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The lichen-forming fungus was isolated from the desert lichen Endocarpon pusillum that is extremely drought resistant. To 
understand the molecular mechanisms of drought resistance in the fungus, we employed RNA-seq and quantitative real-time 
PCR to compare and characterize the differentially expressed genes in pure culture at two different water levels and with that 
in desiccated lichen. The comparative transcriptome analysis indicated that a total of 1781 genes were differentially expressed 
between samples cultured under normal and PEG-induced drought stress conditions. Similar to those in drought resistance 
plants and non-lichenized fungi, the common drought-resistant mechanisms were differentially expressed in E. pusillum. 
However, the expression change of genes involved in osmotic regulation in E. pusillum is different, which might be the evi-
dence for the feature of drought adaptation. Interestingly, different from other organisms, some genes involved in drought 
adaption mechanisms showed significantly different expression patterns between the presence and absence of drought stress in 
E. pusillum. The expression of 23 candidate stress responsive genes was further confirmed by quantitative real-time PCR using 
dehydrated E. pusillum lichen thalli. This study provides a valuable resource for future research on lichen-forming fungi and 
shall facilitate future functional studies of the specific genes related to drought resistance. 
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Lichens are symbiotic products between fungi (the myco-
bionts) and photosynthetic partners (the photobionts). Each 
lichen species is made up of one mycobiont and at least one 
photobiont, and the photosynthetic partner can be either an 
alga or a cyanobacterium. Lichens are widely distributed 
across many types of ecological niches, ranging from cold 
to hot deserts and other extreme habitats. Unlike vascular 
plants, lichens lack active mechanisms for controlling water 
content. As a result, their water content tends to fluctuate 

widely based on water availability in the environment [1]. 
Indeed, lichens can lose water rapidly when the environ-
ment is dry and they can also rapidly recover to normal wa-
ter content when water becomes available [2]. Specifically, 
different from most plants, a low water content is typically 
nonlethal to lichens and most lichens can withstand drying 
to water contents of 5% or less for a long period of time 
[3,4]. Furthermore, in the presence of water, not only does 
the water content recover, lichens can rapidly return to 
normal physiological state to carry out photosynthesis and 
respiration during rehydration [5,6]. As a previous study  
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indicated, even in a low water content state, some lichens 
could maintain active metabolism [7]. 

A number of studies have examined the effects of water 
availability on the morphology, physiology, and survival of 
lichens [1,6,813]. However, little is known about the mo-
lecular mechanisms of drought resistance in lichen. Many 
recent studies have examined the molecular mechanisms of 
drought resistance in plants and non-lichenized fungi. 
Whether similar mechanisms are involved in lichens re-
mains unknown. In plants and non-lichenized fungi, desic-
cation can induce several cellular stresses, such as hyper-
osmolarity, hyperoxidation, hyper-ionicity and protein mis-
folding and aggregation [14]. To survive the desiccation, the 
organisms need to deal with these cellular damages. Three 
major stress-response pathways are known to be involved in 
protection from these stresses, including osmoregulation (to 
modulate intracellular ion concentration); DNA and protein 
damage repair (to prevent DNA damage and protein mis-
folding and degradation); and antioxidation (to scavenge 
reactive oxygen species (ROS)) [15,16]. Our limited under-
standing of the molecular mechanisms of drought resistance 
in lichens has been mainly due to the lack of genetic tools 
for analyzing lichens. However, recent advances in ge-
nomics technologies and the information of whole-genomes 
and transcriptomes from lichen-forming fungi and their 
photosynthetic partners are making the studies of drought 
resistance in lichens feasible [17,18]. 

Since lichen is the symbiotic product of two interacting 
partners, most of its biological characteristics are the result 
of interaction between the symbiotic partners. However, in 
drought resistance, the mycobiont partner seems to be the 
main contributor in lichens [1921], probably due to the fact 
that within lichens, the photobionts are housed by the fungal 
tissues, which effectively protect their photosynthetic part-
ners from desert climate. For example, a previous study 
indicated that, separately, the lichen-forming fungus Endo-

carpon pusillum has a much stronger drought resistant abil-
ity than its algal partner Diplosphaera chodatii [22]. There-
fore, to understand the mechanisms of drought resistance in 
lichens, it is reasonable to focus on the fungal partner.  

In the present study, the transcriptomes of the lichen- 
forming fungus E. pusillum, whose genome has been se-
quenced [18], are analyzed in order to investigate the genet-
ic mechanisms underlying drought resistance. In addition, 
representative genes that showed differential expressions in 
response to desiccation were further investigated in fresh 
lichen thallus E. pusillum during natural dehydration, to 
elucidate whether the pure-culture isolated mycobiont and 
the symbiotic mycobiont possess the same drought re-
sistance mechanisms. 

1  Materials and methods 

1.1  Materials and stress treatments 

The mycobiont of E. pusillum was isolated from the speci- 

men Z07020, originally collected from Shapotou Region of 
Ningxia, south-eastern edge of the Tengger desert, China 
(latitude 37.40°N, longitude 105.00°E). The fungal isolate 
was grown on 1.5% water agar for 12 weeks, and then 
transferred to Potato Dextrose Broth (PDB) medium cul-
tured at room temperature. The artificial desiccation treat-
ment was performed on the isolated lichen-forming fungus 
using polyethylene glycol (PEG), which is a non-permeable 
osmolyte and can create a severe water deficit [23]. The 
PEG-induced drought stress was used to investigate the 
drought-resistant of plants and fungi [24,25]. The mycobi-
ont was desiccated under the condition of cultured in the 
medium containing 20% PEG for 3 weeks. 

The natural dehydration treatment was performed on the 
lichen thalli E. pusillum collected from Shapotou Desert in 
the same location as specimen Z07020. Under laboratory 
conditions, the fresh samples were completely rehydrated in 
deionized water for 5 min and excess water on the surface 
of thallus was removed using filter paper. The samples were 
then incubated at room temperature to naturally dehydrate 
for 0, 40, 60, 150 and 240 min. At the end of each treatment, 
the samples were frozen immediately in liquid nitrogen and 
RNAs were extracted, then reverse-transcribed into cDNA 
as the template of quantitative real-time PCR (qRT-PCR). 

1.2  cDNA library construction and DNA sequencing 

Total RNA was extracted using the Trizol (Invitrogen, USA) 
extraction method according to the manufacturer’s protocol. 
Poly-A mRNA was isolated with oligo-dT-coupled beads 
from 40 µg total RNA of each sample and then sheared, and 
the isolated RNA samples were used for first strand cDNA 
synthesis which was random hexamers and Superscript II 
reverse transcriptase. After end repair and addition of a 3′- 
dA overhang, the cDNA was ligated to Illumina paired-end 
adapter oligo mix, and size selected to about 200 bp frag-
ments by gel purification. After 16 PCR cycles, the libraries 
were sequenced using Illumina GAIIx (Illumina, USA) and 
the paired-end sequencing module. 

1.3  Mapping assembly of the transcriptome and dif-

ferential expression analysis 

After removing the adapter sequences, the reads were 
mapped to the E. pusillum genome using PASA [26] and 
ORFs were found from the PASA assembly. Augustus [27], 
GeneID [28], and GeneMark-ES [29] programs were used 
to predict the gene models for the genome, and then the 
gene models generated by EVM [30] were updated by 
PASA. All predicted gene models were subjected to Gene 
Ontology (GO) [31], EuKaryotic Orthologous Groups 
(KOG) [32], FunCat [33] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database analysis [34]. 

Raw array data were normalized using the 
ARRAYSTAR software (Dnastar, USA), and we used 
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NOISeq [35] statistical method to identify differentially 
expressed gene between normal and drought stress cultiva-
tions. As suggested by NOISeq authors, a gene is declared 
as differentially expressed one if the probability (P value) is 
higher than 0.8.  

1.4  Quantitative RT-PCR analysis 

Total RNA of the lichen-forming fungus E. pusillum was 
extracted from cultured fungal mycelium and lichen thalli 
respectively. cDNA syntheses were carried out according to 
the protocol described in the manual of Reverse Transcrip-
tome System (Promega, USA). Real-time PCR was carried 
out using ABI 7500 real time PCR system (Applied Biosys-
tems, USA). The data were analyzed using the 2Ct method 
[36]. 

2  Results 

2.1  Functional classification of the transcriptome of  

E. pusillum upon water stress 

In the present study, we found that 1781 genes (probabil-
ity>0.8) were differentially expressed in the desiccation 
condition (20% PEG) in E. pusillum when compared with 
no water stressed condition (0% PEG). The differentially 
expressed genes are 19.18% of 9285 genes annotated in the 
37.5 Mb genome of E. pusillum [18]. Among the 1781 genes, 
1004 were up-regulated and 777 were down-regulated. 
Among them, 620 genes (35%) were annotated as having 
unknown functions. 

Using the Blast2GO platform [37], we classified the dif-
ferentially expressed genes with GO terms according to 
their functions, and we found that most abundant GO terms 
were distributed in biological process, molecular functions 
and cellular components (Figure 1). Genes classified in the 
categories of “intracellular component”, “cellular metabolic 
process”, “transferase activity”, “primary metabolic pro-
cess” and “macromolecule metabolic process” were signifi-
cantly up-regulated. As expected, the GO term “membrane 
component” was significantly overrepresented among the 
down-regulated genes, consistent with the strong effect of 
desiccation stress on the integrity of membranes. Surpris-
ingly, very few genes belonging to the category of “stress 
response” were differentially expressed, with only three 
genes up-regulated and four down-regulated in the total of 
51 genes. This result suggests that genes involved in 
PEG-induced stress response in E. pusillum are different 
from other organisms; therefore, there are likely new 
mechanisms of drought resistance in lichens. 

When the differentially expressed genes were mapped to 
the KEGG using the Blast2GO platform (Figure 2), we 
found that genes whose expression level changed most 
markedly (P0.0001) were related to ribosome and oxida-
tive phosphorylation. Genes in several pathways were in-

duced, including vitamin B6 metabolism, synthesis and 
degradation of ketone bodies, terpenoid backbone biosyn-
thesis, oxidative phosphorylation, steroid biosynthesis, py-
rimidine metabolism, and purine metabolism. Among these 
pathways, over 30% of all genes in the first five pathways 
mentioned above were up-regulated. However, only a few 
genes were significantly repressed and no genes were sig-
nificantly up-regulated in nitrogen and galactose metabo-
lisms (P0.1). Most of these metabolism pathways exhibit-
ed active responses under the desiccation treatment, espe-
cially the pathways involved in essential function of the cell, 
such as ribosome, oxidative phosphorylation, pyrimidine 
metabolism, and purine metabolism. 

2.2  The expression changes of gene commonly involved 

in stress responses in E. pusillum 

Continuous exposure to drought leads to oxidative stress 
and induces defense mechanisms to scavenge the ROS that 
may result in significant damage to cell structure, it also 
induces osmotic pressure of cells and cells need to regulate 
this pressure by accumulating osmolytes [38]. Moreover, 
the osmolyte accumulation under drought can lead to mis-
folding and aggregation of proteins [39], and these changes 
can potentially limit cells’ responses to desiccation [40]. 
Therefore, to better understand the drought resistant mecha-
nism in E. pusillum, we investigated the expression changes 
of genes commonly involved in the response to stresses in 
other organisms, such as oxidative stress, osmotic regula-
tion and post-translational processing under our drought 
treatment. 

Previous research has revealed that oxidative defense 
mechanism in other organisms involved a number of spe-
cific enzymes, such as superoxide dismutase (SOD), cata-
lase, peroxidases and auxiliary enzymes; and low-     
molecular-weight antioxidants, such as tripeptide glutathi-
one (GSH) and ascorbate [16,41,42]. In this study, three 
genes encoding antioxidation enzymes were induced in the 
E. pusillum genome under PEG-induced drought stress, 
including one for SOD and two for peroxidase (Table S1 in 
Supporting Information). By comparison, more genes in-
volved in low-molecular-weight antioxidants were induced 
in E. pusillum, including those coding for thioredoxin, glu-
tathione, and vitamin B6 (Table S1 in Supporting Infor-
mation). We identified seven highly expressed thioredoxin- 
like genes, whose expressions were significantly up-    
regulated in E. pusillum under desiccation. In addition, five 
genes related to glutathione S-transferase (GST), which 
were involved in glutathione metabolism, were up-regulated 
under desiccation in E. pusillum. This result indicates that E. 

pusillum regulates the glutathione metabolism in response 
to drought-induced oxidative stress. To our surprise, among 
the three genes for trehalose-6-phosphate synthase in E. 

pusillum (Table S2 in Supporting Information), none of 
them is differentially expressed (probability<0.8). Similarly,  
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Figure 1  Gene Ontology classification of differentially expressed genes upon water stress in E. pusillum according to GO groups based on molecular func-
tion, biological process, and cellular component. The percentages of the total matched genes, up-and down-regulated genes contained in a particular GO 
group, which were labeled as black, dark grey, and light grey bars, respectively. 

 

Figure 2  Functional classification of differentially expressed genes upon water stress in E. pusillum according to KEGG analysis. The percentage of up- 
and down-regulated genes in a particular KEGG pathway was labeled as dark grey and light grey bars, respectively. Asterisks indicate the significance dif-
ferences of differentially expressed genes. *, P0.01; **, P0.001; ***, P0.0001; °, P0.1. 
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no other osmotic regulators were differentially expressed in 
E. pusillum under drought. However, we did identify 11 
chaperone genes (including the heat shock protein (HSP), 
GroEL, and chaperonins) and 10 genes in proteasomes in E. 

pusillum (Table S3 in Supporting Information) to be signif-
icantly induced under PEG treatment.  

Under stressed conditions, effective signal transduction is 
needed to communicate information from the external en-
vironment to the inside of a cell. Therefore, the expression 
of genes involved in signal transduction is expected to vary 
widely between normal and stress conditions. In this study, 
a total of 40 genes are annotated as related to signaling 
pathway in the transcriptome of E. pusillum, including cal-
cium-mediated signaling, MAPK signaling pathway, TOR 
signaling pathway, mTOR signaling pathway, and G protein 
coupled receptor protein signaling pathway. However, only 
four genes (one for calcium-mediated signaling and three 
for MAPK signaling pathway) were differentially expressed 
(Table S4 in Supporting Information), and all four were 
down-regulated in E. pusillum under PEG-induced stress 
condition.  

Transcription factors (TFs) function as key regulators of 
gene expression in response to environmental stresses. A 
total of 25 genes encoding putative TFs in E. pusillum ge-
nome were differentially expressed under PEG-induced 
stress. These 25 genes belonged to15 groups, i.e., zinc fin-
ger, TFIIA, heat shock, MADS, P53, NAC, DIP2, MYB, 
bZIP, Nus A, CBF, FOX, MEIS1, GATA, and Cmr1. Some 
of these TFs had been shown to function under abiotic 
stresses in plants and fungi [4347]. For E. pusillum cul-
tured under PEG-induced water limitations, seven of the 25 
were up-regulated and 18 were down-regulated (Table S5 in 
Supporting Information). This result might be useful for the 
study of gene transcription regulation in lichen-forming 
fungi. 

2.3  Other differentially expressed genes revealed 

drought-adaptive mechanism of E. pusillum 

Except for genes commonly involved in the response to 
stresses in other organisms mentioned above, we identified 
some other genes that were differentially expressed in 
PEG-stressed E. pusillum from the transcriptome analysis 
(Figure 2). These differentially expressed genes can be clas-
sified into several categories: (i) Genes encode ribosomal 
proteins. The most significantly up-regulated transcripts are 
ribosomal proteins, and over 70% of ribosomal proteins 
were induced under PEG-induced drought. (ii) Genes in-
volved in pyrimidine and purine metabolisms. The high 
transcriptional levels of these genes in stressed transcrip-
tome (Table S6 in Supporting Information) indicate higher 
synthetic rates of DNA and RNA in E. pusillum under des-
iccation. (iii) Genes involved in oxidative phosphorylation. 
Oxidative phosphorylation is one of the pathways that 
showed the most significant differential expression of genes. 

Specifically, genes for ATPase, NADH-ubiquinone oxi-
doreductase, Fe-S protein, and cytochrome C oxidase were 
all up-regulated under drought stress, and no gene in this 
pathway was down-regulated (Table S7 in Supporting In-
formation). (iv) Genes involved in the nitrogen metabolisms. 
These genes were significantly repressed under desiccation 
(Table S8 in Supporting Information), which were marked 
in Figure 3. As a key compound in cellular metabolism, 
glutamate is synthesized using ammonium as a substrate 
through the functions of glutamate synthase and asparagine 
synthase. In this pathway, the generation of ammonium 
from formamide and nitroalkane is catalyzed by acet-
amidase/formamidase and 2-nitropropane dioxygenase. 
These enzymes were all repressed (Table S8 in Supporting 
Information), suggesting that the E. pusillum cells reduced 
the synthesis of glutamate through nitrogen metabolism 
under PEG-induced desiccation. However, the induced glu-
tathione metabolism provides compensatory glutamate by 
the catalysis of glutathione S-transferase (Figure 3; Table 
S8 in Supporting Information). It has been reported that 
nitrogen metabolism was affected by some stressed condi-
tions in other organisms [48,49] although the mechanism is 
not clear. In this study, the expression changes of genes 
involved in nitrogen metabolism were likely the results of 
feedback inhibition of induced glutathione metabolism be-
cause the latter were known to play an important role under 
drought stress. (v) Genes involved in carbon metabolism, 
including nucleotide sugar metabolism and galactose me-
tabolism (Table S8 in Supporting Information). Before ga-
lactose can be metabolized through the glycolysis pathway, 
it must be converted into glyceraldehydes-3P by galactoki-
nase, galactose oxidase, and galactonate dehydratase (Fig-
ure 4). Among the differentially expressed genes in E. pu-

sillum, those coding for galactose oxidase and galactonate 
dehydratase, which are indispensable enzymes in the galac-
tose metabolism, were significantly down-regulated (Table  

 

 

Figure 3  A diagram of nitrogen and glutathione metabolism, in which 
enzymes are encoded by genes either up- (labeled in red) or down-   
regulated (labeled in green) by water stress in E. pusillum. 
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Figure 4  A diagram of carbon metabolism, including nucleotide sugar metabolism, galactose metabolism, and glycolysis, in which enzymes are encoded 
by genes either up- (labeled in red) or down-regulated (labeled in green) by water stress in E. pusillum. 

S8 in Supporting Information). However, the accumulated 
galactose might be converted into nucleotide galactose 
through amino sugar and nucleotide metabolism. The com-
mon reaction in this metabolism is that sugars can be con-
verted into nucleotide sugars by kinases, -D-phospho- 
hexomutase, and nucleotidyltransferase. The expressions of 
the last two enzymes were up-regulated under drought stress 
(Table S8 in Supporting Information), which suggested that 
more nucleotide sugars were produced from monosaccha-
rides and disaccharides in E. pusillum under desiccation. In 
addition, the up-regulation of the chitin synthase gene in-
creases the amount of chitin, potentially making the cell 
wall thicker and preventing water loss and the damages 
caused by desiccation. 

2.4  qRT-PCR analysis of transcript levels for differen-

tially expressed genes during dehydration process of 

lichen thallus 

Using qRT-PCR, a set of 23 representative drought re-
sponse-related genes (Table 1) were selected to further 
monitor their transcript levels in E. pusillum thallus under 
natural dehydration stress. These genes are involved in 
posttranslational modification, osmotic regulation, energy 
providing, damage repairing (including ribosome protein, 
pyrimidine and purine metabolism), and carbon metabolism 
(including nucleotide sugar metabolism and galactose me-
tabolism). 

Because the degree of the stress for lichen thalli grown 
under natural conditions is difficult to determine, a dehydra-
tion process was performed for fresh lichen thalli of E. pu-

sillum in laboratory to monitor the expression of li-
chen-forming fungal genes undergoing different degrees of 
drought stress. The lichen thalli were totally rehydrated, and 
the relative water content was detected over the dehydration 
process (Figure 5). Within the first 120 min, the dehydration 
rate is fast and it did not exhibit significant change after  
150 min. The relative water content was close to zero after 
dehydration for 150 min, which means that cells should have 
lost all the free water and are under severe drought stress at 
this time point. Here, the expressions of the selected genes  

 

 

Figure 5  Relative water content in dehydrating lichen thalli of E. pusil-

lum at different dehydration time period (n=3). 
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at this time point were set to 1. A series of time points (0, 40, 
60, 150 and 240 min) were chosen to investigate the tran-
script levels of candidate genes, and the samples dehydrated 
for 150 and 240 min were regarded as samples under 
drought stress. For comparison of the relative expression at 

different time points, a heat-map was generated using the 
log2 fold change. 

From the heat-map representation (Figure 6), the test 
genes can be classified into four classes according to the 
cluster analysis. In the first cluster (marked as blue), the 

Table 1  The selected genes for qRT-PCR to verify the expression levels 

Term Gene Annotation 
Expression level 

(stress) 
Expression level 

(control) 

Ribosome 
F481_05528 40S ribosomal protein S3Ae 739.98 193.08 

F481_05538 Ribosomal protein S10 1380.97 257.81 

Purine and pyrimidine metabolism 
F481_00996 Nucleoside diphosphate kinase 4654.23 209.72 

F481_02100 dUTP pyrophosphatase 108.25 17.32 

Peroxidase F481_03410 Dyp-type peroxidase 111.81 16.58 

Glutathione metabolism 
F481_02789 

Glutathione S-transferase (GST), C-terminal do-
main 

227.39 69.51 

F481_06421 Thioredoxin-like 1736.00 241.98 

Vitamin B6 metabolism 
F481_00322 Pyridoxal 5'-phosphate (PLP) synthase 1206.83 91.60 

F481_02092 Pyridoxal kinase 15.00 3.74 

Oxidative phosphorylation 

F481_04003 Complex 1 LYR protein 242.53 49.53 

F481_02166 ATPase, F0 complex, subunit B, mitochondrial 815.06 121.74 

F481_01557 Cytochrome c oxidase, subunit VIb 1274.81 329.34 

Proteasome 
F481_04061 Proteasome, subunit alpha/beta 399.41 62.11 

F481_03276 Proteasome, subunit beta type 3 552.61 69.64 

Molecular chaperone 
F481_05773 GroES-like 1284.79 178.94 

F481_07753 Heat shock protein 70 kD 314.87 63.86 

Trehalose-6-phosohate synthase F481_01316 Trehalose-6-phosohate synthase 61.13 37.70 

Nitrogen metabolism 
F481_06302 Glutamate synthase subunit alpha 14.40 124.63 

F481_07075 Nitritereductase 3.41 158.61 

Galactose metabolism 
F481_03176 D-galactonate dehydratase 10.09 159.01 

F481_05966 Galactose oxidase, central domain 7.79 31.83 

Nucleotide sugar metabolism 
F481_07291 Nucleotidyltransferases 145.63 29.90 

F481_00358 N-acetyltransferase 238.40 64.84 

 

 
Figure 6  Relative transcript levels of stress-related genes in E. pusillum under natural dehydration process. 
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transcript levels of these genes increased during the first  
60 min of dehydration, and were then significantly down-  
regulated from 60 to 150 min. A striking feature of these 
genes was that they were up-regulated at low water content 
from 150 to 240 min, and the relative expressions at 240 
min were higher than those at the beginning. The result in-
dicated that the expressions of these genes were correlated 
to drought stress so they were likely to be related to 
drought-resistant mechanisms. Genes involved in antioxida-
tion response mechanisms (vitamin B6 metabolism and 
glutathione), HSP, oxidative phosphorylation, and sugar 
metabolisms (nucleotide sugar metabolism and galactose 
metabolism) belonged to this class. In the second cluster 
(marked as yellow), the transcript levels of these genes do 
not exhibit significant fluctuations during the whole dehy-
dration process, although the relative expressions of these 
genes at 150 min were slightly lower than those at other 
time points. Genes coding for proteins involved in purine 
and pyrimidine metabolism, proteasome, the treha-
lose-6-phosohate synthase (TPS), and GroES belonged to 
this class. At the first time point, the cells were undergoing 
long period drought and the expressions of these genes are 
not yet decreased dramatically, which suggests that these 
genes are highly expressed under both the wet and drought 
periods, therefore they seem to be house-keeping genes. In 
the third cluster (marked as red), the trend of gene expres-
sion during the first three time points is the same as that in 
the first cluster, but the up-regulation trend is more signifi-
cant. The relative expressions of genes in this cluster at the 
last two time points were obviously higher than those at the 
first two or three time points, suggesting that these genes 
are highly expressed under drought; therefore, they can be 
regarded as drought-resistant related genes. Genes coding 
for ribosome, enzymes of galactose metabolism, and anti-
oxidant mechanisms (vitamin B6 metabolism and peroxi-
dase) belonged to this class. In the fourth cluster (marked as 
green), the relative expression during the five time points 
was present as a bell-shaped curve, with a significant de-
clining at the low water level. The genes in this cluster are 
not the typical drought-resistant genes, such as those in-
volved in nitrogen metabolism.  

Generally, after rehydration for 60 min, the relative ex-
pressions of these 23 selected genes reach a maximum, 
which implies that it needs to take some time to reflect 
non-drought state at transcript level in lichen-forming fungi. 
The results above indicate that the trends of expression of 
these drought-related genes vary widely. Genes in the first 
three clusters can be considered as drought-resistant genes, 
because they exhibited increased expression level when the 
water content was low after 150 min of dehydration. While 
the genes in the second cluster did not exhibit significant 
variation in their expressions, they nonetheless play very 
important roles under stressful conditions, because they are 
important housekeeping genes and their expressions are apt 
to be constant even under extreme desiccation. 

3  Discussion 

The model lichen-forming fungus E. pusillum was used to 
explore the drought stress response mechanisms in the pre-
sent study. Our analyses identified 1781 differentially ex-
pressed genes, which are potential targets for further inves-
tigating the stress response mechanisms and characterizing 
the function of stress-related genes. 

A large number of differentially expressed genes were 
classified into metabolism process (Figure 1), which sug-
gests that E. pusillum had active metabolism under 
PEG-induced drought stress. This phenomenon is different 

from other drought-resistant organisms [5052], where 
metabolic processes were largely suppressed during desic-
cation including PEG-induced stress. This result suggests 
that different from most other organisms, E. pusillum is a 
drought-adapted organism. 

3.1  The common drought-resistant mechanisms in E. 

pusillum 

The drought-resistant mechanisms, including reduce oxida-
tive stress, osmotic regulation, and post-translational pro-
cessing, in E. pusillum were compared to those in other 
drought-resistant plants and fungi. Our results show that E. 

pusillum has multiple mechanisms to deal with oxidative 
stress. Vitamin B6 has three forms (pyridoxine, pyridoxal, 
and pyridoxamine) and is an enzymatic cofactor participat-
ing in many biochemical reactions [53]. Recent research 
showed that vitamin B6 played a critical role in resistance to 
oxidative stress. For example, vitamin B6 is able to protect 
cells against cell death induced by ROS in the filamentous 
fungus Cercospora nicotianae [54]. Similarly, the loss of 
pdx1 gene which encodes a pyridoxine synthase in Ara-

bidopsis thaliana can result in hypersensitive to osmotic 
stress and oxidative stress [55]. Therefore, it is not surpris-
ing that the expressions of genes involved in vitamin B6 
biosynthesis in E. pusillum are significantly induced under 
desiccation (Table S1 in Supporting Information, Figure 2). 
Several antioxidant mechanisms, such as SOD and gluta-
thione, have been reported in lichens [56]. However, this is 
the first report demonstrating that the low-molecular-weight 
antioxidant vitamin B6 is related to oxidative stress re-
sponse and drought resistance in lichen-forming fungi.  

Molecular chaperones direct protein folding and assem-
bly, including refolding denatured proteins induced by 
stresses. There are many different families of chaperones, 
such as HSP, GroEL, and chaperonins. Each family acts to 
aid protein folding in different ways. For example, HSPs are 
induced mainly in response to high temperatures and other 
cellular stresses damages. In contrast, GroEL generally par-
ticipates in response to the reduction in folding efficiency 
induced by macromolecule aggregation. The roles of pro-
teasome are to degrade unnecessary or damaged proteins 
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[57,58], and it has been found that genes encoding pro-
teasomes are up-regulated under stress [59,60]. The 
up-regulated expression of chaperone genes demonstrates 
that E. pusillum can likely cope with problems associated 
with protein misfolding and aggregation induced by desic-
cation through up-regulating its main chaperones. In addi-
tion, the increasing expression of proteasome implies that 
the misfolded proteins were likely quickly degraded [61].  

At present, our knowledge of osmotic regulation is 
mainly established in plants [62], and a variety of osmolytes 
have been identified, including sugar, proline, malondial-
dehyde and potassium [63,64]. Among them, the sugar tre-
halose is the most important osmotic regulator in fungi 
[65,66]. No osmotic regulators were differentially expressed 
indicated that these ubiquitous osmotic regulators found in 
other organisms were not induced in E. pusillum under 
PEG-induced drought stress. Such a result would imply 
either that there are other osmotic regulators in E. pusillum, 
or that these known regulators are constitutively expressed 
in this lichen-forming fungus under both the normal and 
water-stressed conditions because of its drought adaptive 
character. 

Recent studies have shown that an abiotic stress can 
trigger a set of common stress response signaling pathways 
in fungi, such as the cyclic AMP (cAMP) signaling pathway, 
Ca2+-dependent protein kinases (CDPKs), mitogen-activated 
protein kinases (MAPKs), protein kinase C (PKC), and 
Hog1 MAPK pathway [6770]. One genes encoding for 
calcium-mediated signaling and three genes for MAPK sig-
naling pathway were differentially expressed indicates that 
at least two signaling pathways participate in the drought 
response in lichen-forming fungus E. pusillum, and the 
functions of the differentially expressed genes are worthy of 
further investigation. 

3.2  Drought-adaptive mechanisms in E. pusillum 

In consideration of the strong drought tolerance characteris-
tics of this lichen, we think that some different drought re-
sponse mechanisms exist in E. pusillum. The ribosome is an 
intricate ribonucleo protein complex responsible for poly-
peptide synthesis in all living cells, so the expression 
changes of ribosomal proteins affect the translation process. 
Generally, the expressions of ribosomal proteins are regu-
lated in response to environmental changes and cellular 
needs, such as nutrition increase, heat stress, and starvation 
(amino acid/nitrogen deprivation), with reduced expression 
of these proteins under stressful and starvation conditions 
[7173]. The expressions of these proteins also change 
through the growth phases in a stationary culture, with in-
creased expressions during the exponential growth phase 
and decreased expression during stationary phase. Recent 
research discovered that ribosomal subunits could act as the 
regulatory elements or filters which mediate interactions 
between particular mRNAs and components of the transla- 

tion machinery, thus providing a mechanism for translation-
al control [74]. Therefore, it has been suggested that the 
increased expression of ribosomal proteins in E. pusillum 

could meet the demand of the expression of specific 
mRNAs required for stress response. Similarly, this phe-
nomenon has also been found in other desiccation tolerant 

organisms [7577]. The PEG-induced stress affects and 
accelerates the transcription and translation process, which 
can account for the active drought response mechanisms 
that more materials, such as nucleotides and amino acids, 
are needed to repair the DNA, RNA and protein damages 
caused by desiccation. 

Almost all aerobic organisms need ATP to supply energy 
for metabolism, and oxidative phosphorylation is the domi-
nating ATP synthesis pathway in mitochondrion. In other 
plants and fungi, the ATPase and ATP synthesis pathway 
have shown to be suppressed under different stress treat-
ments [78,79]. However, KEGG assignment illustrates that 
most metabolic pathways were active in E. pusillum under 
PEG-induced stress (Figure 2). Our results suggest that E. 

pusillum, unlike other drought-sensitive organism, is more 
adapted to drought stress so its oxidative phosphorylation is 
also active under PEG-induced drought stress. 

The differential expression of genes involved in galac-
tose and nucleotide sugar metabolisms suggests that the 
changing carbohydrate metabolism of the mycobiont under 
desiccation likely leads to reduced monosaccharides and 
increased polysaccharides. Many previous studies have 
shown that carbohydrate metabolism is highly susceptible to 

desiccation [8082], but most changes were linked to ad-
justing osmotic pressure. However, few studies have related 
nucleotide sugar metabolism to drought resistance. Nucleo-
tide sugars are the universal sugar donors for the formation 
of polysaccharides, glycoproteins, proteoglycans, glycoli-
pids, and glycosylated secondary metabolites [83], and en-
zymes involved in nucleotide sugar production are im-
portant because of the potential to manipulate the composi-
tion of cell walls through substrate level control [84]. It is 
known that glycosylated hormones and secondary metabo-
lites play important roles in plant resistance against biotic 
and abiotic stresses [85,86]. In lichens, several light-   
absorbing secondary metabolites produced by fungi have 
also shown to provide protection for their photosynthetic 
partners against photo damage [87]. Therefore, it can be 
argued that the increased expression of genes related to nu-
cleotide sugar synthesis is related to drought-resistant in E. 

pusillum. However, further research is needed in order to 
identify if glycosylated secondary metabolites indeed pro-
vide protection for its algae. 

In conclusion, these differentially expressed genes in E. 

pusillum can be summarized in damage repair, energy pro-
vision, and carbon metabolisms-provide protection accord-
ing to their function. Together, these results suggest that E. 

pusillum is adapted to water limitations and drought. 



98 Wang YY, et al.   Sci China Life Sci   January (2015) Vol.58 No.1 

3.3  The comparison of transcript levels for differen-

tially expressed genes between PEG-stressed and dehy-

drated E. pusillum 

The transcript levels of drought response-related genes were 
verified based on the lichen thalli dehydration experiment, 
together with data from comparative transcriptome analysis. 
The qRT-PCR result is consistent with that from RNA-seq 
data in which the expressions of these drought-resistant 
genes were up-regulated when lichen-forming fungus E. 

pusillum was cultured after adding 20% PEG. However, the 
expressions of genes involved in galactose metabolism were 
different between the RNA-seq data and the result from 
RT-PCR. This was likely due to the specific environmental 
treatment effect. During the dehydration performed in the 
laboratory, the photosynthetic partner provided very limited 
carbohydrates to lichen-forming fungus. In contrast, the 
mycobiont under PEG-induced drought stress was grown in 
PDB medium containing plenty of carbohydrates and other 
nutrients. Thus, the dehydration experiment actually in-
cluded both drought and starvation stresses, but the sample 
used in transcriptome sequencing only experienced drought 
stress. Hence, the difference for genes involved in galactose 
metabolism reflects the variations in stresses. In summary, 
the drought-resistant and drought-adaptive mechanisms for 
the lichen-forming fungus E. pusillum under PEG-induced 
stress and for its lichen thalli under natural dehydration 
stress were essentially the same. 

Our transcriptome analyses have identified many differ-
entially expressed genes with unknown functions. These 
genes may be involved in novel drought response pathways 
or mechanisms to contribute to the strong drought resistance 
in E. pusillum. The detailed roles of these genes await fur-
ther investigation.  
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with the authors. 
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