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Abstract

Multiple environmental stresses adversely affect plant growth and development. Plants

under multiple stress condition trigger cascade of signals and show response unique to spe-

cific stress as well as shared responses, common to individual stresses. Here, we aim to

identify common and unique genetic components during stress response mechanisms liable

for cross-talk between stresses. Although drought and cold stress have been widely studied,

insignificant information is available about how their combination affects plants. To that end,

we performed meta-analysis and co-expression network comparison of drought and cold

stress response in Arabidopsis thaliana by analyzing 390 microarray samples belonging to

29 microarray studies. We observed 6120 and 7079 DEGs (differentially expressed genes)

under drought and cold stress respectively, using Rank Product methodology. Statistically,

28% (2890) DEGs were found to be common in both the stresses (i.e.; drought and cold

stress) with most of them having similar expression pattern. Further, gene ontology-based

enrichment analysis have identified shared biological processes and molecular mechanisms

such as—‘photosynthesis’, ‘respiratory burst’, ‘response to hormone’, ‘signal transduction’,

‘metabolic process’, ‘response to water deprivation’, which were affected under cold and

drought stress. Forty three transcription factor families were found to be expressed under

both the stress conditions. Primarily, WRKY, NAC, MYB, AP2/ERF and bZIP transcription

factor family genes were highly enriched in all genes sets and were found to regulate 56% of

common genes expressed in drought and cold stress. Gene co-expression network analysis

by WGCNA (weighted gene co-expression network analysis) revealed 21 and 16 highly

inter-correlated gene modules with specific expression profiles under drought and cold

stress respectively. Detection and analysis of gene modules shared between two stresses

revealed the presence of four consensus gene modules.

Introduction

Abiotic stress severely affects both physical and biochemical properties of plant cells, which

then eventually alter survival and productivity. Abiotic stresses are one of the major causes of
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meagre plant growth and reduced crop yields globally. In most of the plant species,>50%

growth reduction was observed due to abiotic stress [1]. In agricultural fields, plants have to

encounter more than one stress simultaneously and try to acclimate to changing the climate.

They have evolved several physiological, molecular and metabolic mechanisms that eventually

leads to stress tolerance by achieving a homeostatic state [2–4]. Since, the stress adaptation

mechanisms are largely unknown, elucidating these tolerance mechanisms is essential to accel-

erate plant adaptability to natural field conditions in order to enhance their growth and yield.

A huge amount of transcriptomic data is available for plants exposed to various abiotic

stresses. Comparison of the transcriptomic data of plants exposed to individual and combined

stresses may explain the molecular mechanisms behind the cross-talk between stresses. A

meta-analysis is a promising approach which can be adapted to perform such comparison. It

will help in identifying the biological processes activated in a specific stress. There are several

studies on single stress conditions, which do not provide enough information about expression

profiles of stress-responsive genes in multiple stress conditions. Recent investigations on mul-

tiple stress-induced biological networks received much attention[5–8]. Additionally, compari-

son of molecular profiles of an organism under different stresses would make it possible to

identify the conserved stress mechanisms [5–8]. Gene co-expression networks study is becom-

ing increasingly popular as one of the approaches to identify sets of interacting genes. The co-

expression networks built from plant transcriptome data have been analyzed to unravel the

stable co-expression relationships across distinct sets of experimental data [5,7,9].

Arabidopsis thaliana is a well-studied model plant organism. It has extensive biological

knowledge base and resources including complete genome sequence and the highest number

of microarray studies have been performed on A.thaliana. Therefore, meta-analysis has been

performed by integrating individual A.thaliana stress microarray dataset, to understand the

expression pattern of stress-responsive genes and molecular pathways in multiple stress condi-

tions. Meta-analysis is helpful in understanding the common and dissimilar pathways as well

as stress-responsive genes affected under multiple stress condition.

In the present study, a comprehensive meta-analysis was performed on A.thaliana microar-

ray-based transcriptomic dataset for drought and cold stress. The analysis revealed unique as

well as shared molecular components in drought and cold stress conditions. Additionally,

among common genes, most of them showed conserved expression pattern and few showed

reverse expression pattern which gives shreds of evidence about the molecular pathways func-

tional during stress tolerance. Gene ontology (GO) enrichment analysis and GO profiles com-

parison was also performed to find shared and unique biological processes and molecular

functions. Further, co-expression network analysis has also been studied, which clustered the

differentially expressed genes to highly correlated gene modules with specific expression pat-

terns, thus illustrating the framework of stress transcriptome. Altogether, the present analysis

provides evidences about common and unique stress mechanism components under cold and

drought stress in A.thaliana.

Methods

Data collection, curation and DEG finding

Microarray data were downloaded from NCBI Gene Expression Omnibus (platform accession

number, GPL198) and EBI ArrayExpress Archive in March 2017.Each dataset contains more

than 22,500 probesets representing approximately 24,000 genes (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GPL198). For data collection, the NCBI GEO functional genomics

repository was queried considering the Platform: GPL198. Experiments under this platform

were searched using keywords, “cold stress” AND “Arabidopsis thaliana” [organism];
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“drought stress” AND “Arabidopsis thaliana” [organism]. The ArrayExpress database of func-

tional genomics experiments was mined (http://www.ebi.ac.uk/arrayexpress/) using keywords,

“cold stress” / “drought stress” and filtered for “Arabidopsis thaliana” [by organism], “rna

assay”, “array assay” [by experiment type] and “Affymetrix GeneChip Arabidopsis Genome

[ATH1-121501] [by array]. The final dataset had 29 series, comprising of 241 and 149 Affyme-

trix A.thaliana arrays related to drought and cold stress respectively (S1 Table).

The dataset was normalized using GCRMA R package[10] and outlier samples were

detected using the arrayQualityMetrics[11]R package. Arrays that failed any of the three out-

lier tests or not following two class formats (i.e. control and stress) were excluded from further

analysis. Differentially expressed genes (DEGs) were determined by the function RPadvance

in the Bioconductor package. RankProd[12] is a modified and extended function of Rank

Product method proposed by Breitling and co-workers [13]. This method could assess the pos-

sible risk of biasness, as it is a non-parametric statistical test, derived from biological reasoning

which detects items that are consistently ranked higher in a number of lists [12]. This method

performed better than other methods, like- t-based hierarchical modeling and Fisher’s Inverse

chi-square test, [14] and is utilized to directly combine multiple datasets into one meta-study

[14]. The following parameters were used to generate the output of differentially expressed

genes: a number of permutation tests = 250 and PFP (Percentage of false prediction) cut-off

value =�0.01. The observed DEGS were matched to their loci based on annotation provided

by array element mapping facility at TAIR portal for A. thaliana (http://www.Arabidopsis.org/

portals/expression/microarray/microarrayElementsV2.jsp). Probes with no match or ambigu-

ously matching multiple loci were discarded. Among multiple probes matching the same

locus, the probe ID with highest fold change was retained.

Gene Ontology (GO) enrichment analysis

Gene Ontology (GO) enrichment was performed using Singular Enrichment Analysis (SEA)

tool of agriGO [15] using the default setting. Gene ontology profile analysis was used to com-

pare DEGs of cold and drought stress with R package goProfiles version 1.34[16]. The signifi-

cance of profile differences in annotation frequencies was tested for each gene ontology term,

between level 4 for biological process, molecular function, and cellular component, using Fish-

er’s exact test followed by p-value adjustment for multi-testing, based on Holm-Bonferroni

method. Transcription factors (TFs) annotation for A.thaliana were obtained from the data-

base PlnTFDB[17] and analyzed for transcription factors potential targeted genes among com-

mon differentially expressed genes of cold and drought stress using AthaMap gene analysis

tool[18,19].

Gene co-expression network analysis and consensus module detection

Pair-wise gene expression Pearson correlation across all the samples was calculated to generate

a similarity matrix, which served as an input for generating the stress-specific co-expression

networks (using R/WGCNA version 1.34) [20]. Soft threshold, (β) 10 and 13 for drought and
cold respectively, has been identified to calculate adjacency, based on the criterion of approxi-

mate scale-free topology. To minimize effects of noise and spurious associations, the adjacen-

cies transformed into Topological Overlap Matrix and were then converted into a dissimilarity

matrix. Further, a hierarchical cluster tree was created, based on the dissimilarity matrix and

gene co-expression modules were identified from the hierarchical cluster tree using dynamic

tree cut method. This method identifies modules whose expression profiles are very similar.

For this analysis, module size was 30, deepSplit was set at level 1 and tree mergecutHeight was

0.20. Such branches corresponded to modules having eigengenes with a correlation of 0.80 or
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higher. The differentially expressed genes common to drought and cold stress dataset were fur-

ther investigated to find gene modules shared by gene co-expression network of drought and

cold stress also known as consensus modules, with a setting as a soft threshold (β) 10 and mod-

ule size 30. Further, consensus modules were compared with drought and cold global co-

expression network gene modules for which calculated the overlaps of each pair of drought/

cold-consensus modules and used the Fisher’s exact test to assign a p-value to each of the pair-

wise overlaps. Then, differential consensus module eigengene network analysis was performed

by comparing the connectivity and module structure of two networks based on the expression

data of differentially expressed genes common to cold and drought stress dataset.

Further, module preservation statistical tests [21] were performed for determining which

properties of a module in one reference network were preserved in a second (Test) network

using the WGCNAmodulePreservation function. The composite module preservation statis-

tics Zsummary and medianRank was used to define preservation relative to a module of ran-

domly assigned genes. The Zsummary summarized density and connectivity based preservation

statistics where values 2>Z represented no preservation, 2< Z<10 represented weak to mod-

erate preservation, and Z>10 represented strong preservation (Eq 1).

Zsummary ¼
Zdensity þ Zconnectivity

2
1

The medianRank is a rank based statistics that rely on observed preservation statistics. It

summarized medianRank: density and medianRank: Connectivity. A module with lower

median rank exhibit higher observed preservation statistics than a module with a higher

median rank (Eq 2).

medianRank ¼
medianRank:density þmedianRank:connectivity

2
2

The consensus modules detection method identified groups of genes with highly correlated

expression profiles which could be represented by a single gene: the module eigengene

(defined as the first right-singular vector of the standardized expression profile for each mod-

ule) [22]. Eigengene network for cold and drought stress related common gene dataset was

constructed where connection strength (adjacency) between eigengene (E) I and J was defined

as (Eq 3):

a
Eigen;IJ¼

1þcorðEI;EJÞ

2

3

The correlation preservation between all pairs of consensus modules of cold and drought

stress networks was considered, AEigen
(Cold) and AEigen

(Drought) are the adjacency matrices for

dataset cold and drought as defined in Eq 3. Network preservation was commuted in which

adjacencies are defined as (Eq 4):

PreservDrought;Cold
IJ ¼ 1�

jcorðEDrought
I ;EDrought

J Þ � corðECold
I ;ECold

J Þj

2
4

Where EI
(X) is the eigengene of the I-th module in the dataset X. Large values of

PreservIJ
Drought,Cold showed robust preservation among the two networks, of the correla-

tion between module eigengenes I and J. The scaled connectivity which describes the

average connection strength of I-th module with all other eigengenes of the preservation

Comparative transcriptomics and coexpression network

PLOSONE | https://doi.org/10.1371/journal.pone.0203266 September 7, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0203266


network is defined as (Eq 5):

CIPreservation
Drought;Cold
IJ ¼ 1�

f
P

J 6¼IjcorðE
Drought
I ;EDrought

J Þ � corðECold
I ;ECold

J Þg

2ðN� 1Þ
5

Where N is the number of Module eigengenes. Density of the eigengene network D Pre-

serv(Drought,Cold) defined as the average scaled connectivity, is defined as (Eq 6):

DPreservðDrought;ColdÞ
� �

¼ 1�
f
P

I

P

J 6¼IjcorðE
Drought
I ;EDrought

J Þ � corðECold
I ;ECold

J Þjg

2NðN� 1Þ
6

Values of D close to 1, represent strong preservation of correlation between all the eigen-

gene pairs across networks.

Results and discussion

Data collection and curation

A schematic workflow of the analysis from data collection and curation, differentially

expressed genes prediction, network construction, to consensus module detection and charac-

terization is described in Fig 1A and Fig 1B.

Publically available microarray experiments involving drought and cold stress from ATH1-

121501 Affymetrix Arabidopsis thaliana Genome Array were collected (S1 Table). The raw

data related to drought and cold stress were normalized by GCRMA approach and the relative

quality of different samples within dataset was examined by ArrayQualityMatrics, R package.

This R package performed- A) comparison among samples by checking the distance between

samples, B) sample intensity distribution by boxplots and C) individual sample quality by MA

plots. Sample failing any of the aforementioned statistics was discarded. Then, filtered datasets

were used to detect differentially expressed genes under cold and drought stress by the Rank-

Prod method.

Comparison of differentially expressed genes under drought and cold
stress

From 29 series, 6350 and 7210 differentially expressed probes, mapped to 6120 and 7079 gene

models in A.thaliana were identified with PFP (percentage of false prediction)�0.01, under

drought and cold stress respectively. Here, we report, 41% and 31% genes unique to drought

and cold stress respectively (Fig 2). In case of drought condition, 52% of DEGs were up-regu-

lated and 48% were down-regulated whereas in case of cold stress, 48% were up-regulated and

52% were down-regulated (S2 Table). DEGs common to both the stresses were found to be

2890. Most of the genes showed conserved expression pattern (72% or 2083) with 1084 up-reg-

ulated and 999 down-regulated in both drought and cold stresses (S3 Table).Hence, molecular

profiles of common DEGs suggests that common molecular pathways are altered in a similar

manner in response to both the stresses. In a group of genes with non-conserved expression

pattern, the proportion of genes showing down-regulation in drought and up-regulation in

cold stress is 356 (or 44% of 807) and up-regulation in drought and down-regulation in cold

stress is 451 (or 56% of 807). Further, estimated percentage of false prediction (PFP) values of

common DEGs were compared, and it was observed that 63% (1828) and 64% (1860) genes

under drought and cold stress respectively were highly significant (PFP<0.0001) which

included ~36% (1029/2890) of stress-related genes up-regulated under both the stresses (S3

Table).
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Differentially expressed genes (DEG) were compared with literature-derived cold and

drought dataset genes. Approximately 70% and 37% DEGs of meta-analysis (under drought

Fig 1. Workflow for data collection, curation and co-expression network analysis. (A) In total 29 series (26 series from NCBI-GEO and 3 series from
ArrayExpress) comprising of 241 and 149 Affymetrix A. thaliana arrays related to drought and cold stress were used in the analysis. (B) Workflow describes the steps
for co-expression network generation and consensus module detection.

https://doi.org/10.1371/journal.pone.0203266.g001

Fig 2. Number of unique and common differentially expressed genes (DEGs) found in A.thaliana under cold and
drought stress. Total number of genes is shown in bold, below which are the percentages of genes.

https://doi.org/10.1371/journal.pone.0203266.g002
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and cold stress respectively) were also reported previously in experimental studies (S4 Table).

Among common DEGs (cold and drought stress), 843(29%) genes were also found in both

cold and drought stress related published literature. There were seven genes (up-regulated)

which were also reported [23] to be commonly up-regulated under both cold and drought

stress (S5A and S5B Table). Although the results were comparable to individual published

studies, our meta-analysis also identified many new stress-responsive genes (Table 1).

Rest et al.[24]had used a similar approach of meta-analysis to integrate microarray studies

on water stress in A.thaliana and compared results with the published literature. The study

reported that meta-analysis was able to identify genes with consistent overall expression pat-

terns, and also rejected genes with inconsistent expression across individual datasets. It shows

the reliability and strength of present meta-analysis to identify additional responses that were

not identified by conventional approaches.

The mean expression change in response to both the stresses was>2(2.17 and 2.24 fold

change under cold and drought stresses respectively). The percentage of DEGs with fold

change>2 was higher in cold stress (~55%), most of which were down-regulated and lower in

drought stress (52%), but under drought stress majority was up-regulated. There were 16 and

6 genes with fold change>10 under drought and cold stresses respectively (S2 Table). Notably,

three genes showed>20 fold change expression in cold stress with AT2G34620 gene model

annotated asMTERF10 (mitochondrial transcription termination factor family protein) was

under expressed by 23.78 folds. MTERFs are required for accurate organelle gene expression

[25]. Zhao et al. in 2014[26] reported that down-regulation ofMtERF enhanced tolerance of

Medicago truncatula to freezing by up-regulating down-stream genes. This gene was found to

be overexpressed in drought (5.7 fold changes). AT4G28270 gene model annotated as RING

membrane-anchor 2 (ATRMA2, RMA2) was the second top DEG which was up-regulated in

both stress conditions (22.5 and 2.4 fold changes in cold and drought stress respectively).

ATRMA2, RMA2 are E3 ubiquitin ligase that plays a key role in regulating cellular expression

level of ABP1 (Auxin binding protein 1)[27]. Another gene that was highly up-regulated in

both the stresses is EXPA8(21.5 and 16.8 fold changes in cold and drought stress respectively)

that promotes cell wall loosening by inducing pH-dependent cell wall extension and stress

relaxation[28].

Shared and unique responses under cold and drought stress

The present study suggested that A.thaliana shows shared and unique molecular responses for

survival under multiple stress condition. It is important to identify these common and unique

responses under cold and drought stress for understanding the cross-talk mechanism. Gene

ontology profiles of DEGs in cold and drought stresses were statistically compared to assess

the biological similarity and differences between the two DEGs list. We were able to identify

142 common significant gene ontology terms such as, ‘photosynthesis’, ‘respiratory burst’,

‘response to hormone’, ‘signal transduction’, ‘metabolic process’, ‘response to water depriva-

tion’ etc (S6 Table).

Table 1. Comparison of meta-analysis result with individual expression studies literature.

Stress Common to literature and Analysis Unique to Analysis

Cold 2604 4475

Drought 4319 1801

Common(cold & drought) 843 2047

https://doi.org/10.1371/journal.pone.0203266.t001
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Both stress factors affect the homeostasis of chemical signals at the apoplastic space such as

Ca2+ and ROS[29]. Many signaling nodes like RBOH(AT1G64060), RLKs (AT3G17840,

AT3G45860, and AT4G23210) and cell wall kinase (AT1G21250) were found to be expressed

under both the stresses and play role in early signal perception and transduction[29]. Several

mitogen-activated protein kinases (MAPK) which links the external stimuli to intercellular

responses (MAPK) (AT1G05100, AT3G07980 and AT1G53570) were also shared by both

stresses [30]. Genes such as calmodulins (AT1G76650,AT3G51920 andAT2G26190), calcium-

dependent protein kinases(CDPKs) (AT3G50530, AT1G18890), glutathione S-transferase

(AT3G43800, AT1G10360) and ascorbate peroxidase (AT4G09010) which helps in maintain-

ing ROS homeostasis were also found to be over-expressed under both the stress condition

[31,32].Stress-specific genes were also identified, for example, COR (Cold-regulated) genes:

COR47 (AT1G20440), COR15B (AT2G42530) and COR15A (AT2G42540) encoding cryo-pro-

tective polypeptides which enhances the cryo-stability of the plasma membrane [33].

Comparison of transcription factor families’ abundance under drought and
cold stress

The identification of downstream regulators involved in multiple stress cross-talks such as

transcription factors is important for targeted manipulation and adaptation of plants to stress

combination. The favourable calibration of their expression has emerged as an effective strat-

egy towards translation of scientific knowledge in crop plant improvement [34]. In the present

study, we have identified 49 and 46 unique transcription factor families expressed specifically

under cold and drought stress respectively, among which 43 families were commonly

expressed (S7 Table) and most of them had the same kind of regulation under both the stress

conditions (S3 Table). The abundance of common transcription factor families is higher in

drought stress as compared to cold stress (S7 Table). WRKY, NAC, MYB, AP2/ERF, and bZIP

were the most abundant transcription factor families under both the stresses (Fig 3). These

transcription factor families are known for role in ABA-induced signaling pathways under

cold and drought stress [35]. Both these stresses cause desiccation of the cell and osmotic

imbalance and to combat this condition, in plants ABA biosynthesis is stimulated. Accumula-

tion of ABA triggers several signaling pathways which ultimately helps the plant to regain

homeostatic state; for an instance, under drought stress, in an ABA-dependent manner; bZIP,

MYB and AP2/ERF transcription factor family interacts with ABRE, MYCRE/MYBRE or

CRT/DRE elements in the promoter of stress genes and under cold stress, C2H2 transcription

factor family members (SCOF and SGBF) follows ABA-dependent pathway to trigger expres-

sion of cold-regulated (COR) gene involved in imparting cold tolerance[36,37]. This is also

proved by the transcription factor binding site analysis of common DEGs which showed that

among common DEGs, 56% genes are regulated by AP2/ERF (326), bZIP(113), C2H2(372),

MYB(379), NAC(1139) andWRKY(1) and most of these TFs target genes coding for proteins

involved in ROS scavenging pathway, signaling, development and late responses to stress (S3

Table). For example, ATCLH1 (encode Chlorophyllase 1) gene which is involved in plant dam-

age control and modulation of balance between different plant defense pathways[38] is regu-

lated by bZIP and NAC. Another set of genes, APX4 (Ascorbate peroxidase4),AT5G51010

(Rubredoxin-like) and AT1G77370 (glutaredoxin) which are players of an enzymatic and non-

enzymatic mechanism for scavenging free oxygen radicals[32,39,40]were found to be regulated

by C2H2, MYB, and NAC transcription factor families. The signaling molecules like- protein

tyrosine kinases, CNX1 (calnexin 1), ATRABG3B (GTP-binding protein Rab7) and few more

were targeted by AP2/ERF, C2H2, NAC, and bZIP transcription factor families. The members

of MYB, NAC, and AP2/ERF transcription factor families were also found to target genes of
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development process such as LEA (late embryogenesis abundant protein) and PLP9 (PATA-

TIN-LIKE PROTEIN 9). The LEA protein also provides tolerance to dehydration which may

be induced by freezing, saline conditions, or drying [41]. In literature, it has been reported that

the transcription factor NAC gets induced by multiple abiotic stresses; it regulates plant

growth and development including tolerance to several abiotic stresses [42]. Our results are

comparable to published reports that NAC transcription factor regulates LEA and protein

kinases which are marker genes in abiotic stress and ABA response pathway[43].

Genome-wide transcriptomic and microarray analyses have shown that many MYB pro-

teins and MYB-binding element-containing genes are responsive to drought in A.thaliana and

other plants [44]. MYB proteins regulate stomatal movement and are known to get down-reg-

ulated by drought stress. Its over-expression results in hypersensitivity to water deficiency

[45]. It also acts as positive regulators of drought tolerance by activating the transcription of

dehydration responsive genes, such as ERD(Early response to dehydration) [46,47]. MYB also

acts as a negative regulator of freezing tolerance by suppressing the expression of CBF1[48]. A

comparative list of the number of transcription factor members belonging to each transcrip-

tion factor family is provided in the S7 Table. There were six transcription factor families

Fig 3. Abundance of transcription factors in transcription factor families expressed commonly under cold and
drought stress.Grey bar: Number of transcription factors in each transcription factor family expressed under cold
stress. Black bar: Number of transcription factors in each transcription factor family expressed under drought stress.

https://doi.org/10.1371/journal.pone.0203266.g003
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found to be exclusively expressed during cold stress, EIL, GeBP, HB-other, M-type, NF-X1,

and S1Fa-like. EIL is a primary transcription factor in ethylene signal transduction which reg-

ulates downstream genes to complete the ethylene response. It also regulates an innate

immune receptor (FLS2) [49]. GeBP is a new class of unconventional Leu-zipper TF proteins

which act as an antagonist in cytokinin pathway to negative feedback regulation on ARR genes

and trigger the cytokinin response [50]. The NF-X1 transcription factor is a part of regulatory

mechanisms, which safeguard major processes such as photosynthesis [51]. Whirly transcrip-

tion factor family was expressed only under drought stress. It acts as an upstream regulator of

drought stress-induced senescence [52].

Gene co-expression network analysis

The primary aim of co-expression network analysis is to determine cluster or modules of

densely inter-connected genes which can be analyzed by searching patterns in connection

strength[53]. In the present study, the co-expression network analysis was performed by using

transcriptome metadata collected from NCBI GEO, EBI ArrayExpress Archive (S1 Table). The

similarity matrices generated from 207 and 106 filtered samples of drought and cold stresses

respectively, were further processed to generate weighted co-expression network with scale-

free topology by raising them to power β. Network construction for drought and cold stress

resulted in 6,120 and 5,116 nodes connected by 12, 02,905 and 1, 45,476 edges respectively,

under the threshold of 0.02. The global networks were further clustered into 21 and 16 mod-

ules for drought and cold stress respectively, using WGCNA package. The module of each

DEG sets was indicated by following measures: 1. their whole network connectivity, kTotal, 2.

the within module connectivity, kWithin, a measure of how well connected or co-expressed a

given gene is, with respect to other genes in global network and in its module and 3. MM

(Module Membership) for each gene in each module, a measure of module membership corre-

lating its gene expression profile with the Module Eigengene (ME, the first principal compo-

nent of a given module and can be considered a representative of the gene expression profiles

in a module) (S8 Table).

The deep red color in the heat maps of co-expression networks illustrates high co-expres-

sion of DEGs within modules and less co-expression outside the module (Fig 4). The unsigned

Pearson correlation was used; therefore all genes with same absolute correlation value were

grouped into the same module. However, some gene modules showed significant enrichment

Fig 4. Dendrogram and heatmap of DEGs found under cold and drought stress in A. thaliana. The heatmap
describes the Topological Overlap Matrix (TOM) for all DEGs used for co-expression network analysis. Color ranges
from darker red to light red according to overlap i.e. higher to low and darker red color blocks along the diagonal are
the modules. The gene dendrogram and modules (as different color bars) are also shown along the left side and the top.

https://doi.org/10.1371/journal.pone.0203266.g004
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of genes with the same kind of regulation (S9 Table). For example, the largest module, dark-

green in color of cold stress co-expression network of size 1373 DEGs was enriched with 902

(~66%) down-regulated DEGs while the second largest module, blue in color of size 1291

DEGs was enriched with 777(~60%) up-regulated DEGs. Drought responsive 21 modules in

the present study were compared against 5 modules of A.thaliana predicted by another group

of researchers [7]. All the five modules were notably overlapped with modules in the present

study. For example, the brown colored module found by Shaik and Ramakrishna[7] consists

of 64 genes, out of which 45 (70%) were the part of magenta colored module of drought co-

expression network and of blue module, 40% genes were overlapping with drought black mod-

ule of present study (S10 Table).

To determine the stress-responsive modules of functionally similar genes, gene ontology

(GO) enrichment analysis for all the predicted modules was performed. A number of signifi-

cant terms with FDR< 0.05 were identified (S9 Table). The analysis showed a large difference

in the number of significant GO terms compared to module size, in both cold and drought co-

expression networks (S9 Table). For example, the cold module light green (module size 115)

had 10 significant terms whereas grey60 module (module size 104) had 3 terms with

FDR< 0.05. The drought module midnight-blue (module size 141) had 18 significant terms

whereas salmon color module (module size 191) had 3 significant terms. Further analysis of

these modules showed that cold module (grey60) and drought module (salmon) had a higher

number of genes with unknown function and it was also observed that these genes had module

membership>0.6 which indicates that these genes may have functions similar to other anno-

tated genes.

Under cold stress, in the largest dark-green module, ~65% genes were under-expressed

and found to be predominantly enriched with genes belonging to photosynthesis and car-

bon metabolism pathways. This module also had genes related to MAPK cascade, which

implies that the module may serve as a negative regulator as well as a positive regulator up

to some extent. In the second largest blue module, ~60% genes were over-expressed and

the top functional term was ‘response to abiotic stimulus’ (GO:0009628) followed by ‘sig-

nal transduction’ (GO:0007165) (S11 Table) which suggests the role of this module in

sensing the stress and relaying the signal to down-stream genes for action. The blue mod-

ule had a larger number of TFs than the dark-green (89 compared to 69 TFs) (S8 and S9

Table). But it was made up of less number of genes than the dark-green module. Majority

of blue module TFs were from AP2/ERF, HSF, and MYB transcription factor families

while the dark-green had a higher number of MYB, bHLH, and NAC transcription factor

families (S8 Table).

Under drought stress first two largest modules (namely, purple and black) had less

than 40% down-regulated genes and were enriched with genes related to ‘response to

stress’ and ‘metabolic process’ but the number of genes was higher in the black module.

These modules also had Amylase, Invertase, SPS, and sugar transporter genes which indi-

cated the availability of low-molecular-weight carbohydrates during drought stress [54].It

was found that the transcription factor abundance was higher in purple module (99 TFs as

compared to black module 78 TFs) and both the modules contain 25 common unique

transcription factor family members including-NAC, MYB, AP2/ ERF, bZIP, and bHLH

transcription factor families (S8 and S9 Tables) which are involved in ABA signaling path-

way and stomata closure [35,37]. It indicates the role of purple and black modules in

drought stress management by regulating stomata closing and ABA signaling pathways

for reducing water loss, thereby minimizing photosynthesis activity and shifting to other

metabolic pathways to meet energy demands.
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Module preservation statistical analysis

In order to determine how well the gene modules in the cold stress dataset (reference network)

were preserved and reproducible in the drought stress dataset (test network), module preserva-

tion statistical analysis was performed using a series of permutation tests for various density

and connectivity based measures. Eight cold modules were shown to have well-defined

drought counterparts (summary Z-score>10) and two cold modules: Pink and Purple have

shown moderate preservation (10< Z-score> 5 and higher preservation median rank) (Fig

5). A “toy” module of 1000 randomly assigned genes collected from all possible gene (“Gold”)

also revealed evidence of preservation across species. The preserved modules genes were found

to associate with biological processes: photosynthesis, stress acclimation process, response to

abiotic stress and metabolic process, which generally altered during stress (S11 Table).

Identification of consensus modules

A consensus dissimilarity measure based on weighted average of the two correlation matrices

was utilized in the hierarchical clustering algorithm for consensus module identification, with

an objective to explore the group of genes with similar co-expression patterns and common,

robustly defined modules in both the stresses. The consensus network of scale-free topology

was obtained by using soft-threshold of 10, comprising of 4 consensus modules (Fig 6A). The

genes which are not assigned to any of the modules were labeled as a grey color. The functional

enrichment of the consensus modules included: “translation” (C1: Brown), “response to water

deprivation and cold stress” (C2: Blue), “photosynthesis” (C3: Turquoise) and “defense

response” (C4: Yellow). The full functional enrichment analysis and gene lists were given in

S12 Table. A pair-wise Fisher exact test was performed to determine whether there is signifi-

cant overlap between the consensus and the cold and drought specific gene modules. Fig 6B

and 6C, represents the summary of the result in the form of color-coded tables illustrating

good agreement between consensus modules and cold or drought specific modules, which

reflects the facts that most cold modules are preserved in drought. All consensus modules

showed significant overlap with their corresponding gene modules of stress-specific co-expres-

sion networks demonstrating akin nature of clustering pattern in cold and drought stress.

Fig 5. The medianRank and Zsummary statistics of module preservation of cold modules in drought modules (y-
axis) vs. module size (x-axis). In plot colored circles represents gene modules of cold common gene co-expression
network. The black borderline represents no preservation (Z-score = 0), blue borderline represents very weak
preservation limits (Z-score = 2). The region between blue borderline and green borderline represents weak to
moderate preservation zone (10< Z-score> 2) and above green borderline represent strong preservation (Z-score>
10).

https://doi.org/10.1371/journal.pone.0203266.g005
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Differential consensus module eigengene network analysis revealed highly
preserved network structure

Differential eigengene network analysis (Fig 7) was performed to address the comprehensive

preservation of the correlation of consensus ME pairs of two stress-specific networks. Eigengene

networks were constructed based on correlations between each pair of consensus MEs for evalu-

ating preservation of modules and connectivity between cold and drought dataset. It was found

that density, D (PreservCold,Drought) is 0.91, which indicate very high correlation preservation

between all pairs of eigengenes across the two networks. The Consensus eigengenes (MEs) in the

cold dataset were defined by twomain groups, or meta-modules (Fig 7A). The first meta-module

consisted of the C3 and C4 consensus modules (turquoise and yellow) and second meta-module

contained C1 and C2 consensus modules (brown and blue). Remarkably, these 2 meta-modules

were also approximated in the drought dataset (Fig 7B). Meta-modules in the cold and drought

dataset indicated the following relationships: the first (turquoise and yellow) suggested a rela-

tionship among photosynthesis and defense response; the second (brown and blue) between

response to abiotic stress and translation. This eigengene network analysis revealed that in addi-

tion to these four consensus modules being present in both the stress-specific dataset, the organi-

zation of these consensus modules was also highly preserved across the networks.

Conclusion

The present study deals with meta-analysis of microarray studies related to drought and cold

stress of Arabidopsis thaliana. This analysis was able to identify DEGs which include- DEGs

already reported by individual studies and additionally, new DEGs which were overpass by

Fig 6. Consensus module detection and comparison. (A) The plots depicting various network indices (y-axes) as
functions of the soft- thresholding power (x-axes). Numbers in the plots represents soft-thresholding powers. The plots
demonstrate that 10 is the smallest soft-thresholding power at which approximate scale-free topology is accomplished
for both sets as the various connectivity measures decrease sharply with increasing soft-thresholding power. (B) and
(C) Relation between consensus modules and modules found individually in cold and drought expression set. The
table represents the analogy between consensus modules and modules of cold and drought stress related global co-
expression network based on the expression values of the common genes. Each row of the table represent individual
stress specific module and each column represent one consensus module. Numbers in the table represent genes
common between individual stress module and consensus module. The table coloring pattern represents the negative
log of Fisher’s exact test p-value for the overlap of the two compared modules. The darker red color represents more
significant overlap.

https://doi.org/10.1371/journal.pone.0203266.g006
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individual studies. Thus, this approach magnifies the strength and sensitivity in the identifica-

tion of vital stress response genes which may be overlooked by individual studies.

The comparative analysis of differential expression analysis and gene ontology enrichment

of the two stresses revealed the existence of shared and unique components between cold and

drought stress. It was found that several transcription factor families common in both the

stresses regulates several common stress-responsive genes adhering to ABA-dependent path-

way. The shared stress-responsive genes were found to be involved in ROS scavenging, stoma-

tal movement etc. This helps the plant to reclaim the homeostatic state which was disturbed

under the influence of both the stresses.

Gene co-expression network analysis also supported the findings of meta-expression analy-

sis by revealing the existence of highly inter-correlated stress-specific and consensus modules

with specific profiles of expression under drought and cold stress respectively. Altogether, the

Fig 7. Differential consensus module eigengene analysis between cold and drought consensus module eigengene
networks.Differential eigengene network analysis was used to address the strength of the correlation preservation for all
eigengene pairs across the two networks: (A) and (B) Clustering dendrograms of consensus module eigengenes (ME)
showing the presence of meta-modules as depicted by the presence of same major branching pattern in both cold and
drought eigengene network dendrograms. (C) and (F) Heatmaps of eigengene adjacencies in each of the consensus
eigengene networks for cold and drought dataset respectively. Each of the rows and columns represents an eigengene
tagged by the consensus module color and within the heatmap, red color represents high adjacency and positive
correlation, whereas blue represents low adjacency and negative correlation, as represented by the color legend. (D) Bar
plot depicts the preservation measure for each consensus eigengene as the height of the bar (y-axis) where each colored
bar corresponds to the eigengene of the associated consensus module. The high-density value D(PreservDrought,Cold) =
0.91 indicates the high overall preservation between the two networks. (E) Heatmap representation of Adjacencies of the
pair-wise preservation network (PreservDrought,Cold); high values of (PreservDrought,Cold) implies that there is a strong
correlation preservation between pairs of module eigengenes across the two networks. Each column and row
represented by consensus module eigengene with the saturation of red color showing adjacency according to the color
legend.

https://doi.org/10.1371/journal.pone.0203266.g007
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result from our study gives information about the common and unique biological and molecu-

lar behavior of the plant in response to various abiotic stresses which can be utilized for multi-

ple stress response engineering.
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