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Abstract

Background: In the Lophotrochozoa/Spiralia superphylum, few organisms have as high a capacity for rapid testing of
gene function and single-cell transcriptomics as the freshwater planaria. The species Schmidtea mediterranea in
particular has become a powerful model to use in studying adult stem cell biology and mechanisms of regeneration.
Despite this, systematic attempts to define gene complements and their annotations are lacking, restricting
comparative analyses that detail the conservation of biochemical pathways and identify lineage-specific innovations.

Results: In this study we compare several transcriptomes and define a robust set of 35,232 transcripts. From this, we
perform systematic functional annotations and undertake a genome-scale metabolic reconstruction for S. mediterranea.
Cross-species comparisons of gene content identify conserved, lineage-specific, and expanded gene families, which
may contribute to the regenerative properties of planarians. In particular, we find that the TRAF gene family has been
greatly expanded in planarians. We further provide a single-cell RNA sequencing analysis of 2000 cells, revealing both
known and novel cell types defined by unique signatures of gene expression. Among these are a novel mesenchymal
cell population as well as a cell type involved in eye regeneration. Integration of our metabolic reconstruction further
reveals the extent to which given cell types have adapted energy and nucleotide biosynthetic pathways to support
their specialized roles.

Conclusions: In general, S. mediterranea displays a high level of gene and pathway conservation compared with other
model systems, rendering it a viable model to study the roles of these pathways in stem cell biology and regeneration.
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Background
Investigations using model organisms such as Caenor-

habditis elegans, Drosophila melanogaster, zebrafish, and

mice continue to drive fundamental insights into the

molecular mechanisms driving a variety of conserved

biochemical processes [1]. However, much attention has

recently turned to the use of non-traditional organisms

as models to explore more specialized pathways. For ex-

ample, while freshwater planarians (flatworms) have

been used in a laboratory setting for more than 100 years

due to their ability to regenerate following virtually any

injury, the planarian Schmidtea mediterranea has

emerged as a powerful model for dissecting the molecu-

lar basis of tissue regeneration [2, 3]. Despite significant

resources put forth to develop S. mediterranea as a

model in the lab, systematic genome-scale investigations

of gene function and conservation are lacking.

Much of the interest in planarians is driven by the fact

that approximately 20% of their adult cells are stem cells

(called neoblasts), at least some of which are pluripotent

[4–7]. In addition, planarians are one of the only models

that can be used to rapidly test gene function in adult

animals through RNA interference (RNAi) screening.

Placing gene function in an evolutionary context is crit-

ical not only to inform on the conservation of pathways

related to stem cell biology and regeneration, but also

because planarians represent a key member of the other-

wise neglected superphylum Lophotrochozoa/Spiralia

(subsequently referred to as Lophotrochozoa), and they

can further be used to model closely related parasitic

flatworm species (e.g., flukes and tapeworms), which in-

fect an estimated hundreds of millions worldwide [8].

In attempts to complement ongoing genome sequen-

cing efforts [9, 10], several transcriptome datasets have

been generated for S. mediterranea under various

physiological conditions using a variety of experimental

techniques [11–18]. In isolation, each set provides a

snapshot of planarian gene expression under a specific

condition; however, recent efforts have focused on inte-

grating several transcriptomes to generate a more com-

prehensive overview of gene expression [9, 19]. The

SmedGD repository was generated by integrating tran-

scriptomes from whole-animal sexual and asexual

worms, whereas the PlanMine database serves as a re-

pository for the published genome as well as existing

transcriptomes from the community to be deposited and

queried. However, they lack systematic and comparative

evolutionary and functional genomics analyses, which

are required for understanding the mechanistic basis of

biological processes. Together these datasets comprise

more than 82,000 “transcripts” with little assessment of

“completeness” from an evolutionary perspective.

Typically, transcriptome datasets are generated from

entire organisms or tissues [20–22]; however, such

analyses can mask the contribution of specific cell subpop-

ulations, which can be particularly problematic when

attempting to elucidate, for example, pathways expressed

during key cellular events. While cell sorting offers the cap-

ability to enrich for specific cell subpopulations, the emer-

gence of single-cell RNA sequencing (scRNAseq) offers a

powerful route for interrogating gene expression profiles

from individual cells [23, 24]. Applied to S. mediterranea,

this technology is expected to yield molecular-level insights

into the roles of distinct cell types, such as neoblasts,

during homeostatic tissue maintenance and regeneration

[7, 25–27]. Indeed, scRNAseq experiments have already

been used to resolve neoblast heterogeneity and identify

regulators of lineage progression [26–30].

In this study, we generate a high-confidence transcrip-

tome pruned from an integrated transcriptome gener-

ated earlier in the lab [18], which, through combining

transcriptomes from diverse physiological conditions

and experimental techniques, leads to a large number of

transcripts (n = 83,469) for S. mediterranea. Next, we

apply systematic bioinformatic approaches to annotate

and compare the complement with model organisms

and other Platyhelminthes. This pipeline predicts puta-

tive functional annotations of the transcriptome, identi-

fying a set of transcriptionally active transposons as well

as extended families of cadherins and tumor necrosis

factor (TNF) receptor associated factor (TRAF) proteins.

Metabolic reconstruction further reveals an increased

biochemical repertoire relative to related parasitic platy-

helminths. In order to gain insights into the role of these

pathways in planarian biology, high-throughput scRNA-

seq was performed, capturing the transcriptional signa-

tures from ~ 2000 cells. From the 11 distinct clusters of

transcriptional profiles, we identified clusters corre-

sponding to neoblasts, epithelial progenitors, muscle,

neurons, and gut, among which neoblasts exhibit the

most metabolically active profiles. We also identify a

novel cluster: a cathepsin+ cluster representing multiple

unknown mesenchymal cells. Beyond giving us new in-

sights into the evolution and dynamics of genes involved

in regenerative pathways, the data and analyses presented

here provide a complementary resource to ongoing

genome annotation efforts for S. mediterranea. They are

available for download from http://www.compsysbio.org/

datasets/schmidtea/.

Results

A definitive transcriptome for S. mediterranea

A definitive transcriptome of S. mediterranea was gener-

ated by integrating the RNA sequencing (RNA-seq)

reads generated from five separate experiments and cell

purifications [18, 31–33] (National Center for Biotech-

nology Information [NCBI] Bioproject PRJNA215411).

From an initial set of 83,469 transcripts, a tiered set of
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filters were applied to define a single set of 36,026

high-confidence transcripts (Fig. 1a). First, protein-coding

transcripts are identified on the basis of sequence similar-

ity to known transcripts or proteins, as well as the pres-

ence of predicted protein domains with reference to the

following databases: UniProt [34], MitoCarta [35], InterPro

[36], Core Eukaryotic Genes Mapping Approach (CEGMA)

[37], Benchmarking Universal Single-Copy Orthologs

(BUSCO) [38], and ESTs of other known platyhelminth

transcriptomes deposited in the expressed sequence tag

(EST) database of the NCBI: Biomphalaria glabrata,

Clonorchis sinensis, Crassostrea gigas, Dugesia japonica,

Dugesia ryukyuensis, Echinococcus granulosus, Echinococcus

multilocularis, Helobdella robusta, Hirudo medicinalis,

Hymenolepis microstoma, Macrostomum lignano, Mytilus

californianus, Opisthorchis viverrini, Schistosoma japoni-

cum, Schistosoma mansoni,Taenia solium.

Next, the protein-coding potential of the remaining

transcripts was predicted using the error-tolerant ESTS-

can [39]. Finally, transcripts without matches to the

above were parsed through a six-frame translation algo-

rithm to identify the largest potential open reading

frame (LongestORFs). ESTScan and LongestORFs

predictions were further filtered such that only those

predicted to have > 100 amino acid residues and also to

co-localize on the genome with known S. mediterranea

transcripts derived from complementary resources

(EST database of the NCBI, SmedGD v2.0 [9] and the

Oxford dataset [14]) were included in our final filtered

dataset (Fig. 1a, b).

Together, this filtered set comprises 36,026 sequences,

of which 28,583 map to 22,215 loci of the S. mediterranea

genome assembly deposited in SmedGD v2.0 [9]; the

remaining 7443 sequences could not be mapped. Of these

unmapped transcripts, 1008 share significant sequence

similarity, i.e., ≥ 80% sequence identity as assigned by the

Basic Local Alignment Search Tool (BLAST) [40], with a

known S. mediterranea protein, 106 to a protein from the

closely related planarian D. japonica, and 65 to proteins

from other Platyhelminthes. Such matches indicate that

these sequences are likely bona fide transcripts that are

missing from the current S. mediterranea genome assem-

bly. Interestingly, among the 7443 unmapped transcripts,

we also identified 794 with significant sequence identity

(≥80% sequence identity as assigned by BLAST) to a

non-metazoan protein in the UniProt database. Among

these were 728 sequences matching sequences from

Tetrahymena thermophila and a further 22 matching

sequences from T. pyriformis. Such sequences likely indicate

contaminants from protozoa endemic in S. mediterranea

A B

C D

E

Fig. 1 Transcriptome generation and characteristics. a Schematic of the tiered approach used for generating the definitive transcriptome.
b Length distribution of the transcripts generated by different methods. c Venn diagram showing the results for the mapping of Toronto and
PlanMine transcripts onto the recent dd_Smes_g4 genome assembly. d Venn diagram showing the comparison of Toronto, PlanMine, SmedGD,
and Oxford transcriptomes, where the transcripts are aligned using BLASTn searches customized for sensitive matches. e Transcriptome
completeness for Toronto, PlanMine, SmedGD, and Oxford transcriptomes, estimated via CEGMA and BUSCO core eukaryotic gene sets

Swapna et al. Genome Biology  (2018) 19:124 Page 3 of 22



cultures. Further, 2 transcripts sharing ≥ 80% sequence iden-

tity to Bos taurus were also removed. After removal of these

contaminants, we identified a final high-quality set of 35,232

transcripts, which we subsequently termed the Toronto

transcriptome (Additional file 1).

Aligning the Toronto transcriptome with the recently

published reference genome of S. mediterranea

(dd_Smes_g4) [10] and applying the F1 cutoff defined by

the Spaln alignment tool (corresponding to ~ 73% se-

quence identity and ~ 73% coverage) [41] resulted in

mapping 33,487 transcripts (~ 95% of the transcriptome)

to 20,483 genomic positions (Fig. 1c, Additional file 2:

Figure S1A). In contrast, using similar parameters

resulted in the mapping of 38,186 PlanMine transcripts

(~ 91.5% of the transcriptome) to 26,510 positions. Of

these, 31,286 (~ 89%) Toronto transcripts overlap with

33,191 PlanMine transcripts (79.5%), corresponding to

14,145 positions. Although both transcriptomes map a

substantial proportion of their transcriptomes to the ref-

erence genome, PlanMine maps a higher number of

transcripts. However, it is noteworthy that the Toronto

transcriptome contributes 2231 transcripts (~ 6%) that

exclusively map to the reference genome. Interestingly,

while PlanMine and Toronto transcripts that map to the

same loci are of similar length, PlanMine transcripts that

are either unmapped or map to unique regions are signifi-

cantly longer than the equivalent Toronto transcripts

(Additional file 2: Figure S1B). Analyzing the distribution

of sequence similarity bit scores further reveals that the un-

mapped transcripts from both the Toronto and PlanMine

transcriptomes consist of many high-scoring matches, sug-

gesting their likely validity (Additional file 2: Figure S1C).

Comparisons with three previously generated

transcriptomes: SmedGD v2.0 (n = 22,855, [9]), PlanMine

(n = 41,475, [19]), and Oxford (n = 23,545, [14]), revealed a

core set of 24,477 transcripts common to all four sets,

together with 1820 transcripts unique to the Toronto set

(defined as those with bit score < 40 for BLASTn [40]

searches using a relaxed word size of 7 in order to

maximize sensitivity); Fig. 1d). Of the unique transcripts,

371 (20.3%) share significant sequence similarity (BLAST,

E-value <1e-08, % sequence identity ranging from 1.5% to

100%) to known proteins in UniProt and 1427 (78%)

represent ESTScan predictions. Supporting the validity of

these unique transcripts, we note that 1399 (~ 74%) map

to the latest PlanMine genome dd_Smes_g4 [10]. To

further assess transcriptome completeness, we performed

a systematic comparison with the core eukaryotic and

metazoan gene sets defined by BUSCO v1 [38], demon-

strating that our high-quality transcriptome exhibits

similar coverage (81% eukaryotic, 78% metazoan) as

PlanMine (81% eukaryotic, 78% metazoan) and higher

coverage than the Oxford (78% eukaryotic, 73% metazoan)

and SmedGD (62% eukaryotic, 50% metazoan) datasets

(Fig. 1e). Additionally, the Toronto transcriptome features

a lower fraction of partially recovered transcript sets.

However, it is noteworthy that of the 348 BUSCO

genes, representing single-copy genes from 310 differ-

ent eukaryotes that were completely recovered by the

Toronto dataset, 86 appear to possess paralogs in the

Toronto dataset as compared to 112 in PlanMine. Such

duplicates might represent either errors during tran-

script assembly or alternative spliceoforms.

Functional annotation of S. mediterranea proteome:

expanded set of transposons and TRAFs

Having compiled and validated a high-confidence set of

transcripts, we next analyzed functional potential through

a systematic annotation of protein domains inferred by

the InterPro resource [36]. Gene Ontology (GO) assign-

ments [42, 43] based on domain annotations of predicted

proteins revealed that transport, signal transduction, bio-

synthetic process, cellular nitrogen compound metabolic

process, and cellular protein modification process are the

five most abundant biological processes, consistent with

other eukaryotes (Additional file 2: Figure S2).

To identify taxon-specific gene family expansions in S.

mediterranea, we compared the 20 most abundant Pfam

[44] annotations of predicted protein sequences in our

dataset to the proteomes of Homo sapiens, Drosophila

melanogaster, and Caenorhabditis elegans, as well as sev-

eral parasitic flatworms for which genome sequence data

are available (cestodes: E. granulosus, E. multilocularis,

T. solium, H. microstoma; trematodes: Schistosoma man-

soni, S. haematobium, C. sinensis, O. viverrini; monoge-

neans: Gyrodactylus salaris) (Fig. 2a). Consistent with

the other metazoans, the most abundant domains are

Pkinase (PF00069), 7tm (PF00001), and Ank (PF12796).

Among the remaining 17 abundant domains, three repre-

sent lineage-specific expansions: transposase-related do-

mains, DDE_1 (PF03184) and DDE_Tnp_1_7 (PF13843)

(ranked 4th and 9th most abundant, respectively) —

which are significantly expanded only in S. mediterranea

and not in other Platyhelminthes — and the meprin

and TRAF homology (MATH) domain (PF00917, ranked

8th most abundant) — expanded in S. mediterranea in

comparison to other Platyhelminthes. Another domain

of interest is the cadherin domain (PF00028, ranked

16th most abundant), which is expanded throughout

Platyhelminthes and also in humans, suggesting a

more fundamental role for this domain.

Although S. mediterranea exhibits a larger (n = 290)

repertoire of the transposase-related domains, DDE_1

and DDE_Tnp_1_7, relative to other helminths (Fig. 2a),

the transcripts associated with these domains are

expressed at relatively low levels: mean reads per kilo-

base per million mapped reads (RPKM) 1.22 +/− 0.04

and 1.10 +/− 0.42 for DDE_1 and DDE_Tnp_1_7,
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respectively; bottom 40% of expressed transcripts

(Additional file 1). Transposable elements (TEs, sequences

which can change position within a genome) are classed

into two types: class I (retrotransposons), which operate

via a copy-and-paste mechanism and include long and

short interspersed nuclear elements (LINEs and SINEs,

respectively), and class II (DNA transposons), which oper-

ate via a cut-and-paste mechanism [45]. DNA transposons

are the most abundant elements for transcripts with both

DDE_1 and DDE_Tnp_1_7 domains. To determine

whether these elements may be functionally active in

the S. mediterranea genome, we estimated the sequence

divergence of each copy relative to the consensus

(Fig. 2b, [46]). Of 1641 elements, we found that 180

(13%) of DDE_1 domains and 97 (25%) of DDE_Tnp_1_7

domains exhibit relatively low sequence divergence

(< 5%), indicating that they may still be functionally

active. Among DDE_1 domain transcripts, almost

half represent the TcMar-Tigger element, thought to be a

distant relative of Mariner [47], while for DDE_Tnp_1_7

domain transcripts, the majority represent the PiggyBac

element.

Beyond transposons, we found that the MATH (121

domains) domain represents S. mediterranea-specific

expansions. MATH domains are present in mammalian

tissue-specific metalloendopeptidases (meprins) and

TNF receptor associated factor (TRAF) proteins. BLAST

searches of MATH-domain-associated proteins in S.

mediterranea suggest they are likely TRAF proteins

(Additional file 1), important regulators of signal trans-

duction, cell death, and cellular responses to stress [48],

immune response [49], and cellular degradation [50].

Many of these domains contain transcripts that are

expressed at relatively high levels (mean RPKM 18.05

+/− 5.39; top 20% of expressed transcripts; Additional

file 1), suggesting an important regulatory role. Another

gene family with abundant representation in Platyhel-

minthes is the cadherins. Cadherin-domain-containing

transcripts were moderately expressed (mean RPKM

4.22 +/− 1.26; top 40% of expressed transcripts;

Additional file 1). Cadherins are transmembrane pro-

teins involved in regulating cell-cell adhesion, morpho-

genesis, and cell recognition [51, 52]. More than 100

cadherins have been characterized in vertebrates,

A B

C
D E

Fig. 2 Abundant Pfam families. a Comparative distribution of top 20 Pfam families in S. mediterranea and the ranks of these families in model
organisms and closely related Platyhelminthes in terms of their abundance. The total number of transcripts for each of the species in these 20
families is indicated in the last row. Pfam families of particular interest are indicated in boxes. b Age distribution of DDE transposons: the
classification and distribution of repeat elements in transcripts of the highly abundant DDE Pfam families is shown, along with a representation of
the extent of sequence divergence of these elements from their consensus. c Phylogenetic distribution of cadherins from human, C. elegans,
Platyhelminthes, and S. mediterranea. Clades with bootstrap support of > 600/1000 are collapsed and colored by the taxonomic representation of
the species in each clade, while the number of transcripts mapping to the clade is indicated at the edge. d Whole-mount in situ hybridization of
Smed-calsyntenin. Cross sections (right) are from anterior (top), pharyngeal (middle), and tail (bottom) regions. e dFISH of a single confocal slice
through the brain demonstrating co-expression of chat in Smed-calsyntenin + neurons
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belonging to four main classes [51]: classical (localized

to different tissues), desmosomal, protocadherins

(protocadherins and FAT subfamily of cadherins), and

unconventional. A phylogenetic analysis of the 94

cadherins in S. mediterranea with 176 human and 211

other helminth sequences (from C. elegans, E. granulosus,

E. multilocularis, G. salaris, Hymenoloepis nana, S.

haematobium, S. mansoni, T. solium, O. viverini, and C.

sinensis) recapitulates three of the main human clusters

(desmosomal and unconventional cadherins, protocadher-

ins (one main and one subcluster), and FAT subfamily of

protocadherins (which also includes homologs in worms),

as well as 8 clusters specific to other helminths, 16

clusters containing other helminths, and S. mediterranea

sequences, 5 Schmidtea-specific clusters, and 1 cluster

containing human, other helminths, and S. mediterranea

sequences (Fig. 2c, Additional file 2: Figure S3). This

latter cluster corresponds to calsyntenins (CLSTN),

calcium-binding type I transmembrane proteins belonging

to the cadherin superfamily, predominantly expressed in

neurons. This cluster contains sequences from human

(CLSTN1, CLSTN2), C. elegans (CASY-1), C. sinensis,

O. viverini, and S. mediterranea (Smed-calsyntenin -

SmedASXL_013539). Consistent with its expression in

neurons in other organisms, Smed-calsyntenin is pre-

dominantly expressed in the brain and ventral nerve

cords (with weaker expression detected in the gut), and it

exhibits a high degree of co-localization with the cholin-

ergic neuron marker chat (Fig. 2d, e). In the future it will

be interesting to determine whether the expansion of

TRAF proteins in comparison to other parasitic flatworms

and the abundance of cadherins in S. mediterranea

represent increased functional complexity in signal

transduction and regeneration in planarians.

S. mediterranea expresses a diverse repertoire of

transcription factors

We next investigated the repertoire of transcription fac-

tors in S. mediterranea in the context of other eukaryotes.

Transcription factors were predicted for S. mediterranea,

together with an additional 165 eukaryotes [53]. Our

predictions suggest that 843 S. mediterranea transcripts

encode transcription factors associated with 55 classes

(Fig. 3a, Additional file 3); 494 (~ 59%) belong to six clas-

ses (zf-C2H2, Homeobox, zf-BED, bZIP_1, bZIP_2, and

HLH), which are typically well represented across all

eukaryotes. The number of predicted transcription factors

in S. mediterranea (n = 843) is slightly higher than in other

Lophotrochozoans (n = 672) or nematodes (n = 725),

and is half the number in vertebrates (n = 1866) or

mammals (n = 1786). Although several classes of tran-

scription factors, such as Forkhead, Ets, Pax, Pou, and

A B

Fig. 3 Evolutionary conservation of metabolic and regulatory pathways. a Heatmap showing the distribution of different types of predicted
transcription factors in S. mediterranea and eukaryotes from PhyloPro v2. The numbers represented are for protein predictions of transcripts in the
definitive transcriptome for S. mediterranea and proteins for all other eukaryotes. b Heatmap showing the distribution of % conservation of the
major classes of KEGG metabolic pathways in S. mediterranea, human, mouse, C. elegans, and closely related Platyhelminthes
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GATA, have been studied in S. mediterranea [54, 55],

several others with high abundances in S. mediterranea

and vertebrates remain poorly characterized. These

include CSD (cold-shock domain; involved in transcrip-

tional repression and activation and in mRNA packaging,

transport, localization, masking, stability, and translation)

and bZIP_maf (acting as key regulators of terminal differ-

entiation in many tissues, such as bone, brain, kidney,

lens, pancreas, and retina, as well as in blood). These

transcription factors have not been studied in S. mediter-

ranea and are likely to be important candidates in the

function of specific cell types.

Two types of transcription factors found in 75% of

eukaryotic species listed in the comparative genomics re-

source PhyloPro v2 [53] were not predicted in S. medi-

terranea: AF-4 (a transcriptional activator that has

previously been implicated in childhood lymphoblastic

leukemia, mental retardation, and ataxia [56]) and

Myc_N (a leucine zipper-type transcription factor impli-

cated in cell cycle progression, cell death, and transform-

ation). The loss of this latter transcription factor in

particular suggests that planarians may have adopted an

alternate mechanism of regulating Myc’s canonical roles

in cell proliferation and cell death.

Metabolic reconstruction reveals biochemical pathways

distinct from those of parasitic helminths

Genome-scale metabolic reconstructions provide a power-

ful route to interrogate the metabolic capabilities of an or-

ganism [57–60]. Here we applied an integrated pipeline,

developed in house (see Methods), to compare the meta-

bolic potential of S. mediterranea with those derived from

other helminths, human, and mouse (Fig. 3b). Among

notable pathways present in S. mediterranea but not in

other platyhelminths are several involved in fatty acid me-

tabolism, branched chain amino acid metabolism,

mucin-type O-glycan biosynthesis, and one carbon pool

by folate. The loss of pathways involved in fatty acid me-

tabolism in the parasitic flatworms may reflect their

largely parasitic lifestyles. For example, schistosomes and

cyclophyllidean tapeworms spend much of their life cycle

in glucose-rich environments (blood and small intestine,

respectively) and may therefore have adapted their metab-

olism to optimize glucose and glycogen as main sources of

energy rather than lipids [61, 62]. Focusing on amino acid

pathways, S. mediterranea displays similar auxotrophies as

other helminths; however, a notable exception is branched

chain amino acid degradation, which is largely absent

from other platyhelminths yet appears to function in S.

mediterranea. Conservation of this pathway was surpris-

ing given its role in longevity in C. elegans, because S.

mediterranea exhibits no evidence of aging and is believed

to be immortal [63]. Beyond core metabolic processes, S.

mediterranea appears unique among platyhelminths in

possessing enzymes required for the production of core 1

mucin-type O-glycans. Such production is likely related to

the formation of the mucous secretions that coat the plan-

arian, enabling locomotion, predation, innate immunity,

and substrate adhesion [64]. Finally, our comparisons re-

port the presence of several enzymes required for folate

interconversion which are otherwise absent in parasitic

flatworms. These interconversions provide additional

routes for the production of various folate intermediates

that are used as co-factors in a variety of metabolic pro-

cesses, such as tetrahydrofolates involved in nucleotide

and amino acid biosynthesis [65].

Spatial annotation of S. mediterranea transcripts by

whole-animal scRNAseq

In order to place the annotated transcriptome data in the

context of different tissues, the functional information of

these transcripts was integrated with spatial information

derived from single-cell RNA sequencing (scRNAseq) data

of dissociated planarians obtained using Drop-seq tech-

nology [66]. The scRNAseq data consist of 51,563 tran-

scripts expressed in 2000 cells. Pruning this dataset to

only consider transcripts from our definitive set resulted

in a set of 25,168 transcripts expressed in 2000 cells. The

R package Seurat [67], which uses an unsupervised clus-

tering approach by combining dimensional reduction with

graph-based clustering, was used to cluster the data and

discover cell types and states. Based on the set of most

variable transcripts in the dataset (n = 4586), Seurat clus-

ters 1195 of the 2000 cells into 11 clusters (Fig. 4a). It is

noteworthy that clustering based on the larger set of

51,563 transcripts identified as expressed in the cells reca-

pitulated a similar clustering pattern. Clusters were found

to correspond to specific tissues based on the expression

of previously described tissue-specific genes (Fig. 4b). In

this way, clusters representing epithelial, neural, gut,

muscle, parapharyngeal, and stem cells (neoblasts) were

identified. Four clusters could not be identified based on

previously published planarian gene expression data;

however, two of these clusters displayed high expression

of the cathepsin homolog Smed-CTSL2 and were thus

named cathepsin+ a and cathepsin+ b (Fig. 4c). Cluster 11

displayed enriched expression of Smed-egr-5 and is there-

fore likely an epithelial subtype (discussed further below;

see Fig. 5). Cluster 1 was not specifically enriched for any

markers and displayed scattered expression of both neo-

blast and differentiated tissue markers (Fig. 4b). Its central

location on the t-distributed stochastic neighbor embed-

ding (t-SNE) plot, linking the neoblast cluster to the

various tissue clusters, led us to conclude that Cluster 1

likely represents transient cell states as neoblasts differen-

tiate along different lineages, and this idea is consistent

with recently published scRNAseq studies [29, 30].
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Differential expression analysis and in situ hybridization

demonstrate that the cathepsin+ a/b clusters represent

mesenchymal populations including pigment cells

For the 11 clusters identified by Seurat, cluster markers

are identified on the basis of average differential expres-

sion. This identified a larger set of cluster markers, ran-

ging from 23 for parapharyngeal cells to 627 for

neoblasts (available on figshare https://doi.org/10.6084/

m9.figshare.6852896) [68]. In order to identify the most

distinguishing markers, the set of highly differentially

expressed genes in a cluster with respect to all other

clusters was identified using pairwise assessments of dif-

ferential expression using a Bayesian approach to

single-cell differential expression analysis (SCDE) [69].

This approach builds probabilistic error models for indi-

vidual cells, capturing both over-dispersion (greater vari-

ability than expected) as well as high magnitude outliers

and dropout events, thereby providing a more robust ap-

proach for detecting differential expression signatures.

The clean-up step in this approach is far more stringent

than in Seurat, retaining only ~ 60% of the cells com-

pared to the Seurat pipeline (n = 712). For the 11 clusters

identified by Seurat and 11,538 transcripts expressed in

the cells, transcripts significantly differentially expressed

(q value < 0.05) in 10 out of 11 clusters are considered

putative markers for the cluster (available on figshare

https://doi.org/10.6084/m9.figshare.6852896) [68]. Al-

though there is a larger set of markers detected using Seu-

rat, SCDE also identified unique markers (available on

figshare https://doi.org/10.6084/m9.figshare.6852896) [68].

Differential expression analysis identified a significant en-

richment for a cathepsin L homolog, Smed-CTSL2 (Sme-

dASXL_018694), in the cathepsin+ clusters. Cathepsin L is

a lysosomal cysteine proteinase with roles in antigen pro-

cessing and presentation in humans (http://www.uniprot

.org/uniprot/P07711). Smed-CTSL2 is expressed across the

entire length of the animal in a pattern of branched cells

surrounding the gut (Fig. 4c). Interestingly, re-clustering

only the cells in the cathepsin+ clusters resulted in four dis-

tinct subclusters, each with a set of putative markers identi-

fied by Seurat (Fig. 4d, Additional file 2: Figure S4A). In situ

hybridization of these putative markers demonstrated their

unique expression patterns: Subcluster 1 was expressed

throughout the mesenchyme (although these cells did not

express piwi-1 by scRNAseq) and tightly surrounded the

gut (Fig. 4e, Additional file 2: Figure S4B); Subcluster 2 had

a punctate expression pattern throughout the animal with

randomly localized cell aggregates (Fig. 4e, Additional file 2:

Figure S4B); Subcluster 3 was expressed largely within the

gut (Fig. 4e); and the final subcluster, interestingly, repre-

sented previously described planarian pigment cells based

on the enriched expression of published pigment lineage

Fig. 4 Cluster separation and identification from scRNAseq data. a t-SNE plot of major cell clusters identified by Seurat. b Clusters corresponding
to epithelial progenitors, neoblasts, neurons, gut, and muscles were identified based on the expression of known tissue-specific markers. c t-SNE
plot and in situ hybridization for the cathepsin+ a/b-enriched cathepsin L homolog, Smed-CTSL2. d Re-clustering cathepsin+ a/b cells resolves 4
subclusters, with distinct expression patterns shown in t-SNE plots and by in situ hybridization in e
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Fig. 5 Smed-egr-5 is required for optic cup regeneration. a Heatmap of predicted transcription factors enriched in different clusters: the set of prediction
factors significantly differentially upregulated in at least 4/10 clusters are shown, along with the log2 fold change in expression values and raw counts
from corresponding cells. b t-SNE plot of Smed-egr-5 expression demonstrating specificity to Cluster 11. c Bright field images of Smed-egr-5(RNAi)
animals exhibiting reduced eye pigmentation. d In situ hybridization of tyr-1 and immunohistochemistry for ARR in Smed-egr-5(RNAi) regenerating and
intact animals. Smed-egr-5 knockdown animals regenerated significantly fewer tyr-1+ cells, while intact animals were comparable to controls. Images are
20-μm confocal z-stacks through the left eye. Scale bars = 10 μm. e The majority of Smed-egr-5(RNAi) animals displayed normal photoreceptor neuron
regeneration and reinnervation by ARR staining following head amputation (70%), although some abnormalities were also observed. Images are 40–50
μm confocal z-stacks. Scale bars = 50 μm. f Smed-egr-5(RNAi) and control(RNAi) animals displayed comparable eye regeneration following right eye
resection. Images are 20-μm confocal z-stacks. Scale bars = 50 μm. g At a lower dose of RNAi (3 feeds), Smed-egr-5(RNAi) animals exhibited some optic
cup regeneration at 7 dpa (red arrowheads), which were subsequently lost at later time points. n= 10–20 for all experiments
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markers, such as pbgd-1 (Fig. 4e) [54]. Importantly, markers

for each of these subclusters were found to be co-expressed

to varying degrees in Smed-CTSL2+ cells by double fluores-

cent in situ hybridization (FISH), consistent with the

scRNAseq data (Additional file 2: Figure S4C–F). Interest-

ingly, Subcluster 3 cells also expressed the neoblast marker

piwi-1 by scRNAseq (Additional file 2: Figure S4G). As an

actively cycling population, the neoblast population is lost

following a lethal dose of 6000 rads of irradiation. Likewise,

the mesenchymal component of ctcfl (the Subcluster 3

marker) expression was found to be irradiation-sensitive,

consistent with its partial expression in neoblasts

(Additional file 2: Figure S4H).

Transcription factor analysis reveals cell type-specific

expression

Mapping the 843 transcription factors to each cluster

identified 30 exhibiting differential expression in specific

clusters (significantly upregulated in 8/10 pairwise com-

parisons) (Additional file 4). Clusters that correspond to

muscle, epithelial, and parapharyngeal cell types were

associated with the most (7, 7, and 3, respectively)

cluster-specific transcription factors, reflecting their

generally higher number of differentially expressed tran-

scripts (Additional file 4). Although neoblasts expressed

a high number of transcription factors (n = 8), only 1

was cluster-specific. As expected, the most enriched

transcription factor domains (zf-C2H2 and LIM) were

also the most enriched in the cluster-specific transcripts.

However, it is interesting to note that the Ets domain

was associated with cluster-specific transcription factors

in both epithelial progenitors and Cluster 11, with

similar patterns of expression observed in epithelial

progenitors and Cluster 11.

Aside from cluster-specific transcription factors, we

identified five transcription factors that were abundant and

ubiquitously expressed in all clusters (Additional file 4),

comprising a Linker_histone domain involved in nucleo-

some assembly (SmedASXL_006919), and four CSDs,

which are present in DNA- and RNA-binding proteins,

and implicated in transcriptional regulation.

Analysis of differentially expressed transcription factors

identifies the Cluster 11-specific Smed-egr-5 as a regulator

of optic cup regeneration

Expression of Smed-egr-5 was specific to the unidentified

Cluster 11 (Fig. 5a, b). Previous work on Smed-egr-5

demonstrated a striking homeostatic phenotype in which

worms exhibited tissue regression and ultimately lysed

[70]. Consistent with previous reports, we observed

Smed-egr-5 expression subepidermally across the animal

with enriched expression on the dorsal side (Additional

file 2: Figure S5A) and knockdown of Smed-egr-5 with a

high dose of double-stranded RNA (dsRNA) RNAi food

(2× dose) resulted in the previously described phenotype

(Additional file 2: Figure S5B). dFISH revealed a very

low degree of co-localization between Smed-egr-5 and

the early epithelial progenitor marker prog-2, but nearly

95% of Smed-egr-5+ cells co-expressed the late epithelial

progenitor marker AGAT-1 (Additional file 2: Figure

S5C). Because of the cluster specificity of Smed-egr-5,

we sought to further characterize its function by using a

lower dose of dsRNA (1× dose) to attempt to uncover

further phenotypes. With our 1× RNAi food, we did not

observe major defects in epithelial regeneration in

Smed-egr-5 knockdown animals (Additional file 2: Figure

S5D); rather, we uncovered a new role for Smed-egr-5 in

eye regeneration. After eight feeds of 1× RNAi food, the

new head tissue in Smed-egr-5(RNAi) regenerating

animals appeared to lack eyes (Fig. 5c). To determine

the extent of the missing eye tissue, Smed-egr-5(RNAi)

animals were amputated 3 days after the eighth RNAi

feed (8fd3) and were allowed to regenerate for 10 days.

Regenerating animals were then stained for the optic

cup marker Smed-tyrosinase-1 (tyr-1) as well as

anti-ARRESTIN (ARR), which marks the optic cup,

photoreceptor neurons, and optic nerves. Smed-egr-5(R-

NAi) animals regenerated significantly fewer tyr-1+ optic

cup cells (p < 0.05), and the cells that did regenerate had

noticeably weaker tyr-1 expression (Fig. 5d). There were

no apparent eye defects in homeostatic animals (Fig. 5d).

ARR staining, on the other hand, revealed largely normal

regeneration and reinnervation of photoreceptor neu-

rons, although tissue organization was disrupted in a

minority of animals (Fig. 5d, e). Because tyr-1 and ARR

staining in intact animals appeared largely normal, we

hypothesized that Smed-egr-5 is required specifically

during optic cup regeneration.

To test this hypothesis further, an eye scratch assay

was performed in which the right eye was resected with-

out significant injury to the surrounding tissue. Previous

work has demonstrated that this injury is not sufficient

to illicit a regenerative response from the neoblasts; al-

ternatively, the missing eye is restored by maintaining

homeostatic levels of new cell incorporation and decreas-

ing the rate of cell death [71]. At 14 days following eye

resection, Smed-egr-5(RNAi) animals and control(RNAi)

animals had comparable levels of eye restoration, support-

ing the hypothesis that eye homeostasis is independent of

Smed-egr-5 (Fig. 5f).

Interestingly, when Smed-egr-5(RNAi) animals were am-

putated at an earlier time point of 3fd3, optic cup regener-

ation was observed at 7 days post-amputation (dpa);

however, these cells were subsequently lost at later time

points post-amputation (Fig. 5g). The time-sensitive

nature of this phenotype suggested that Smed-egr-5 may

be involved during the earliest stages of optic cup differen-

tiation: optic cup progenitors that are still remaining after
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three RNAi feeds are capable of differentiating, but at later

time points this progenitor population becomes exhausted

and optic cup regeneration ultimately fails. From these data

we hypothesize that Smed-egr-5 plays a role in the produc-

tion of optic cup progenitors. Thus, the lack of an observ-

able homeostatic phenotype may simply be a consequence

of the slow turnover of optic cup cells, and it remains

possible that optic cup homeostasis may fail at later time

points post-RNAi. Further studies at the neoblast level

will help to elucidate the precise mechanisms by which

Smed-egr-5 promotes proper optic cup regeneration.

Systematic analysis of enriched Gene Ontology terms

recapitulates cluster cell types

To provide deeper insights into functional properties

associated with each cluster, we performed a GO enrich-

ment analysis. GO mappings for 5900 transcripts

expressed in the clusters were obtained through se-

quence similarity searches of putative homologs with

GO annotations from model organisms H. sapiens, Mus

musculus, C. elegans, Danio rerio, and D. melanogaster.

Although these 5900 transcripts capture only ~ 10% of

all transcripts identified in the scRNAseq data, statisti-

cally enriched terms were found to complement the

previous marker gene analysis, with five of ten clusters

consistent with previous cluster definitions: muscle,

neural1, neural2, neoblast, and epithelial progenitors

(Fig. 6a, Additional file 5). For example, the top ten

enriched terms for muscle include terms such as struc-

tural constituent of muscle, muscle contraction, and

muscle thin filament tropomyosin; neoblast is associated

with many terms related to chromosomes and DNA rep-

lication, reflecting the high turnover associated with

these cells; epithelial is enriched in terms related to

endoplasmic reticulum, likely reflecting protein secretion

associated with mucoid tissue [72]; and neural1 and 2,

although displaying fewer enriched terms than the other

tissues, are largely associated with neural functions. Our

ability to identify similar consistent patterns of annota-

tions in other clusters is probably limited due to the

unavailability of specific GO terms for certain cell types

(e.g., parapharyngeal) or due to lower numbers of cells

(e.g., < 20 for gut cells) and significantly differentially

expressed transcripts in these clusters.

Analyzing correlated gene expression across cell

populations reveals transcriptional similarities between

distinct cell clusters

In order to identify the set of known/novel subpopula-

tions of cells sharing co-expressed sets of transcripts, we

applied the Pathway and Geneset Overdispersion

Analysis (PAGODA) component of the SCDE package

[73]. This method identifies both the set of GO terms

(assigned based on 1:1 orthologs of human) as well as de

novo transcript sets consisting of well-correlated gene

expression profiles. In this method, since multiple GO

terms and de novo gene sets may comprise a common

set of genes, clusters sharing the same set of genes are

combined to arrive at a final set sharing coordinated

variability in expression among the measured cells.

Our analysis reveals a set of four non-redundant clus-

ters, two of which are shown in Fig. 6b. Note, while cell

labels were not used during PAGODA, hierarchical

clustering of the significantly correlated modules largely

recapitulated the patterns of cell clustering generated by

the Seurat analysis, especially for muscle, epithelial pro-

genitor, and neural cells. Indeed, epithelial progenitor

cells display the most distinct pattern of coordination,

which PAGODA associates with Cluster 11 cells. The

hierarchical clustering also places the gut and cathepsin

+ cells together, suggesting that they share transcription-

ally co-regulated transcripts. One of the clusters corre-

sponds to a set of cytoskeletal-related proteins in

epithelial progenitor cells, as it is enriched in actins, dy-

neins, and FERM-domain-containing protein (found in

several cytoskeletal-associated proteins [74]). The cluster

also consists of several unannotated proteins, suggesting

their likely involvement in cytoskeleton-related aspects.

Although cytoskeletal-related proteins are found in all

eukaryotic cells, they are likely to be enriched in epithe-

lial cell types given the role of the cytoskeleton in epi-

thelial cell polarity and intracellular trafficking [75, 76].

Although the second “cathepsin+ specific” cluster con-

sists of proteins annotated to be involved in the lipid

metabolic process in the lysosome [77, 78], phosphoryl-

ation/dephosphorylation [79], and cytoskeletal processes,

it is unclear as to why these transcripts are co-expressed,

opening up novel avenues for experimental interroga-

tion. Reassuringly, Smed-CTSL2 and SmedASXL_009754

(encoding the cathepsin domain) are also identified in

this cluster, emphasizing its abundant and unique ex-

pression in these cells.

scRNAseq data reveal tissue-specific patterns of metabolic

pathway expression

The availability of cell-specific expression profiles gener-

ated through scRNAseq raises the intriguing possibility

of identifying tissue-specific expression patterns for

metabolic enzymes. Applying the hypergeometric test to

mean enzyme expression (calculated using SCDE) for

each cluster allowed the identification of significantly

upregulated or downregulated metabolic pathways, as

defined by the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [80] (Additional file 6). Consistent

with expectations, neoblasts were identified as the most

metabolically active cell type followed by muscle and

epithelial progenitors (Fig. 7a). The most significantly

upregulated pathways are glycolysis/gluconeogenesis in
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Fig. 6 (See legend on next page.)
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(See figure on previous page.)
Fig. 6 Co-expressed sets. a Heatmap depicting the top 20 GO terms significantly enriched in each cluster along with the average expression of
transcripts per GO term. The total numbers of statistically significant comparisons and upregulated transcripts for each GO term are also indicated
alongside. b Unlabeled hierarchical clustering of cells based on GO gene sets and de novo gene sets consisting of significantly co-expressed
offsets of transcripts with very similar gene expression profiles, generated using PAGODA. Two of the most significantly co-expressed modules are
indicated, along with the changes in their expression

A

B

Fig. 7 Differential expression of metabolic pathways in clusters. a Distribution of significantly upregulated and downregulated enzymes in each
cluster based on pairwise comparisons of log2 fold change in expression between clusters. b Schematic of differential expression in purine
metabolism in neoblast and neural cell types
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muscle (13/21 enzymes upregulated), supporting an

increased need for energy production, and purine

metabolism in neoblast (25/35 enzymes upregulated)

and neural2 (9/35 enzymes upregulated) cell types

(Additional file 6). The purine metabolites adenine and

guanine can be synthesized in two distinct pathways: the

de novo pathway from CO2, glycine, glutamine, aspar-

tate, N10-formyltetrahydrofolate and ribose-5-phosphate,

starting with phosphoribosyl pyrophosphate (PRPP) and

ending in inosine monophosphate (IMP) synthesis; and

the salvage pathway, which recycles purine bases by deg-

radation of nucleic acids and nucleotides (Fig. 7b). The

purine nucleotides adenosine monophosphate (AMP),

guanosine monophosphate (GMP), and xanthosine

monophosphate (XMP) are synthesized from IMP. The

corresponding trinucleotides lead to generation of intra-

cellular secondary messengers, such as cyclic AMP

(cAMP) and cyclic GMP (cGMP). Conversely, the purine

nucleotide monophosphates can also be generated by

the salvage pathway, by attaching free purine bases to

PRPP: via the hypoxanthine-guanine phosphoribosyl-

transferase (HGPRT) enzyme for IMP, XMP, and GMP

synthesis and adenine phosphoribosyltransferase (APRT)

for AMP synthesis. As expected, several enzymes of the

de novo pathway are upregulated in neoblasts, along

with HGPRT of the salvage pathway; however, synthesis

of secondary messengers is downregulated. In contrast,

there is a significant upregulation of enzymes producing

cAMP and cGMP in cells of the neural2 cluster. It is

worth noting that neoblasts, in addition to upregulated

purine metabolism, are also enriched for pyrimidine me-

tabolism (21/24 enzymes) and one carbon pool by folate

(10/11 enzymes upregulated). The enriched synthesis of

folate derivatives likely provides the carbon units power-

ing the de novo synthesis of purines and pyrimidines.

Discussion
In this study, starting with an initial set of 83,469 tran-

scripts, we used a hierarchical tiered approach based on

protein prediction algorithms of varying stringency and

genome assembly mapping to define a high-confidence

set of 35,232 transcripts, with 33,487 transcripts (~ 95%

of transcriptome) mapping to 20,483 loci associated with

the recently published dd_Smes_g4 S. mediterranea gen-

ome [10]. The number of mapped loci is consistent with

the number of gene models supported by RNA sequen-

cing (RNAseq) data (n = 19,794) for the closely related

regeneration-competent flatworm Macrostomum lignano

[81], supporting the quality of the filtered transcriptome.

The usage of a tiered approach, which differs from that

used to generate other integrated transcriptomes, i.e.,

PlanMine [19], Oxford [14], and SmedGD [9], reveals

that there are 5% unique transcripts in the Toronto tran-

scriptome — of which 20% are supported by homology

mapping and 74% by genome assembly mapping, adding

to the existing S. mediterranea repertoire. Further, as-

sessment of transcriptome completeness in terms of core

eukaryotic and metazoan gene sets as defined by BUSCO

v1 [38] reveals that, although the Toronto and PlanMine

transcriptomes have the greatest coverage (81% of “core”

eukaryotic genes, 78% of “core” metazoan genes), the

Toronto dataset also comprises the fewest duplicates in

comparison. However, we note that this could also be an

artifact of transcript length, potential fusion products

from mis-assembly, or spliceoforms, which we did not

assess and may be superior in other datasets.

A systematic and comparative bioinformatics analysis

of the Toronto transcriptome with the genomes of hu-

man, mouse, C. elegans, and close platyhelminth relatives

reveals an abundance of transposase-related domains

(270 transcripts; DNA transposons of type DDE_1 and

DDE_Tnp_1_7), MATH domains (99 transcripts; matrix

metalloproteases and TNF-receptor associated factors)

and cadherins (100 transcripts) in the planarian. Al-

though the presence of transposable elements is corrob-

orated by previous studies in S. mediterranea [82–84]

and the basal flatworm M. lignano [81], it is important

to note that they are expressed at low RPKM and only a

small percentage appear active. Of the 99 transcripts

with MATH domains, most are likely to be homologs of

TRAF proteins, involved in signal transduction, on the

basis of their top homologs. In light of studies support-

ing the role of homologs of human TRAF-3 and

TRAF-6 proteins in immune response in the closely re-

lated planarian Dugesia japonica [85], the repertoire of

putative TRAF proteins identified in this study provides

candidate transcripts that can be tested for their role in

planarian immunity. Cadherins are involved in regulat-

ing cell-cell adhesion, morphogenesis, and cell recogni-

tion [51, 52], with additional roles in cellular positioning

and maintenance during and after development [86].

Phylogenetic analysis of putative cadherins obtained

from humans, S. mediterranea, and other helminths

predicts SmedASXL_013539 to be a calsyntenin-like

protein, an ortholog of CASY-1 in C. elegans, which has

been shown to be essential for learning [87], and

CLSTN-1 and CLSTN-2 in humans, implicated in

axonal anterograde transport and modulation of

post-synaptic signals [88]. Functional characterization of

these genes by RNAi may provide novel insights regard-

ing immunity and learning, respectively, in planarians.

Our current understanding of S. mediterranea metabol-

ism is limited [89]. Here we used an established enzyme

prediction pipeline [90] to perform a metabolic reconstruc-

tion for S. mediterranea. Comparative analyses with other

flatworms reveal that S. mediterranea encodes pathways

for alternate sources of energy production, such as fatty

acid metabolism and branched chain amino acid
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degradation. Our analyses also identified enzymes respon-

sible for core 1 mucin-type O-glycosylation (notably absent

in parasitic flatworms), which may be involved in the

formation of the mucous coating, which is involved in

locomotion, predation, innate immunity, and substrate

adhesion [64].

Several studies have analyzed the role of transcription

factors in S. mediterranea — involving pigmentation [91],

gametogenesis [92], epidermal lineage differentiation [93],

regeneration [94], and glial cells [95]. Interestingly,

Scimone et al. combined RNA sequencing of neoblasts

from wounded planarians with expression screening to

identify 33 transcription factors and proposed that cell fate

for almost all cell types is decided by expression of distinct

transcription factors in the neoblast cells [55]. In this

study, we used a combination of profile-based approaches

to predict 841 putative transcription factors in S. mediter-

ranea. A comparative analysis of putative transcription

factors with other eukaryotic species reveals that tran-

scription factor classes belonging to zf-C2H2, Homeobox,

zf-BED, bZIP, and HLH are well represented in most

species. Several others, such as CSD, Ets, and bZIP-map,

well represented in S. mediterranea and vertebrates, have

not been studied in the planarian. Studying these tran-

scription factors in S. mediterranea might provide insights

into the understanding of the regeneration process.

Several whole-organism as well as tissue-specific bulk

RNAseq analyses investigating gene expression differ-

ences between two or more treatment conditions have

been undertaken in S. mediterranea. To date, 32

RNA-seq/transcriptome datasets are currently available

through the NCBI Gene Expression Omnibus (GEO).

These experiments provide insights into factors required

for restricting injury responses in planarians [96], signal-

ing in planarian glia [95], tissue embryogenesis, homeo-

stasis, and regeneration [97], and transcriptional changes

in neoblasts [98]. However, recent developments in

scRNAseq technology [99] have provided a novel ap-

proach to more directly assess functional differences be-

tween different cell populations [100, 101]. Recently,

scRNAseq has been adopted by studies in S. mediterranea.

A comprehensive study by Wurtzel et al. [26] https://

doi.org/10.1016/j.devcel.2015.11.004 using smart-seq2

scRNAseq technology on 619 cells predicted 13 distinct

cell clusters and defined 1214 unique tissue markers. This

landmark study showed that a generic wound response

transcriptional program is activated in almost all cells irre-

spective of the injury, with most wound-induced genes

expressed in muscle, epidermis, and stem cells [26]. A

comparison of the cluster markers in our study with those

from Wurtzel et al. [102] shows that, although the major-

ity of the cluster markers are shared for muscle (109/122),

neural (67/74), and neoblast (87/94) cells, several unique

cluster markers are found from this study. Further, Cluster

11 shares 105/133 cluster markers with epithelial cell

types, consistent with the presence of AGAT-1+ Sme-

d-egr-5+ cells in this cluster (Additional file 7).

In this study, to better understand the dynamics of the

transcriptome in a spatial context, we applied scRNAseq

to ~ 2000 cells, from which 25,168 transcripts were identi-

fied as expressed in at least one cell. Cluster analysis re-

vealed 11 major clusters, with marker mapping identifying

them to be associated with muscle, neural, neoblast,

epithelial, and gut tissues, as well as a large cluster of cells

likely representing transient transition states during

neoblast differentiation (Cluster 1). Further, three novel

clusters were identified: two cathepsin+ clusters consisting

of four distinct mesenchymal cell types and a Smed-egr-5+

cluster involved in optic cup regeneration. Reassuringly,

the cell types of four clusters — muscle, neural, neoblast,

and epithelial cells — were recapitulated on the basis of

GO term assignments from 1:1 orthologs of model organ-

isms for the most differentially enriched transcripts in

these clusters, demonstrating the ability to identify cell

types solely on the basis of enrichment of GO terms if

GO term assignments are available for differentially

enriched transcripts. Differential expression analysis of

transcription factors in these clusters identified several

cluster-specific factors likely associated with driving the

morphogenesis and maintenance of tissue-specific bio-

chemical processes. Analyzing the differential expres-

sion of metabolic pathways in these clusters identified

neoblast cells as the most metabolically active cell type

in S. mediterranea, with highly upregulated purine and

pyrimidine metabolism and folate interconversions for

providing the key metabolic precursors for nucleotide

production. Analysis of purine metabolism with respect

to different cell types revealed additional cell-specific

patterns of expression, including the upregulation of

both de novo and salvage biosynthetic pathways in neo-

blast cells, as well as the upregulation of intracellular

secondary messengers involved in neuronal signaling.

Furthermore, our study revealed four cadherin and two

MATH domain proteins to be significantly upregulated

in neoblast cells, whereas one cadherin and four

MATH domain proteins are significantly upregulated in

neural cells, providing testable hypotheses for learning

more about immunity and learning in planarians.

It should be noted that during the revision of this manu-

script, two new studies describing single-cell sequencing in

S. mediterranea were published [29, 30]. Reassuringly,

despite these new studies generating sequence data from

~ 22,000 and ~ 67,000 cells respectively, the results pre-

sented in both papers are consistent with our own findings.

For example, our finding that pigment cells form a sub-

cluster within the larger cathepsin+ cluster is consistent

with the subclustering analysis performed in the Fincher

study, in which pbgd-1 was found to mark a specific
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cathepsin+ subcluster [29]. Further, saposinB-2, which we

found to be a specific marker for the cathepsin+ subcluster

2, is expressed in a cathepsin+ subcluster from the same

study. This suggests that smaller scale datasets, such as the

one presented here, are sufficient to recapitulate many of

the conclusions of larger-scale studies and consequently

represent a valuable experimental template to assay specific

RNAi phenotypes with single-cell sequencing in the future.

Conclusions
Here we present a definitive set of transcripts for the

freshwater planarian Schmidtea mediterranea. We further

annotate all genes with identifiable homology and identify

gene family expansions and losses. Interestingly, TRAF

proteins have been disproportionately increased, while

Myc and AF-4 transcription factors are absent. A

genome-scale metabolic reconstruction was then per-

formed to identify metabolic pathways conserved in platy-

helminths, those that have been lost in parasitic flatworms

and those that represent lineage-specific innovations in S.

mediterranea. Sequencing transcripts associated with

2000 individual cells identified cell types by differential

gene expression and further revealed additional genes and

pathways specific to each cell type. These analyses also

uncovered a novel cell type associated with a novel mesen-

chymal cell population. In summary, these analyses build

a foundation of cell types and gene conservation profiles

that will inform future gene function studies.

Methods

Culturing of S. mediterranea, in situ hybridization, and

RNA interference

Asexual individuals of S. mediterranea CIW4 strain were

reared as previously described [103]. In situ hybridization

was performed as previously described [18, 104]. RNAi

was performed as previously described [54], with either

three or eight feeds as indicated in the text.

Generating a high-confidence S. mediterranea transcriptome

The initial transcriptome of 83,469 transcripts was an

assembly collated from five separate experiments and

more than 1 billion RNA-seq reads from whole animals,

purified tissues, RNAi conditions, and irradiated whole

animals [18, 31–33] (NCBI Bioproject PRJNA215411).

The resulting transcriptome was filtered using various

criteria in order to arrive at a high-confidence set of pu-

tative protein-coding transcripts (Fig. 1a). As a first step,

likely contaminants were identified by a BLASTn (from

BLAST+ 2.2.28) [40] search against the protein nucleo-

tide (nt) database (2016) [105] to remove sequences

matching other species at a sequence identity and query

coverage cutoff of 95% (n = 237) as well as those matching

vector sequences (n = 8). Next, likely mis-assembled tran-

scripts were removed by identifying all transcripts with ≥ 25

unmapped bases to the transcriptome (n = 2387). Cluster-

ing approaches did not reduce the initial transcriptome to

the expected range observed in regeneration-competent

species such as M. lignano and D. japonica, suggesting the

presence of contaminants, misassembled transcripts, split

transcripts, alternative splice variants, and/or leaky tran-

scripts. Therefore, the initial transcriptome was scrutinized

via a multi-layered approach to identify potential

protein-coding transcripts. The transcriptome was parsed

through the prot4EST v3.1b [106] pipeline, an inte-

grated approach which overcomes deficits in training

data in order to convert transcripts into proteins. This

multi-tiered program identifies coding transcripts in

various stages. The first step identifies homologs of

known RNA and protein sequences using the BLAST

suite [40] — BLASTn (from BLAST 2.2.28) against the

SILVA database (release 115) [107] at an E-value of 1e-65

for identifying RNA transcripts, BLASTx against the Mito-

Miner database (v3.1) [35] at an E-value of 1e-08 and

against the UniProt database [34] at an e value of 1e-05

for identifying mitochondrial and nuclear transcripts,

respectively. From the remaining transcripts, the sec-

ond step identifies likely protein-coding transcripts

using ESTscan [v3.0.3] [39], a hidden Markov model

(HMM)-based model trained to be error-tolerant, using

a simulated S. mediterranea training set. Finally, the

remaining transcripts are processed to identify the

longest string of amino acids uninterrupted by stop co-

dons from a six-frame translation of the sequence

(LongestORFs). From the set of categorized transcripts,

all transcripts with query coverage spanning two thirds

of the reference sequence in RNA/mitochondrial/nu-

clear databases are retained. The rest of the transcripts

are retained only if there is any support in terms of the

following: (1) homology with respect to conserved

eukaryotic gene sets (CEGMA v2.5 [37] and BUSCO

v1.1 [38] using BLASTx at an E-value of 1e-08) and

other helminth transcriptome EST datasets obtained

from the NCBI (B. glabrata, C. sinensis, C. gigas, D. ja-

ponica, D. ryukyuensis, E. granulosus, E. multilocularis,

H. robusta, H. medicinalis, H. microstoma, M. lignano,

M. californianus, O. viverrini, S. japonicum, S. mansoni,

T. solium) using BLASTn at an E-value of 1e-15; (2) an-

notation by InterPro [36] at an E-value of 1e-03; and

(3) co-location of the draft S. mediterranea genome

with ESTs from NCBI, transcripts from the Oxford

dataset (v0.1) [14], or transcripts from SmedGD v2.0

using Spaln v2 [41] at a stringency filtering of F2

(corresponding to alignment length > 200 bp, sequence

identity ≥ 93%, query coverage ≥ 93%).

Comparison with PlanMine genome and transcriptome

The Toronto transcriptome was mapped onto the Plan-

Mine genome [10] using Spaln v2 [41] at stringency
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filtering cutoffs corresponding to F2 (sequence identity

≥ 93%, query coverage ≥ 93%) and F1 (sequence identity

≥ 75%, query coverage ≥ 75%) in order to identify the

extent of overlap. Subsequently, the transcriptomes

were compared using BLASTn [40] searches against

each other using a relaxed word size (n = 7) in order to

improve the stringency of the searches. BLASTn

matches of the Toronto transcriptome to the PlanMine

transcriptome were pruned based on the nearest bit

score cutoff corresponding to the number of overlap-

ping matches to the genome identified at F1 cutoff

(corresponding to a bit score value ≥ 40). Based on this

cutoff, matches were identified between the Toronto,

PlanMine, Oxford, and SmedGD transcriptomes.

Functional annotation of the transcriptome

The predicted protein sequences generated from the

high-confidence transcriptome were functionally anno-

tated by (1) HMM searches against the curated Pfam-A

database v31 using the PfamScan tool with hmmer-3.1b1

[44] at default cutoffs. Only those matches with an E-value

cutoff of < 0.001 were considered for further analysis; (2)

InterProScan v5.15.54.0 [108] searches against profiles

from High-quality Automated and Manual Annotation of

Poteins (HAMAP), ProDom, Protein Information

Resource SuperFamily (PIRSF), Simple Modular Architec-

ture Research Tool (SMART), Pfam, Gene3D, Coils,

Prosite, TIGRFAM, PRINTS, and Superfamily databases;

and (3) GO annotation based on Interpro2GO (2016)

mappings [109].

RPKM calculation

The expression levels of the transcripts were calculated

by mapping the reads from 58 RNA-seq results (listed as

the column headers under the RPKM section in

Additional file 1) onto the initial transcriptome using

Burrows-Wheeler Aligner (BWA) [110] and obtaining

the number of reads mapped for each transcript. The

normalized expression levels were quantified in RPKM

units for each transcript for each RNA-seq experiment

using the formula:

RPKM=Number of Reads/(Transcript Length/1000 *

Total Num Reads/1,000,000) where Total Num Reads

consisted only of those transcripts with ≥ 10 reads mapped

to them in a sample. Next, the mean, standard deviation,

and median RPKM values for each transcript were calcu-

lated based on the number of RNA-seq experiments

where the transcript was expressed. The mean values of

all transcripts in the definitive transcriptome were used to

derive a percentile distribution of RPKM values, which is

used as a guide to derive the average level of expression of

a transcript (low < 50th percentile, high > 20th percentile,

medium ≤ 20th percentile and ≥ 50th percentile).

Phylogenetic analysis of cadherins

A set of 94 S. mediterranea transcripts with predicted cad-

herin domains from Pfam-A [44] at an E-value < 0.0001

were collected. 1:1 orthologs of these transcripts were iden-

tified using Inparanoid v2.0 [111] for C. elegans (n = 3), E.

granulosus (n = 24), E. multilocularis (n = 23), G. salaris

(n = 16), H. nana (n = 24), S. haematobium (n = 21), S.

mansoni (n = 20), T. solium (n = 37), O. viverini (n = 21),

and C. sinensis (n = 22). A set of 176 Ensembl [112]

isoforms annotated as cadherins were also retrieved. A

non-redundant set from the set of 481 sequences was

generated using the online version of CD-HIT (weiz

hongli-lab.org) [113] at 50% sequence identity cutoff,

yielding 249 clusters. From each cluster, only the lon-

gest sequence was retained, unless they were helminth

sequences, leading to 331 sequences. These sequences

were aligned using the Multiple Alignnment using Fast

Fourier Transform (MAFFT) web tool (https://

mafft.cbrc.jp/alignment/software/) [114] and trimmed

using trimAl 1.4 [115] (with the -gappyout setting) and

a maximum likelihood phylogenetic tree constructed

using PhyML package v20140412 [116] with 1024 boot-

strap replicates.

Enzyme annotation of the predicted proteome

For each of the predicted protein sequences, an initial set

of enzyme commission (EC) predictions was obtained from

several methods: (1) density estimation tool for enzyme

classification (DETECT) v1.0 run using default parameters

(here we retained hits with Integrated Likelihood Score

(ILS) cutoff ≥ 0.9 from the top predictions file which also

had ≥ 5 positive hits) [57]; (2) BLASTP (from BLAST+

2.2.28) run against the Swiss-Prot database (release

2014-08) at an E-value cutoff of 1e-10; the enzyme annota-

tions of top hits in the Swiss-Prot database were mapped

to the query sequence [40]; and (3) PRIAM enzyme rel.

Feb-2014 run using relaxed cutoffs specified for

genome-wide annotations of organisms (minimum prob-

ability > 0.5, profile coverage > 70%, check catalytic -

TRUE) [58]. From these assignments, a set of consolidated

high-confidence predictions was derived using in-house

scripts by retaining only those predictions identified by

both PRIAM and BLASTP and combining them with the

predictions from DETECT. Percent pathway conservation

was calculated for the set of metabolic pathways as defined

by KEGG v70 [80] using the following formula: (Number

of predicted ECs in a KEGG pathway × 100)/Total number

of ECs in the KEGG pathway.

Transcription factor prediction

The InterProScan v5.15.54.0 [108] outputs for all 35,235

high-confidence predicted protein sequences were

scanned as follows in order to identify a set of putative

transcription factors: (1) InterProScan hits with the
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description “transcription factor”, (2) InterProScan hits

to the Pfam families listed in the curated transcription

factor database DNA-binding domain (DBD) v2.0 [117],

(3) InterProScan hits to the Superfamily families listed

in DBD v2.0. The hits from all of the above criteria were

consolidated to arrive at the final predicted set of tran-

scription factors for the organism.

Transposon analysis

RepeatMasker (2013) was used to predict repeats for the

SmedAsxl genome v1.1. All transcripts assigned DDE

transposase domains were mapped onto the masked

SmedAsxl genome with the F2 cutoff of Spaln v2 [41]

and searched for the presence of repetitive elements. For

repetitive elements found within the mapped region,

sequence regions flanking 1000 bp on either side of the

repetitive element were extracted and its sequence

divergence with the consensus of the repeat element

calculated using the Needleman-Wunsch algorithm from

the European Molecular Biology Open Software Suite

(EMBOSS) package. A histogram of the extent of se-

quence divergence was analyzed in order to identify

likely active elements, characterized by sequence diver-

gence ≤5% from consensus element [118].

Generation of single-cell RNA-seq data

For single-cell RNA sequencing, a whole-animal cell

suspension (in calcium-magnesium-free (CMF) + 10%

glucose solution) was stained with the cell viability dye

calcein (0.2 μg/ml), and calcein-positive cells were

collected by fluorescence-activated cell sorting (FACS).

Cells were then processed through a Drop-seq instru-

ment and complementary DNA (cDNA) libraries were

prepared as described in [66]. Libraries were sequenced

on an Illumina NextSeq500 to a total depth of ~ 480

million reads. The data are available at the NCBI GEO

database under accession number GSE115280 (https://

www.ncbi.nlm.nih.gov/gds/?term=GSE115280) [119].

Reads were aligned to the S. mediterranea SmedASXL

transcriptome assembly under NCBI BioProject

PRJNA215411 using Bowtie2 with 15-bp 3′ trimming.

Identification of clusters and cluster markers using Seurat

To identify cell clusters enriched for transcriptionally

co-expressed profiles, single-cell RNA-seq data were proc-

essed against the definitive Toronto transcriptome using

the Seurat [67] pipeline while considering the standard de-

fault quality cutoffs optimized for a dataset of size ~ 3000

cells, i.e., min.genes = 200, min.cells = 3, tot.expr = 1e4.

The resolution parameter in the FindClusters function

was varied from 0.4 to 4, and a resolution of 1 was chosen

as it yielded the most visually distinct clustering pattern.

In Seurat [67], cluster markers were identified using the

FindAllMarkers function of the Seurat pipeline by

considering transcripts that are expressed in at least

25% of the cells in the cluster, with an average expression

≥ 25% in comparison to their expression in all other

clusters. The significance of the differential expression is

calculated using the “bimod” likelihood-ratio test for

single-cell gene expression [120] for all cells in one cluster

vs all other cells and expressed as p values.

Differential expression of transcripts and identification of

cluster markers in SCDE

Differential expression of transcripts between clusters

was calculated using the SCDE R package, which

employs a Bayesian approach to single-cell differential

expression analysis [69], considering only those cells

with a minimum library size of 500, and only those

transcripts mapping to ≥ 10 reads and detected in ≥ 5

cells, since this yielded at least ten cells per cluster. Dif-

ferential expression was calculated for all-vs-all pairwise

combinations of clusters classified using Seurat, and the

log2 fold change and p values were noted. All transcripts

that are significantly upregulated in 9/10 pairwise com-

parisons are considered as cluster markers.

Hypergeometric test for KEGG metabolic pathways

The enrichment of differentially expressed transcripts

(both upregulated, corresponding to a log2 fold change

> 1; and downregulated, corresponding to a log2 fold

change < − 1, according to SCDE) was assessed using

a hypergeometric test (using the phyper function in

R) for all pairwise combinations of clusters classified

using Seurat. All KEGG pathways with a p value < 0.05

were considered to be enriched.

Hypergeometric test for analyzing enrichment of Gene

Ontology terms

Gene Ontology (GO) refers to a database providing a

structured vocabulary for annotating genes [43]. The

genes are annotated using specific biologically relevant

terms corresponding to three main categories: Biological

Process (BP), Molecular Function (MF), and Cellular

Compartment (CC). Schmidtea transcripts were anno-

tated with the GO terms from 1:1 orthologs from five

model organisms: H. sapiens, M. musculus, D. rerio, C.

elegans, and D. melanogaster, as identified by Inparanoid

(annotations downloaded from GO website http://gene

ontology.org/page/download-annotations). The annota-

tions were transferred for GO terms designated by all

methods other than Inference by Electronic Annotation

(non-IEA) on the basis of Inparanoid mapping, using

in-house scripts. The enrichment of significantly upregu-

lated transcripts associated with the GO term (log2 fold

change > 1 calculated using SCDE) was assessed using a

hypergeometric test (using the phyper function in R) for

all pairwise combinations of clusters classified using
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Seurat. All statistically significant GO terms associated

with more upregulated transcripts than downregulated

transcripts and containing at least two significantly up-

regulated transcripts were considered to be enriched.

Identifying co-expressed modules in cell types

Using the Pathway and Geneset Overdispersion Analysis

(PAGODA) component of the SCDE package [73], the

set of co-expressed gene sets characterized by statisti-

cally significant coordinated variability in sets of cells

was identified. For the pre-defined gene sets, GO term

annotations assigned based on 1:1 Inparanoid orthologs

of H. sapiens were considered. The initial dataset was

cleaned using parameters similar to those used for SCDE,

i.e., min.genes = 500, resulting in a set of 11,542 transcripts

and 720 cells. The k nearest neighbors (KNN)-based error

modeling step was carried out by considering 11 subpopu-

lations (for the 11 Seurat clusters). The results were viewed

in the PAGODA application.
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