the same dwell times, their
unnormalized RUST values would be higher for codons that are more frequent in
highly expressed genes. This analysis is carried out for all mRNA sequences in the
translatome. To check for an enrichment of reads at a particular determinant the
obtained RUST value is compared with the expected RUST value. To produce a
metafootprint profile we used a sliding window approach illustrated in
Supplementary Fig. 3. For the analysis of codons as a determinant of footprint
density the window of 61 codons is moved with a step size of one codon. The
centre of the window is considered to be the A-site codon. The RUST values are
calculated for each codon relative to the A-site and represented in the form of a
metafootprint profile. The procedure used for other determinants such as
nucleotides, amino acids, peptide properties and RNA secondary structures is
conceptually the same.

CN normalization consisted of an initial normalization of the individual read
density profiles by the average read density specific to individual coding regions.
This followed by determination of average normalized values for each of 61 codons
across the entire data set. For the generation of metafootprint profiles average
codon values were calculated for specific locations within the sliding window
similarly to how it is illustrated for RUST in Supplementary Fig. 3. For CN40 all
mRNA transcripts were used while for the CN41 only coding regions with an
average read density41 read/nucleotide were used.

We carried out ‘Ribosome residence time’ RRT similar to that described by
Gardin et al.15 The analyses was carried out independently on windows of 19
codons in length that satisfy the following requirements: (1) 419 aligned reads,
(2) o3 codons with no alignments and (3) if the codon at the position 10 occurred
only once in the window. For each window the decimal fraction of reads aligning to
each codon (relative to the total number of reads in the window) was determined.
The average obtained for each codon at all 19 codons was then used to produce the
metafootprint profile.

As the other normalization procedures do not use mRNA-seq data, we could
not carry out an equitable comparison with the ‘corrected ribo coverage’ analysis12.
Therefore, instead of using the footprint density normalized by RNA-seq density,
we used only footprint densities. We refer to this approach as LMN for logarithmic
mean normalization. Similar to the original approach only coordinates with
mapped reads are used and footprint densities are first normalized by the algebraic
average read density. The algebraic average of their log2 values are then calculated
across all coding regions (first term in equation (2) below). Further the average of
all 61 codons is calculated (second term in equation (2) below) and subtracted from
the codon-specific value. The procedure can be summarized in the following
equation:

LMNc ¼
P

L log2 dcl

Nc
�

X
C¼ AAA ... TTTð Þ

P
L log2 dcl

61Nc
ð2Þ

where LMNc is LMN value for the codon c (from a set of 61), Nc is the total
number of c codon occurrences with non 0 footprint densities and dcl is footprint
density for the codon c at the location l normalized by the average footprint density
for the corresponding mRNA. We carried out the analysis on coding regions with
an average read density41 read/nucleotide.

The ‘aov’ function in R was used to calculate the P values with analysis of
variance for assessing statistical significance of the difference between the variation
among synonymous codons and variation among all codons at the A-site.

Kullback–Leibler divergence. The Kullback–Leibler divergence was used to
calculate relative entropy in the RUST metafootprint profiles and was calculated
as the following:

Dl ¼
X

c

roclP
C¼ AAA ... TTTð Þ rocl

log2
rocl=

P
C¼ AAA ... TTTð Þ rocl

rec=
P

C¼ AAA ... TTTð Þ rec

 !
ð3Þ

where Dl is the K–L at location l, rocl is the observed RUST value for codon c at
location l and rec is the expected RUST value for codon c. The higher the K–L, the
less uniform the distribution of RUST values is in the corresponding position.
Thus, K–L indicates how much the corresponding position contributes to the
abundance of footprints.

RNA secondary structure analysis. The computational prediction of RNA
secondary structure free energy was performed using RNAfold in the ViennaRNA
package49. Using a sliding window of 80 nucleotides with a step size of 10
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nucleotides the minimal free energy for potential RNA secondary structures
was estimated across each transcript. For human data the threshold free energy
for the most stable RNA secondary structures was found to be � 40.1 kcal mol� 1

for the top 1st percentile, � 32.8 kcal mol� 1 for the 5th and � 29.0 kcal mol� 1 the
10th percentile.

Amino acid physicochemical properties. In this study histidine, lysine, arginine,
were considered to be positively charged. Aspartic acid, glutamic acid as negatively
charged. Alanine, valine, isoleucine, leucine, methionine, phenylalanine, tyrosine,
tryptophan were considered to be hydrophobic.

Standard score to identify synergistic interactions. To identify synergistic
interactions, we compared the difference in fold changes between observed and
expected metafootprint profiles. The fold change at each position was normalized
to the background fold change as follows:

Sijk ¼
roijk=reijk � roirojrok=reirejrek

std
ð4Þ

where Sijkare synergy indexes for tripeptide ijk and ro/re are corresponding RUST
ratios. std is the standard deviation of the differences observed at regions from
� 40 to þ 18 relative to the A-site.

The comparison of predicted and real footprint densities. When information
from all footprint codons, plus two surrounding ones (� 6 to þ 6 relative to the
P-site/A-site boundary) was used to model ribo-seq densities, the predicted profile
can be represented as a discrete probability density function

pk ¼
QN

i¼1
roik
reikPM

j¼1

QN
i¼1

roij

roij

� � ð5Þ

where pk is the probability of finding a footprint at the position k of the mRNA
coding region consisting of M codons. roik/roik is the RUST ratio for the codon at
the site i (relative to the codon k) from the total of N sites used. For instance,
if RUST ratios of AAA in the P-site and A-site are 0.339 and 1.646, respectively, the
expected RUST ratio for di-codon AAA-AAA is 0.557 (0.339� 1.646). Instead of
di-codons in our simulation the RUST ratio is obtained with 12 codons, this
corresponds to the numerator in equation (5). The denominator corresponds to the
sum of RUST ratios across the coding region and remains constant for all codons
of each transcript.

The comparison between the expected and experimental profiles was carried
out on transcripts with a density greater than 1 read/nucleotide. (Transcripts with a
lower density were not used as they have insufficient data to correlate with the
predicted profile).

The python package matplotlib54 was used to produce the figures.

Code availability. Supplementary Software is a compressed archive of user
friendly executable scripts to run RUST (version 1.2). Its source code is accessible
and it includes several implementations of RUST that search for enrichment of
codons, amino acids, dipeptides, tripeptides and nucleotides. ‘rust_synergy’
searches for synergistic effects between adjacent amino acids. ‘rust_predict_profiles’
returns a csv file that records the Pearson’s and Spearman’s correlation coefficient
between the observed and predicted footprint densities for individual transcripts.
‘rust_plot_transcript’ plots the observed and predicted footprint densities. This
(and updated versions in the future) are also available at http://lapti.ucc.ie/rust/.
In addition, Supplementary Software includes ‘RUST_script.py’ a 2nd shorter,
non-executable version of the RUST implementation on codon enrichment.
This script is a pseudocode intended as an explanatory aid for understanding
RUST algorithm. RUST is also available via the RUST package at RiboGalaxy55

(http://ribogalaxy.ucc.ie).

Data availability. The NCBI SRA accessions numbers for the data sets processed
in this study is listed in Table 1. All other data that support the findings of this
study are available from the corresponding author upon request.
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