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Introduction

Since around 1995, a large number of scientific studies have 
indicated a huge potential of airborne laser scanning (ALS) 
data to provide highly accurate estimates of important 
biophysical parameters of forests, like tree height, timber 
volume (e.g. Næsset, 1997; Magnussen and Boudewyn, 
1998; Means et al., 2000), and other parameters related 
to the structure and distribution of the tree layer (e.g.  
Zimble et al., 2003; Maltamo et al., 2005). The results 

have been most encouraging for coniferous forests. Over-
views are provided by Lim et al. (2003), Næsset et al. 
(2004) and Hyyppä et al. (2008). Currently, there are 
two main approaches for using ALS to characterize forest  
resources: (1) an area-based approach typically providing 
data at stand level and (2) a single-tree approach where  
individual trees are the basic unit of the assessment.

In the single-tree approach, an initial task is to detect 
the trees, for which purpose different methods have been 
developed by different research groups (e.g. Kaartinen and 
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Summary

Airborne laser scanning data and corresponding field data were acquired from boreal forests in Norway and Sweden, 
coniferous and broadleaved forests in Germany and tropical pulpwood plantations in Brazil. Treetop positions were 
extracted using six different algorithms developed in Finland, Germany, Norway and Sweden, and the accuracy of 
tree detection and height estimation was assessed. Furthermore, the weaknesses and strengths of the methods under 
different types of forest were analyzed. The results showed that forest structure strongly affected the performance of 
all algorithms. Particularly, the success of tree detection was found to be dependent on tree density and clustering. The 
differences in performance between methods were more pronounced for tree detection than for height estimation. The 
algorithms showed a slightly better performance in the conditions for which they were developed, while some could be 
adapted by different parameterization according to training with local data. The results of this study may help guiding 
the choice of method under different forest types and may be of great value for future refinement of the single-tree 
detection algorithms.
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Hyyppä, 2008). Typically, the ALS-based height values 
are analyzed for detecting local height maxima, which are 
assumed to represent the treetops. To restrict the compu-
tational burden in processing dense point data, the local 
maxima search is usually performed from a canopy height 
model (CHM), which is interpolated from the point data. 
The cell values in the CHM represent the height difference 
between the top of the vegetation and the ground level, 
i.e. the canopy height. The differences between the algo-
rithms are typically related to either (1) adjusting the CHM 
smoothing in order to obtain a desired number of local 
maxima in varying canopy conditions or (2) post-processing 
the result by further analysis of segment or point data 
properties (cf. Hyyppä et al., 2008). The developed meth-
ods provide direct measurements of the position, height, 
and canopy shape of the trees, with best results for trees 
dominating in the canopy layer.

The single-tree approach performs best with dense laser 
scanning (5–10 laser pulses m2); however, for older trees 
with large canopies even as few as 2 pulses m2 may be 
sufficient (Kaartinen and Hyyppä, 2008). Not all trees are 
usually detected, this being mainly dependent on scanning 
density and forest structure. In Scandinavia and Central 
Europe, rates of correctly detected trees higher than 70  
per cent have been reported (Hyyppä et al., 2001; Persson 
et al., 2002; Koch et al., 2006; Solberg et al., 2006). The 
success rate in deciduous forests has generally been lower 
due to more complex crown shape and structure in the de-
ciduous trees (Brandtberg et al., 2003; Koch et al., 2006). 
In Germany, success rates of ~50–60 per cent have been 
reported (Koch et al., 2006; Heinzel et al., 2011), which 
coincide well with similar studies in North America (e.g. 
Falkowski et al., 2008).

Most tree detection studies have so far been carried out 
at limited test sites and are restricted to few tree species. 
Kaartinen and Hyyppä (2008) compared 12 different al-
gorithms on two test sites located in southern Finland. 
According to them, the extraction method was the main 
factor influencing on the accuracy, the percentage of de-
tected trees varying from 25 to 90 per cent for the various 
methods. However, their conclusions were based on results 
from test sites with fairly simple forest conditions and thus 
overall suitable for single-tree detection. Forest type and 
thus varying canopy structure is an important factor affect-
ing the performance of the algorithms.

The purpose of this study was to test and compare the 
accuracy of single-tree detection algorithms under different  

types of forest. Compared with previous international 
comparisons (Kaartinen and Hyyppä, 2008), there are 
fewer algorithms involved, but the variation in forest types 
is much greater.

Materials and methods

An overview

The comparison performed in this study covered six tree 
detection algorithms. ALS data and a small sample of field 
data were delivered to the operators of these, requesting 
to extract treetop positions of each test site for validation. 
Each ALS dataset included at least XY coordinates and 
height above ground values, which were calculated in the 
pre-processing stage, i.e. all tested algorithms used stand-
ardized height values within each dataset, but the accuracy 
of the height values cannot be compared between the data-
sets. The extent of the associated field data varied, with a 
purpose to adapt the algorithms to the local conditions by 
training. The accuracy of tree detection and height estima-
tion was assessed for each algorithm and test site.

Test sites and data

The test sites considered in this study were located in Brazil 
(16˚ 05′ S, 39˚ 24′ W), Germany (49˚ 02′ N, 8˚ 25′ E), 
Norway (59˚ 50′ N, 11˚ 30′ E) and Sweden (58˚ 30′ N, 13˚ 
40′ E). The Brazilian test site was an even-aged pulpwood 
plantation growing Eucalyptus. The German data were 
pre-stratified to coniferous and deciduous plots. The dom-
inant conifer species was Scots pine (Pinus sylvestris L.), 
while the deciduous plots were composed of oaks (Quercus 
rubra L., Quercus petraea (Mattuschka) Liebl.), European 
beech (Fagus sylvatica L.) and silver birch (Betula pendula 
Roth.). The species composition in the Scandinavian data 
consisted of the Scots pine and Norway spruce (Picea Abies 
(L.) H. Karst.) and to a lesser degree of deciduous trees, 
mainly birches (Betula pendula Roth., Betula pubescens 
Ehrh.). Of these two datasets, the Swedish data included 
notably larger trees than the Norwegian data. The main 
properties of the field data are given in Table 1.

The plots were positioned in the field using different 
methods between the datasets. In Germany, the plot centers  
were located in a traverse network and the tree stems were 
positioned relative to the plot center using a compass and a 

Table 1: The main attributes of the field data. Number of plots (N), plot area (A) and averages (standard deviations) of trees per hectare 
(TPH), basal area (BA) and basal area-weighted mean tree diameter (D)

Site N A (ha) TPH BA (m2 ha1) D (cm)

Brazil 19 0.05 807 (46) 22.6 (6.6) 18.5 (2.5)
Germany, deciduous 6 0.09 733 (331) 25.2 (4.9) 35.8 (16.5)
Germany, coniferous 5 0.09 664 (347) 28.8 (3.3) 30.6 (9.5)
Norway 40 0.1 (N = 36); 0.05 (N = 4) 1093 (485) 24.3 (8.4) 22.4 (4.8)
Sweden 17 0.64 (N = 10); 0.1 (N = 7) 610 (253) 34.6 (10.6) 32.9 (7.7)
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measuring tape. The plot center points and the stems were 
expected to have accuracies <5 and <15 cm, respectively. 
In the other areas, satellite positioning and a total station 
were used to determine the plot and tree positions, respect-
ively. In Brazil, the plot centers were determined using a 
real-time differential correction signal from the OmniSTAR 
satellite (http://www.omnistar.com). In Norway, differen-
tial post-processing by Pinnacle software package (version 
1.00) was applied. Based on the positional standard errors 
reported by the Pinnacle software, the estimated accuracy 
of the planimetric plot coordinates ranged from <0.1 to 
0.35 m, with an average of 0.12 m. In Sweden, in addition 
to the GPS measurements, the field data were matched with 
the ALS data using the spatial pattern of trees from both 
data sources (Olofsson et al., 2008). The matching algo-
rithm corrected the field plot and tree positions with an 
estimated translation and rotation for each plot. The trans-
lation in either x or y direction was at most 1.5 m and the 
rotation at most 2 degrees.

The extent of field measurements varied between datasets. 
Circular plots were used in the Brazilian and Norwegian  
site and rectangular plots in the German and Swedish sites, 
with plot sizes given in Table 1. The data consisted of full 
plots with all trees positioned in the field, except in Brazil, 
where plot positions were available. Tree heights were typ-
ically measured for a proportion of trees only, when the 
missing heights were modeled using local height curves. 
Specifically, these were constructed separately for each plot 
and species using the plot-specific measurements to derive 
the parameters for the model (Näslund, 1937).

The sample of field data that was given for training the 
algorithms also varied between datasets. To obtain a rea-
sonable number of observations for reliable validation, the 
training data were included in the validation dataset, but 
a comparative analysis was done using independent valid-
ation data. The Brazilian site had separate validation plots, 
but these were measured from the same stands as the train-
ing data. In the German site, the training data included 
three deciduous and two coniferous plots also used for val-
idation and nine plots from a separate area, where only a 
proportion of the trees had been measured. In Norway, 
the training data covered 10 plots, and in Sweden, the 
northern halves of the 80 × 80-m plots (N = 10; Table 1) 
were used for training. The data were chosen to represent 
as much variation in the study areas as possible.

The ALS data used in this study were acquired with dif-
ferent instruments and flying heights varying between the 

datasets, as described in Table 2. The point densities were 
~1.5 (Brazil), 7 (Norway) and 30 pulses m2 (Sweden). In 
Germany, two instruments were used with a pulse density  
of 16 and 7 pulses m2, respectively (see Table 2). The 
results of the German data are presented with respect to 
the formerly mentioned dataset only, except where these 
two data sources are compared.

Tree detection methods

The applied methods are listed below, but for detailed  
description, the reader should consult the primary publica-
tions. In the following text, the algorithms will be referred 
to by the numbers of the subsections below.

#1: Cluster formation using modified k-means approach
The algorithm used local height maxima as seed points 
(Gupta et al., 2010). The unwanted local maxima were 
filtered using three-dimensional (3D) Euclidean distance 
criteria, which were set according to tests using training 
data. A k-means algorithm was applied to cluster the point 
data according to the seed points. An empirical height  
reduction factor was employed on the 3D ALS data and the 
respective seed points to minimize the bias and improve the 
grouping of similar objects.

#2: A voxel layer single tree modelling algorithm
The point data were projected into a voxel space, i.e. a 
regular grid in 3D space, where density images were cal-
culated from sequential height layers (Wang et al., 2008). 
The images were traced from top to bottom by a hierarch-
ical morphological algorithm, assuming the amount of 
points to be higher where a tree crown occurs. Compared 
with Wang et al. (2008), the method was extended with 
an algorithm for merging split tree crowns, based on the 
horizontal distance of the two tree tops in relation to the 
crown radii, the vertical height differences of the two tree 
tops in relation to the crown length of the higher tree, and 
the difference of the two crown base heights.

#3: Adaptive segmentation based on Poisson forest stand 
model
The method employed a twofold strategy: (1) controlling 
the amount of CHM smoothing and (2) obtaining a CHM 
resolution suitable for representing the smallest tree crowns 
(Ene et al., 2011). It was assumed that raw estimates of the 

Table 2: Main properties of the ALS datasets

Brazil Germany (a) Germany (b) Norway Sweden

Acquisition date 16 August 2008 30 August 2007 28 August 2008 6 June 2006 24 April 2007
Instrument Optech ALTM 3100 TopoSys Harrier 56 Toposys Falcon II Optech ALTM 3100 TopEye MKII
Density (nominal) (m2) 1.5 16 7 7.4 30
Footprint (m) 0.36 0.23 0.35 0.2 0.13
Mean altitude (m) 1200 450 700 800 130
Field of view (°) 30 22.5 21.6 10 20/14*

 *  Elliptic scan pattern: cross flight direction/forward–backward.
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stem density or tree spacing can be obtained and that the 
trees are randomly located within plots. The CHMs were 
first interpolated to various resolutions accommodated to 
each training dataset. Two runs of the pit-filling algorithm 
(Ben-Arie et al., 2009) were applied to each CHM, fol-
lowed by low-pass filtering using a binomial kernel with 
size proportional to the expected nearest neighbor distance 
between trees.

#4: Local maxima detection with residual height  
adjustment
The first echoes were interpolated into a digital surface 
model (DSM) with a 25-cm spatial resolution using a 
minimum curvature algorithm (Solberg et al., 2006). The 
DSM was smoothed by running a Gaussian 3 × 3 filter a 
given number of times. Tree candidates were taken as local 
maxima in a 3 × 3 neighborhood. The height deviation of 
the first echoes from the DSM was calculated providing 
a residual height distribution, and the DSM and local 
maxima were adjusted by adding a given residual height 
percentile typically being the 70 percentile. The window 
size, the number of Gaussian runs and the residual height 
percentile adjustment were set specifically for each test site, 
by running tests with the field-measured trees, i.e. their 
position and height.

#5: Segmentation based on geometric tree crown models
An image was created by calculating the correlation be-
tween the laser-based height values and a geometric tree 
crown model (Pollock, 1996) placed at the centre of a 
raster cell (Holmgren and Wallerman, 2006; Holmgren 
et al., 2010). The smoothed correlation image was used 
in the tree detection by first marking each raster cell 
with a non-zero CHM value and a positive correlation 
value as seed points. The location of each seed was up-
dated to the neighbour cell with the highest correlation, 
this being repeated until a local maximum of the cor-
relation surface had been reached. The seeds with the 
final location at the same local maximum defined a tree 
crown segment. For each segment, the geometric tree 
crown model was used to decide if the segment should 
be merged to a neighbour segment. In the training 
phase, the merging criteria were defined according to 
the known tree positions.

#6: Adaptive filtering based on CHM height values
In this method, the CHMs were low-pass filtered using 
Gaussian kernels, increasing the size of the smoothing 
window as a stepwise function of the heights of the CHM 
(Pitkänen et al., 2004). The CHMs used with this method 
were interpolated to a grid of 0.5 m by taking the max-
imum first return height value within a radius of 0.5 m. 
The empty cells were filled by taking the average from a 
3 × 3 window, and the interpolation was repeated succes-
sively until every cell had a height value. The algorithm 
required the determination of the kernel widths (sigma) 
and the height classes for which the sigma are applied. 
These were selected separately for each dataset based on 
training data.

Evaluation criteria and performance measures

The performance of the tree detection was evaluated by 
comparing
 

 1  Detection rate, i.e. estimated number of trees in pro-
portion to the number of trees measured in the field  
(denoted DET%)

 2  Root mean squared error (RMSE) and bias of stem num-
ber (RMSEN, BIASN) and the difference of estimated and 
observed plot-level mean height, in meters (DIFFH)

 3  The number of trees not detected, i.e. trees that could 
not be linked to any of the treetop candidates located 
by the algorithms (omission errors, OM%) and vice 
versa, false trees, i.e. the number of treetop candidates 
that could not be linked to any tree (commission errors, 
COM%)

 4  RMSE and bias of tree height, in meters (RMSEH, BIASH)
 

The RMSE and bias were calculated as follows:
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where n is the number of observations, and 
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the reference (field inventory) and estimated attributes,  
respectively, for the tree or plot i. In the case of individual 
tree height, only measured observations were used in the 
calculation of RMSE and bias.

The tree positions were not recorded in the field in the 
Brazilian dataset, so that the evaluation was carried out at  
the plot-level only. In order to evaluate omission, commission,  

Table 3: Stand density, spatial pattern and tree competition 
indices used in this study

Abbreviation Description Equation

TPH Trees per hectare
/10000

k
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BA Basal area 2π

4
∑ iki
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SDI Stand density index
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CEI Clark–Evans index /N2
k k k
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OI Crown overlap  
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≠∑
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ik jk
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A
i j
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EI Elevation angle  
 index

 − ×
  
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∑ ,

,

0.8
arctan

jk ik

i j
ik jk

h h

d

N = number of trees; A = plot area; D = diameter at breast height; 
R = crown radius; d = tree-to-tree distance; i, j and k = indices for 
tree i, neighbor tree j and plot k.
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Results

On average, the number of trees found by the algorithms 
corresponded to 65 per cent of the number of trees meas-
ured in the field. The average tree detection rate varied  
between the test sites, being 86 per cent for Brazilian, 75 per 
cent for German, 54 per cent for Norwegian, and 73 per 
cent for Swedish plots. The average percentages of treetop 
candidates linked to field trees were 48 per cent (Germany), 
42 per cent (Norway) and 60 per cent (Sweden). Thus, the 

and errors on tree height, the treetop candidates detected 
from ALS data were linked to the field-observed trees  
according to the following procedure:
 

1  Maximum crown width (CW) was estimated from 
diameter at breast height and tree height (H) using  
species-specific models by Pretzsch et al. (2002) and 
Nagel et al. (2002).

2  Those treetop candidates that were located within the 
CW were initially accepted. When more than one can-
didate fell within the CW, the candidate having the 
smallest Euclidean 3D distance with the top of the field-
observed tree was selected.

3  The height values of the linked pairs were compared 
to remove gross linking errors. A plotwise regression 
model Hcandidate ~ f(Hfield) was constructed, removing 
those tree-candidate links which had a height differ-
ence larger than 2× standard error of the model (cf. 
Breidenbach et al., 2010).

 

The effects of forest structure on algorithm performance 
were quantified focusing on well-known stand density and 
spatial pattern indices (e.g. Biging and Dobbertin, 1995). 
The measures of algorithm performance were evaluated 
against trees per hectare (TPH), basal area (BA), stand 
density index (SDI), crown competition factor (CCF) and 
Clark–Evans index (CEI) calculated at plot level (Table 3). 
Additionally, we used a crown overlap index (OI) calculated 
from modelled CW (Biging and Dobbertin, 1992) and an 
additive competition index based on elevation angle sums 
(elevation angle index, EI) (Miina and Pukkala, 2000) to 
quantify the effect of tree competition to the algorithm 
performance at the level of individual trees. All indices are 
summarized in Table 3.

Table 4: Quantitative success of the tree detection

Site Algorithm DET% RMSEN BIASN DIFFH RMSEH BIASH

Brazil 3 97.3 162 −22 −1.0 1.9 −0.5
4 63.9 302 −291 0.2 2.6 0.7
5 93.2 267 −55 −1.9 1.8 −0.6
6 90.0 230 −80 −1.5 2.0 −0.3

Germany 1 69.5 375 −214 3.1 2.5 2.1
2 83.9 302 −113 3.5 4.6 3.3
3 49.1 430 −358 3.5 4.9 3.6
4 100.7 247 5 1.9 2.1 1.2
5 80.1 276 −139 2 2.5 1.8
6 65.3 300 −262 2.5 4.1 2.2

Norway 1 49.4 628 −545 2.3 2.7 2.2
2 51.3 622 −488 2.5 2.8 2.1
3 52.8 576 −483 2.2 2.7 1.9
4 56.8 605 −475 1.6 2.8 1.5
5 68.1 460 −316 1.4 2.2 1.2
6 45.2 685 −568 2.4 3.2 2.4

Sweden 1 77.6 564 −275 2.5 3.7 1.8
2 65.1 674 −358 2.6 5.3 4.1
3 68.9 637 −383 3.5 4.8 3.5
4 71.6 614 −349 2.1 3.9 2
5 85.8 415 −175 2.5 3.8 2.5
6 68.5 668 −388 3.4 4.4 3.2

Table 5: Qualitative success of the tree detection

Site Algorithm OM% COM% RMSEH BIASH

Germany 1 53.4 32.9 2.0 −0.8
2 54.8 46.1 1.7 −1.1
3 60.6 19.6 1.7 −0.9
4 39.0 39.4 2.1 −1.3
5 42.4 28.2 1.7 −0.8
6 48.8 21.6 1.5 −0.8

Norway 1 61.9 23.0 1.9 −0.2
2 64.1 30.0 1.8 −0.4
3 55.9 16.6 1.7 −0.2
4 54.8 20.4 1.9 −0.4
5 49.2 25.4 1.9 −0.2
6 61.1 13.9 1.7 −0.2

Sweden 1 45.3 29.6 1.3 −0.1
2 49.7 22.8 1.2 −0.1
3 41.0 14.4 1.2 0.0
4 35.7 10.3 1.4 −0.8
5 30.6 19.1 1.3 0.0
6 36.2 6.9 1.3 0.0
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algorithms generally resulted in more commission errors in 
the German data.

The results in the independent validation data, i.e. not 
including the training plots were nearly similar or slightly 
better than those reported in the previous paragraph, except 
in the German data where more commission errors were 
produced. The average tree detection rates were 91 per cent 
(Germany), 55 per cent (Norway) and 77 per cent (Sweden) 

and the average percentages of treetop candidates linked to 
field trees 50 per cent (Germany), 44 per cent (Norway) and 
60 per cent (Sweden). In the German data, almost a half of 
the observations were removed, which decreased the reli-
ability of interpreting the results. Thus, a detailed perform-
ance evaluation is reported below for the combined dataset.

Algorithm #5 usually found a number of trees overall most  
close to field observations, especially in the Scandinavian 

Figure 1. Interpretation results using all tested algorithms illustrated on top of a map of trees, where circles represent the pre-
dicted crown diameter based on field data. The plot borders, if visible, are drawn with a dashed line. Example plots: A, Germany 
(coniferous); B, Germany (deciduous); C, Norway; D, Sweden.
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data, where the detection rate was 68 per cent for the  
Norwegian site and 86 per cent for the Swedish site (Table 4). 
Algorithms #3 and #2 were more accurate in Brazil and 
Germany, respectively, by ~4 percentage points compared 
with algorithm #5. In the German site, the result of algo-
rithm #4 matched the number of field-measured trees (de-
tection rate 100.7 per cent), but its performance varied 
most between the datasets. Algorithms #3 and #6 usually 
resulted in lowest number of trees. Algorithms #2 and #1 
performed well in the German and Swedish datasets, re-
spectively, but at an average level in others. These two 
algorithms were not applied to Brazilian data due to low 
pulse density of that dataset.

Algorithms #5 and #4 resulted in most treetop candi-
dates linked to field trees (Table 5). The omission errors 
produced by these algorithms were 39 and 42 (Germany), 
55 and 49 (Norway) and 36 and 31 per cent, respectively. 
Compared with these, algorithms #6 and #3 produced 
usually 6–12 percentage points more omission errors, but 
generally resulted in 4–23 percentage points lower com-
mission error rates. Considering a summation of these 
error components, the most accurate algorithms were #6 
and #5 in the German data; algorithm #3 followed by #4–6 
in the Norwegian data; and algorithms #6, #4 and #5, in 
this order, in the Swedish data. Algorithms #1 and #2 per-
formed poorer according to these metrics.

Treetop positions extracted by algorithms #1 and #2 
most often deviated from other the methods, while these 
were extracted mainly from the same locations (Figure 1). 
In the German data, the treetop positions generally had 
a lower match with the field-measured trees (Figure 1B) 
and there was a considerable difference in the performance 
of the algorithms between coniferous and deciduous plots 
(Table 6). The detection rates of algorithms #1, #3 and #4 
were 13–41 lower in the deciduous plots, thus producing 
a higher amount of omission errors. The detection rates of 
algorithms #5 and #6 had up to 3 percentage points differ-
ence between the coniferous and deciduous trees and algo-
rithm #2 resulted in a 9 percentage points higher detection 
rate in the deciduous plots. In turn, the commission error 

rates of algorithms #5, #6 and #2 were 9–13 percentage 
points higher in the deciduous plots, while the differ-
ence in the commission error rates was less than 5 per-
centage points for the other three algorithms. Algorithm 
#1 differed from its overall performance (Table 5) in that 
it found a considerably high number of trees from the con-
iferous plots and resulted in less commission errors in the 
deciduous plots.

The data density had no clear effects to the tree detec-
tion, as compared in the German site (Table 6). Less trees 
were usually detected from the lower density dataset (b), 
but the commission error rates were clearly higher in the 
denser dataset (a). Algorithm #1 clearly benefitted from 
the increase in the point density. The tree detection rate 
of algorithms #2 and #5 also improved but at the cost of 
increased commission errors. On the other hand, algorithm 
#3 showed a stable performance between different datasets 
and types of forest (Table 6).

None of the algorithms differed significantly from their 
respective overall performance (Table 5), when the detec-
tion of trees of different sizes was considered (Figures 2–4). 
Large dominant trees were most often linked to field trees 
(Figure 2). Additionally, the same dominant trees were 
found by all algorithms, while most of the suppressed trees 
could not be found at all (Figure 4). The differences be-
tween algorithms were minor according to tree-level in-
dices (Figure 4). Commission errors were more emphasized 
on low heights (Figure 3), but there were considerable vari-
ations between algorithms with respect to these (Table 5, 
Figure 3).

On average, the tree detection rate decreased and the 
omission error rate increased with increasing tree density 
and clustering in the spatial pattern (Table 7). Correla-
tions of −0.68 and −0.74 were observed between TPH 
and tree detection rate and CEI and omission error rate, 
respectively. The relationships were not linear and in fact 
stronger than according to the correlation (Figure 5A). 
The number of commission errors reduced with increasing 
tree density but increased when the trees were more 
grouped (higher CCF). The latter showed a correlation  

Table 6: Differences in algorithm performance between coniferous (C) and deciduous (D) plots in German ALS datasets (a) and (b)

DET% OM% COM%

Algorithm Data source C D C D C D

1 (a) 92.6 52.0 33.4 60.1 28.2 23.3
(b) 85.6 45.5 38.8 62.1 28.5 16.7

2 (a) 78.9 87.6 48.2 53.8 34.3 47.3
(b) 60.2 68.4 51.8 56.1 20.0 35.8

3 (a) 53.2 46.0 51.8 59.6 9.4 12.1
(b) 54.2 43.2 51.5 63.6 10.5 15.8

4 (a) 111.4 92.7 32.4 43.9 39.3 39.5
(b) 116.7 87.4 31.8 42.7 41.5 34.4

5 (a) 78.3 81.6 34.8 42.7 16.7 29.7
(b) 59.2 61.4 41.8 49.2 1.7 17.3

6 (a) 65.2 65.4 41.1 46.7 9.7 18.5

Algorithm #6 was evaluated only in dataset (a).
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of 0.36, but otherwise the commission error rate was 
less correlated with the stand attributes (Table 7). 
Most between-algorithm variations came from the com-
missions (Figure 5F), but all algorithms behaved in rela-
tively similar way with respect to transition in the stand 
attributes (Figure 5B,D,F).

There were less differences between the algorithms in 
tree height estimation. Except for the Brazilian dataset, the  
mean tree height was generally overestimated by 1.5–3.4 m 
(Table 4) and the difference in estimated and measured 
height had a correlation of 0.73 with the plot-level basal 
area (Table 7, Figure 6A). With BA < 20, the plot height 

was generally underestimated, while the increase in BA 
turned the values to overestimates.

In estimating height for the detected individual trees, 
the performance of all algorithms was almost equal, with 
RMSEs varying ≤ 0.2 m in the Norwegian and the Swedish 
data and ≤ 0.6 m in the German data (Table 5). Algo-
rithm 4 usually resulted in lowest accuracy especially in the 
German and the Swedish data (Table 5, Figure 6F), with 
underestimates of 1.3 and 0.8 m, respectively, while the 
underestimation with the other algorithms was on average 
0.9 m in the German data and ≤0.2 m in the Scandinavian 
data. Stand density had an effect on the bias (correlation 

Figure 2. Proportion of treetop candidates linked to field trees as a function of tree height relative to plot-level dominant height 
(Hdom). Example plots: A, Germany (coniferous plots); B, Germany (deciduous plots); C, Norway; D, Sweden.
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−0.42 with SDI) but generally the forest structure affected 
less to these figures (Table 7, Figure 6C,E). Figure 6(C,E) 
shows a different correlation structure between the  
Norwegian and the Swedish data, such that error levels in 
the Swedish data seem more independent from the stand 
indices.

Discussion

The results of this study showed in general less differences 
between the tested algorithms than the earlier comparison 

performed by Kaartinen and Hyyppä (2008). The prin-
ciples of the algorithms tested here are obviously more 
similar than in the study of Kaartinen and Hyyppä (2008), 
which included a wider range of different algorithms. The 
results of the present comparison showed more remarkable 
differences between the methods in tree detection rates ra-
ther than in height estimation accuracies.

There were two basic differences between the algorithms 
tested in this study. First, algorithms #1 and #2 use point 
data, whereas the others require a CHM interpolation step. 
Second, algorithms differ in the ability to employ training 
data in setting proper parameters for the interpretation. 

Figure 3. Proportion of commission errors as a function of tree height relative to plot-level dominant height (Hdom). Example plots: 
A, Germany (coniferous plots); B, Germany (deciduous plots); C, Norway; D, Sweden.
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Here local training data were available, and due to the 
training ability, the performance of some algorithms could 
be clearly improved. Algorithms #1 and #2 were developed 
in Central Europe, and they resulted in a better perform-
ance in those conditions compared with Scandinavia. On 
the other hand, Scandinavian algorithms #3–6 performed 
fairly well even in the non-Scandinavian test sites.

The data used here varied in extent, and the detailed 
analysis of the algorithm performance was performed in 
the dataset, in which the algorithm training data and in-
dependent validation data were combined. A comparative 
analysis using the plots which were not included for algo-
rithm training showed, however, only a minor difference in 
the results, except for the German data. In that dataset, the 
number of independent validation observations consider-
ably reduced, which may have affected the results. Further-
more, since the training data were selected to describe the 
overall variation in the area and thus include the extremes 
in the area, the differences likely reflect the change in the 
forest conditions between the datasets rather than differ-
ence in the algorithm performance.

The datasets of this study differed by their properties 
such as the point density. A comparison using the German 
data showed that an increase in the density benefitted  

especially the point-based algorithms of this study. 
A similar conclusion was reported by Reitberger et al. 
(2009), who highlighted the benefit of full waveform 
data especially in segmentation task. The Brazilian da-
taset, on the other hand, produced a special situation 
for single-tree detection since the data were sparse com-
pared with other datasets, but the trees appeared in rows 
with known spacing. Algorithm #3 used initial estimates 
of stem density in the tree detection and clearly outper-
formed other algorithms in the Brazilian test site. How-
ever, these results were not verified by qualitative criteria 
as applied to other datasets. As examined visually, a por-
tion of treetop candidates generally originated from large 
branches rather than actual tree tops.

In some cases, the quantitative and qualitative success 
criteria were found contradictory. Consider, for example, 
the plot-level mean tree height: the fewer trees an algo-
rithm detected, the more inaccurate the height estimate 
since the detection result is focused on the largest trees on 
the plot. This is still logical, however, as increasing com-
mission often improves the accuracy of plot-level mean 
height since commission trees are normally not as large 
as properly detected trees. On the other hand, algorithms 
#3 and #6, which found the lowest number of trees, were 
benefitting from the qualitative criteria. These algorithms 
also behaved most stable when the properties of the data-
sets changed.

Linking treetops to field trees was clearly more success-
ful in Scandinavian datasets, while it was known that the 
lateral difference between tree tops and stem foot positions 
could be up to 7 m in the German data. Thus, the commis-
sion error rates between different datasets cannot directly be  
compared. Furthermore, strict linking criteria were applied,  
which may partly explain the number of commission errors,  
but not the high variation between the algorithms. Fur-
ther work in developing these algorithms should clearly 
focus on reducing the false height maxima caused by 
varying canopy structure. One obvious way according to 
these results would be to remove unacceptably low height 
maxima in relation to the obtained dominant height.

As opposed to earlier studies, here the algorithm per-
formance was analyzed with respect to forest structure 
parameters. None of the algorithms showed special sen-
sitivity to these parameters, but the general success of tree 
detection was found to be strongly related to stand density 
and spatial pattern of trees. The effect of these parameters 
to the algorithm performance was in fact surprisingly con-
sistent, considering the differences in the canopy structure 
of the test sites. Based on our findings, there are clear limits 
in terms of forest density and clustering where single-tree 
detection can be successfully applied. Future studies should 
examine whether corresponding forest structure parame-
ters could be extracted from ALS data (cf. Falkowski et al., 
2008), which would help adjusting the algorithm param-
eterization to correspond the canopy structure conditions 
or estimating the success of tree detection prior to perform-
ing the actual analysis.

Further tests should be carried out to compare algo-
rithms with respect to using the delineated point clouds 

Figure 4. Detected trees according to tree-level indices. Trees 
detected by all and none algorithms are indicated by green and 
red, respectively. The lines are drawn perpendicular to a vector 
of means of the detected and undetected trees of each algorithm. 
The colour version of this figure is available at Forestry online.

Table 7: Pearson’s correlation coefficients between the average 
algorithm performance and stand density and spatial pattern 
indices

Performance  
measure TPH BA SDI CCF CEI

DET% −0.68 0.07 −0.13 0.15 0.50
OM% 0.59 −0.14 −0.05 0.17 −0.74
COM% −0.22 −0.08 −0.27 0.36 −0.34
DIFFH −0.29 0.73 0.53 0.18 0.22
RMSEH 0.20 −0.02 0.04 0.28 −0.23
BIASH −0.17 −0.39 −0.42 −0.33 −0.03
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Figure 5. Success of tree detection as a function of stand density and spatial pattern indices. Average algorithm performance 
(scatter plots, left) and the performance of individual algorithms expressed as a moving average (line plots, right).
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Figure 6. Success of tree height estimation as a function of stand density and spatial pattern indices. Average algorithm perform-
ance (scatter plots, left) and the performance of individual algorithms expressed as a moving average (line plots, right).
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for predicting attributes such as tree species and stem 
volume since these are the actual end-products expected 
from ALS data interpretation rather than only detecting 
trees. Currently, little is known on tree crown segmen-
tation accuracy, yet further analyses are typically based 
on the properties of the point cloud (e.g. Holmgren and 
Persson, 2004; Vauhkonen et al., 2010), which calls for 
high segmentation accuracy in both horizontal and vertical 
directions. However, the estimation of species-specific at-
tributes would place challenges for an international com-
parison due to requirements for a local understanding of 
tree morphology to differentiate species (Korpela et al., 
2010) and a highly extensive field reference data to con-
struct allometric relationships (Kalliovirta and Tokola, 
2005), for example.

Conclusions

This study validated and compared single-tree detection 
algorithms under different types of forest. The differences 
in performance between methods were found to be more 
pronounced for tree detection than for height estimation. 
In general, the algorithms showed very similar perform-
ance, which was more influenced by forest structure than 
by algorithm. Specifically, the success of tree detection was 
found to be dependent on tree density and clustering.
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