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We describe a multi-omic approach to understanding the effects that the anti-malarial drug

pyrimethamine has on immune physiology in rhesus macaques (Macaca mulatta). Whole

blood and bone marrow (BM) RNA-Seq and plasma metabolome profiles (each with over

15,000 features) have been generated for five naïve individuals at up to seven timepoints

before, during and after three rounds of drug administration. Linear modeling and Bayesian

network analyses are both considered, alongside investigations of the impact of statistical

modeling strategies on biological inference. Individual macaques were found to be a major

source of variance for both omic data types, and factoring individuals into subsequent

modeling increases power to detect temporal effects. A major component of the whole

blood transcriptome follows the BM with a time-delay, while other components of variation

are unique to each compartment. We demonstrate that pyrimethamine administration

does impact both compartments throughout the experiment, but very limited perturbation

of transcript or metabolite abundance was observed following each round of drug

exposure. New insights into the mode of action of the drug are presented in the context

of pyrimethamine’s predicted effect on suppression of cell division and metabolism in the

immune system.

Keywords: pyrimethamine, bone marrow, peripheral blood, axes of variation, bayesian network inference, principal

component analysis (PCA)

INTRODUCTION

The Malaria Host-Pathogen Interaction Center (MaHPIC) has

initiated a systems biology program to understand the course

of events and mechanistic processes that occur in the biology

of infected non-human primates (NHPs) and Plasmodium par-

asites over the course of malaria episodes. The long-term goal

is to advance the development of interventions for this major

global parasitic disease (WHO World Malaria Report, 2013).

This research program investigates how NHP-infective species of

Plasmodium that model human malaria caused by P. falciparum

and P. vivax elicit various host responses, develop immunity,

adopt immune-avoidance strategies, and cope with anti-malarial

drugs (Galinski et al., 2013; Wright and Rayner, 2014). We

are integrating diverse data types, including transcriptomics,

metabolomics, lipidomics, proteomics, and innate and adap-

tive immune profiles and performing cross-species comparisons

with multiple different host-parasite infection model combina-

tions. There are many gaps in knowledge relating to Plasmodium

infections including the immune response, the mechanisms of

malaria pathogenesis and multiorgan dysfunction, the adverse

impact on the bone marrow (BM) progenitors and the dynam-

ics of co-infections (Hafalla et al., 2011; Schwenk and Richie,

2011; Frevert and Nacer, 2013; Stanisic et al., 2013). The NHP

models being studied enable more rigorous experimentation

and in-depth analyses than are possible from direct investi-

gations in humans (Deye et al., 2012; Tachibana et al., 2012;

Moreno et al., 2013) and they are well-suited for systems biology

approaches.

In this study, we establish logistics and procedures that lay

the foundation for studies of rhesus macaques (Macaca mulatta)

inoculated with infectious Plasmodium parasites, following which

intermittent antimalarial drug intervention may be required. The

data presented here serve as pilot data, with inoculations consist-

ing of Anopheline mosquito salivary gland preparations lacking

sporozoites, and the analyses begin to show how multiple diverse

datasets can be integrated. We present multi-omic data analy-

ses using top-down approaches to the integration of RNA-Seq

derived transcriptome data from the BM and peripheral blood
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(PB), as well as plasma metabolite data, and complete blood

cell count (CBC) parameters. These data types were obtained

during a 100-day period, at specific timepoints before and after

pyrimethamine administration to five rhesus macaques.

By top-down integration, we mean statistical and machine-

learning strategies that are naïve to the known biochemical anno-

tation of the transcript and metabolite features (Bang et al., 2008;

Giuliani et al., 2014). Our approach is to use principal compo-

nents analysis (PCA) to describe the major sources of variance

(among individual animals or temporal) in each data type, and

then to seek correlations between the major components across

data types (Boedigheimer et al., 2008). We perform standard dif-

ferential gene expression analysis, also asking how the statistical

modeling strategy and data reduction influence identification of

drug-responsive genes, and employ gene set enrichment analysis

to identify pathways of interest. In an attempt to overcome the

limitations of orthogonal PCA, particularly in the context of a

relatively small experiment, we ask whether biologically derived

axes of variation that are known to consistently capture PB vari-

ation in humans, are conserved in macaques and covary with

drug treatment. A bottom-up strategy, starting with known cel-

lular and biochemical pathways from the Kyoto Encyclopedia of

Genes and Genomes (KEGG: Kanehisa and Goto, 2000; Kanehisa

et al., 2014), is contrasted and used to help draw more inferences

about the physiological impact of pyrimethamine particularly

on the BM. Finally, Bayesian network analysis (Bumgarner and

Yeung, 2009; Pei and Shin, 2012) is also applied as an orthogonal

approach with promise for overcoming the conditional depen-

dence of the transcriptome and metabolome in a dataset with

high dimensionality and a small number of samples. The work

flow is shown in Figure 1 including the questions posed by each

mode of analysis and the major conclusions.

The null hypotheses are first that neither host nor drug admin-

istration impact gene expression, and second that the major

variance components of the BM and PB transcriptomes and

plasma metabolome are uncorrelated. Transcriptome data was

collected by RNA-Seq (Wilhelm and Landry, 2009) with a mean

of 40 million paired-end reads for each of 35 BM and 35 PB

samples studied (five macaques each with seven collection time-

points), focusing on transcript abundance for ∼15,000 genes.

Metabolome data was collected by Orbitrap mass spectrome-

try following liquid chromatography (Jones et al., 2012; Soltow

et al., 2013) on two different columns (AE and C18) with ∼6000

and ∼14,500 m/z features, respectively. Our expectation was that

drug administration would have global effects on each of the four

omic measures (BM and PB transcriptomes, and AE and C18

generated metabolomes), and that among-individual differences

would be relatively minor. However, we had no pre-conception

of the fraction of genes that would be differentially expressed,

or of the degree of correspondence we would find between the

transcriptomes and metabolome. Since the PB consists of cells

generated in the BM, we expected a temporal delay between these

two compartments with considerable overlap in variance com-

ponents, which would also reflect differences in the counts of

major blood cell types obtained by standard CBC analysis. Herein

we quantify departures from each of these expectations as well

as a general failure to reject the null hypothesis that the blood

transcriptomes and metabolomes are uncorrelated, and discuss

the implications for the mode of action of pyrimethamine.

MATERIALS AND METHODS

EXPERIMENTAL DESIGN

The experimental design of this experiment involving rhe-

sus macaques (Macaca mulatta) was approved by the Emory

University Institutional Animal Care and Use Committee

(IACUC) and is as follows. Five males (RCs13, RWr13, RUn13,

RZe13, and RTi13) approximately 2 years of age were injected

intravenously with a preparation of Anopheles dirus salivary gland

material (prepared similarly to how infectious Plasmodium sporo-

zoites would be purified; Kennedy et al., 2012) and then profiled

for clinical and omic measurements over the course of a 100-

day experiment. The animals were moved into experimental pair

housing (RCs13/RWr13 and RUn13/RZe13) 10 days prior to the

baseline sampling point at Day 0, namely timepoint 1 (TP1). The

fifth macaque (RTi13) was housed alone. Capillary blood sam-

ples collected daily from ear pricks into EDTA-tubes were used to

obtain complete blood cell counts (CBCs), with the exception of

days 51 to 53 when an equipment failure occurred. On days 21,

27, 52, 59, 90, and 98, PB and BM samples were collected com-

prising TPs 2-7. These collections, and that of TP1, were taken

under chemical restraint with ketamine delivered intramuscularly

at 10 mg/kg. This dissociative anesthetic has a short elimination

half-life (20–40 min) and, to our knowledge, has no known drug

interaction with pyrimethamine. The experimental design does

not, however, allow for distinguishing the effects of the drug or

anesthetic. BM aspirates were obtained from the right or left iliac

crests in an alternating manner for consecutive timepoints and

performed using 18G needles. Immediately after collection BM

samples were transferred into Vacutainer EDTA tubes. PB sam-

ples were collected from the femoral artery into Vacutainer EDTA

tubes. The transcriptomes and metabolomes were interrogated

at seven (TP1-7) and five (TP3-7) timepoints, respectively, as

shown in Figure 1. Pyrimethamine (Sigma-P7771) was delivered

(1 mg/kg) intramuscularly once on day 20, and for 3 successive

days starting at days 52 and 90 (TP2, 4, and 6), corresponding

to predicted periods for sub-curative and curative experimental

treatment regimens for malaria infection of macaques.

LIBRARY PREPARATION FOR RNA-SEQ

BM (1 ml) was collected into 1.5 ml tubes with EDTA, and the

mononuclear cells were purified by density gradient centrifuga-

tion on Lymphoprep (Stem Cell Technologies) solution and pre-

served in RLT buffer (Qiagen) to stabilize mRNA. Whole blood

(3 ml) was collected in Tempus tubes (Applied Biosystems) which

preserve mRNA; these samples include erythrocytes, platelets

and granulocytes, and mononuclear lymphocytes. RNA was

extracted from the BM samples using Qiagen RNEasy Mini-

Plus kits following the manufacturer-recommended procedures,

and from PB samples using Tempus-Spin RNA isolation kits

(Life Technologies). The quality of all RNA samples was con-

firmed using a Bioanalyzer, with an RNA Integrity Number (RIN;

Schroeder et al., 2006) greater than 8 recorded for all samples.

Approximately 1 µg of total RNA per sample was con-

verted to double-stranded cDNA using poly-A beads to enrich
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FIGURE 1 | Experimental Design. (A) Five macaques were each

delivered a sub-curative dose of pyrimethamine at Day 21, and 3-day

curative doses commencing at Days 52 and 90, in each case

immediately following peripheral blood sampling. This results in two

pre-drug, three post-drug, and two inter-drug treatments as indicated.

Metabolome data was not generated for the first two timepoints.

(B) Flow of analytical approaches including major questions asked and

inferences drawn.

for mRNA, and Illumina TruSeq Stranded mRNA Sample

Prep kits to generate strand-specific libraries. As a qual-

ity control, 96 spike-in RNAs of known concentration and

GC proportions (ERCC Spike-In Control, Life Technologies;

Devonshire et al., 2010) were added to constitute approx-

imately 1% of the total RNA for each library. Adapters

were ligated to facilitate 3-plex sequencing on an Illumina

HiSeq2000 at the Yerkes National Primate Center Genomics

Core, aiming for 80 million paired-end 100 base pair (bp)

reads per library. Average insert sizes were in the range of

300–400 bp.

SHORT READ MAPPING AND GENE EXPRESSION QUANTIFICATION

To quantify gene expression, the RNA-Seq reads were mapped to

an early version of a new assembly of the rhesus macaque (MacaM

assembly, Version 4.0, GenBank accession number PRJNA214746

ID: 214746, created by Aleksey Zimin at the University of

Maryland, Rob Norgren at the University of Nebraska Medical

Center, and their colleagues) using Tophat2 (Trapnell et al.,

2012; Kim et al., 2013). Default options were used with the

exception that the command—library-type fr-secondstrand was

invoked since the reads were generated using a stranded library

preparation method. This allowed us to differentiate between
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sense and antisense transcripts. Rob Norgren and his colleagues

also provided a GTF file (version 4.12) of the annotated MacaM

assembly indicating the exon boundaries of rhesus genes that

was used in our transcriptome analyses to improve the map-

ping accuracy across splice junctions. Only reads that map to

a single location in the genome were included, to ensure high-

confidence mapping. All downstream analyses were performed at

the level of annotated gene: this study does not consider exon-

specific or transcript isoform relative abundance. Transcription

was detected for 15,442 genes. The dataset has been deposited

to the Gene Expression Omnibus archive (GEO) under accession

number GSE58340.

Several quality control steps were used to verify the relia-

bility of the data: linear correlation of estimated abundance of

ERCC spike-in controls with known concentration; confirmation

of 99.9% strand-specificity of the controls; less than 0.1% con-

trol fusion transcripts; and absence of 3′ bias in the controls was

confirmed with RSeqC v2.3.8 software (http://rseqc.sourceforge.

net; Wang et al., 2012). Transcript abundance levels were inferred

using HTSeq v0.5.4p5 (http://www-huber.embl.de/users/anders/

HTSeq/doc; Anders et al., 2014). HTSeq takes the short-read

mapping.bam file from tophat2 and the gene annotation file

which contains the locations of all annotated genes. Since some

libraries were sequenced more deeply than others, the libraries

were normalized before determining differential gene expression

using the gene level expression files with the default parameters of

DESeq version 1.10.1 (http://www.bioconductor.org/packages/

release/bioc/html/DESeq.html; Anders and Huber, 2010).

METABOLOMIC FEATURE QUANTIFICATION

High resolution metabolomics (m/z range 85–2000) was

performed using a liquid chromatography/mass spectrome-

try (LC/MS) approach on a Thermo Orbitrap-Velos Mass

Spectrometer (Thermo Fisher, San Diego, CA) via positive-ion

electrospray ionization (ESI). Two different columns were used

for the LC separation stage: C18 and anion exchange (AE). Each

distinct biological sample was run in triplicate in order to ensure

high reliability of the data, with randomization within batches

(Soltow et al., 2013). MS peaks were called using xMSanalyzer

v1.3.2 (Uppal et al., 2013) with apLCMS v5.9.4 (Yu et al., 2009).

Standard quality control measures were performed, such that fea-

tures with greater than 30% missing values were removed from

the analysis. Since the frequency distributions of all samples were

comparable, no additional normalization was performed, but an

abundance cutoff of 256 peak area units was adopted and all fea-

tures below this were excluded. All downstream analyses utilized

the median values of three technical replicate samples, namely a

single measure per biological sample. The AE and C18 columns

generated 5861 and 14,339 m/z and retention time features

respectively, the majority of which are either not yet annotated

or have ambiguous annotation to multiple possible organic com-

pounds. The m/z features are thought to include the majority of

known components of central metabolism, as well as xenobiotics.

STATISTICAL ANALYSIS

After data normalization, the transcriptome and metabolome lev-

els were log-2-transformed and imported into JMP Genomics

(version 6.0, SAS Institute, Cary, NC). The log-2 transformation

was performed both to ensure that the data is more normally

distributed and to facilitate simple comparison of the magnitude

of differential expression in a symmetrical manner with respect

to up- and down-regulation, as is standard in microarray analy-

sis: plus or minus 1 unit corresponds to a 2-fold change for each

of the datasets. To determine how much of the variance in each of

our datasets is explained by our two measured factors (animal and

timepoint), we performed a principal components (PC)-variance

component analysis using JMP v6.0 (SAS) for the transcriptomes,

metabolomes, and the CBC data (Boedigheimer et al., 2008).

This consists of generation of all PC explaining up to 90% of

the total variance (12–15 for the transcriptomes and ∼30 for the

metabolomes), regressing each PC on “animal” or “timepoint,”

and generating a weighted average of the squared correlation coef-

ficient (percent variance explained) across all of the PC scores.

Since the low abundance features for metabolomics and tran-

scriptomics both have high coefficients of variation, we set thresh-

olds of 5 log2 units for transcripts and 17 log2 units for metabo-

lites based simply on visual inspection of plots of the coefficient of

variance against average abundance. After estimating the effect of

lower-abundance features on the variance components, they were

removed for all downstream analyses. No attempt was made to

optimize the threshold or systematically evaluate its impact, but

the major conclusions of the study are unlikely to be affected.

To assess whether the major PC capture similar aspects of the

data, the first 10 PC were calculated for the four omics datasets

using JMP. All 780 pairwise correlations of these PC values were

determined, and a Bonferroni multiple comparison adjustment

was used to assess the significance of each pair of PC. Exploratory

partial least square regression analyses were also performed with

MixOmics (González et al., 2012; http://cran.r-project.org/web/

packages/mixOmics/index.html) in an attempt to select variables

that co-vary, but did not reveal significant associations.

BLOOD INFORMATIVE TRANSCRIPT (BIT) AXES

In addition to PCA, we employed a second method, blood infor-

mative transcript (BIT) axes analysis (Preininger et al., 2013).

Briefly, 10 highly co-regulated transcripts in blood (the BIT) cap-

ture each of 9 common axes of variation that are observed in all

human PB gene expression datasets. PC1 for each of these 9 sets

of 10 transcripts provide Axis scores for each individual sample,

and were generated independently for both the PB and BM sam-

ples, using the normalized expression data. We then examined

the dynamics of the axes scores (or their residuals after fitting

“Animal”) over time and used ANOVA to evaluate differences

among the timepoints or animals.

DIFFERENTIAL GENE EXPRESSION

The next step in our analysis was the identification of genes

that are differentially expressed across the experimental condi-

tions (Soneson and Delorenzi, 2013). For between-TP differences,

an ANOVA was performed on each transcript separately using

“animal” as a random effect with five levels and “timepoint”

with seven levels, or “drug” with three levels as the fixed effect.

For the drug exposure factor, we define our three experimental

conditions as before drug exposure (pre-drug; TP1 and TP2), 7
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days after the most recent dose (post-drug; TP3, TP5, and TP7),

and 30 days after most recent dose and immediately before the

next dose (inter-drug; TP4 and TP6), as shown in Figure 1. A

Benjamini-Hochberg false discovery rate cutoff of 5% was used to

define differentially expressed genes. These were examined using

hierarchical clustering of the standardized least squares means,

and volcano plots of significance against fold difference between

specific conditions (Wolfinger et al., 2001). The significantly dif-

ferentially expressed genes are reported as a Supplementary flat

file that consists of a list of gene names with their corresponding

F-statistics at http://www.cig.gatech.edu/supplementary-data.

Gene set enrichment analyses were performed using pre-

existing human gene set annotations from the Broad Institute

(Subramanian et al., 2005), considering that the majority of

known genes in the macaque genome have very closely related

syntenic human orthologs (Zhang et al., 2014). We used

the ranked gene list method of GSEA v2.0.14 (http://www.

broadinstitute.org/gsea/index.jsp) to perform the contrast of

interest (pre-vs.-[post plus inter] drug treatment), testing for

enrichment of t-statistics in KEGG pathways and/or GO terms.

Gene sets with a nominal p < 0.001 and an FDR q < 5% were

considered as significant per the recommendations of the GSEA

software manual. Default parameters were used, excluding gene

sets with more than 500 or fewer than 20 genes.

BAYESIAN NETWORK ANALYSIS

For the Bayesian network analyses, only the 1000 most differen-

tially expressed genes (largest F-ratios for the Drug effect) or 500

metabolites were used, so as to ensure computational tractability

of the clustering software while incorporating biologically rele-

vant genes. The transcript abundance measures were the residuals

after fitting “animal” in the ANOVA to remove this large over-

all source of variance, while raw median metabolite abundance

measures were used based on the relatively small contribution of

animal and timepoint to the variance. Custom scripts were writ-

ten in MATLAB and R to perform quality threshold clustering

(Heyer et al., 1999; De Smet et al., 2002) on the mean-centered

expression values, namely the residuals after fitting “animal” to

each gene. A d = 0.3 cluster similarity threshold was employed

as suggested by Heyer et al. (1999). Since the data are normal-

ized and since that similarity threshold is based on a specific type

of correlation metric, it is reasonable to expect that such a value

may be an excellent starting point across transcriptomic studies.

We also performed small perturbations of the cluster similarity

threshold and found that the main differences were in the merg-

ing portions of some smaller clusters into some bigger clusters.

The number and membership of the larger clusters (used for

analysis here) remained similar (data not shown). Only clusters

with at least 10 transcripts (or metabolites) were retained for fur-

ther analysis. Significance and robustness of these clusters were

assessed via permutation tests.

Since robust and accurate Bayesian network inference is typ-

ically very difficult with only 35 observations (five animals and

seven timepoints), we treated genes within clusters as separate

observations of those clusters. We ranked each gene relative to its

correlation with the centroid of the cluster across all 35 samples

(25 for metabolites since TP1 and TP2 were missing) and then

concatenated the top 10 genes into a list of 350 (250) observa-

tions for each of 26 transcript and four metabolite clusters that

satisfied the clustering criteria. We chose to use just the top 10

genes so as to ensure that each node in the network has the same

number of observations (no missing data) and because Bayesian

network inference benchmarking literature has shown that having

a few hundred observations can provide reasonably robust infer-

ence. The selection of 10 genes thus balances robustness with the

number of different clusters that can be analyzed, as increasing

that threshold necessarily eliminates more clusters. Next, the data

was discretized using a mutual information content-preserving

algorithm (Hartemink, 2001), as the Bayesian network analy-

sis is expected to be more robust for discrete data. Briefly, for

each variable, observations are stepwise coalesced into discretized

bins such that the loss in mutual information content between

that variable and all other variables is minimized. The estimated

elbow-point in the remaining mutual information as a function

of the number of discretization levels was then selected as the

desired number of levels (seven for transcriptional and five for

metabolite data). Networks were subsequently generated using

the Sparse Candidate Algorithm (Friedman et al., 1999) of Causal

Explorer in MATLAB (http://www.dsl-lab.org/causal_explorer;

Aliferis et al., 2003). The most robust connections between clus-

ters were identified using subsampling and permutation tests. We

used three shuffled datasets, within which the order of the 10

genes in each cluster was permuted independently, to minimize

the possibility of over-fitting the available data: if the 10 genes

are good representatives of the cluster, then there should not be

much mutual information based solely on a given gene in one

cluster being compared to a specific gene in another cluster, and

so the most robust edges (and least likely to be due to over-fitting)

are the ones that occur in multiple shuffled datasets. For each

of these shuffled datasets we assessed the sensitivity of the infer-

ence method to perturbations in the amount of available data

by performing network inference with 90% subsampling of 1000

replicates of the dataset.

To assess whether the BM clusters are valid in the PB, the PB

data for each of the clusters was used to determine their cen-

troids. The distribution of Pearson correlation coefficients for

each member of the cluster to the centroid was calculated. These

distributions were compared to analogous calculations for ran-

dom samples of the same number of genes for each cluster, using

a one-tailed Kolmogorov–Smirnov test.

To assess whether the BM clusters form a network in the

PB, we used the same 26 clusters from the BM data, identi-

fied the 10 genes closest to the centroid using the PB data for

each cluster, and used concatenated gene data for each cluster to

generate new Bayesian networks. To evaluate whether there are

interactions between transcriptomic and metabolic networks, we

repeated the Bayesian network inference using the 26 BM tran-

script clusters and four plasma metabolite clusters from the C18

column MS data analyzed with essentially the same pipeline. The

same methods as described above were used to form this inte-

grated network, except that for the transcriptional data only the

five timepoints corresponding to the metabolomics timepoints

were kept, the data discretization was performed jointly on the

combined datasets, and metabolomics data was unit normalized.
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RESULTS

VARIANCE COMPONENTS OF OMIC DATA

The experimental design consisted of a 100 day mock-infection

cycle of M. mulatta that follows a similar time course as will

be used for a series of Plasmodium infections in later MaHPIC

studies (Figure 1). Each of five monkeys was transferred, in two

pairs and a single, to indoor cages at the Yerkes National Primate

Research Center in Atlanta, Georgia, 10 days prior to the baseline

(TP1) PB and BM draws. The second timepoint (TP2) samples

were taken 20 days later, immediately prior to administration of

the anti-malarial drug pyrimethamine for the first time and 7 days

before sampling of the first post-Drug timepoint (TP3). After a

further 3 weeks, a second round of drug treatment immediately

followed the TP4 sampling. Consequently, TP1 and TP2 represent

pre-drug samples that nevertheless differ in their gene expression

and metabolic profiles, we suspect due to an acclimation period

of each animal in the new experimental environment. TP3, TP5,

and TP7 represent post-drug samples, and TP4 and TP6 repre-

sent inter-drug samples. Plasma metabolites were only profiled

following the drug administration period (TP3-TP7), but CBCs

were generated for all timepoints except TP4.

Our first objective was to define the variance components

of gene expression and metabolite abundance, namely the con-

tributions of among animal and among timepoint differences

to the overall variance. This was accomplished by generating

the PC that collectively account for 90% of the variance of

each omic data type and computing the weighted average of

the variance of each PC explained by animal or timepoint.

The variance explained by each PC is shown in Table 1 and

typically ranges from 25% for PC1 to less than 3% for PC5

(subsequent PC contribute too little to the overall variance to

significantly impact the evaluation of contributions of animal

and time). Figure 2A shows that for the BM and PB tran-

script data, as well as the CBC data, approximately 30% of

the variance is among animal and 10% among timepoints.

For the metabolomes by contrast, only 15% of the variance

is among animals with a slightly larger proportion due to

timepoint.

The unexplained residual variance could be due to undefined

biological sources, animal-by-timepoint interactions, random

sampling variance, or technical error. To control for contribu-

tions of the latter, we reduced the datasets by removing the

low-abundance features with the greatest coefficients of varia-

tion. Consistent with published findings (Rapaport et al., 2013),

both RNA-Seq and MS have a strong relationship between abun-

dance and variability, and based on the plots we adopted heuristic

cutoffs of 5 log2 units for the transcripts and 17 log2 units for

the metabolites. Figure 2B shows the variance components anal-

ysis based on the remaining features. In the PB, almost 70% of

the variance is among animals, and in the BM approximately

50%. The temporal contribution drops to less than 5% for the

PB, but increases to 20% for the BM. These results confirm that

measurement error is a major contributor to estimation for low

abundance transcripts with RNA-Seq. By contrast, the variance

components for both metabolite columns is relatively unaffected

by the data reduction, with both animal and time each contin-

uing to explain approximately 15% of the overall variance. This

Table 1 | Principle components of variation.

PC PVEa Animalb Timepointb Sig. drugc(effect)

BM1 14.5% 0.67 0.18 3 × 10−5(Pre high)

BM2 10.2% 0.92 0.02 0.09ns

BM3 7.1% 0.15 0.74 2 × 10−4(inter low)

BM4 6.8% 0.91 0.05 0.0052 (pre high)

BM5 5.8% 0.80 0.13 0.011 (post low)

PB1 12.0% 0.94 0.02 0.59ns

PB2 8.2% 0.97 0.01 0.48ns

PB3 7.4% 0.87 0.01 0.75ns

PB4 7.0% 0.97 0.01 0.98ns

PB5 5.5% 0.12 0.14 0.36ns

AE1 17.3% 0.23 0.41 0.35ns

AE2 8.9% 0.13 0.47 0.14ns

AE3 7.3% 0.23 0.47 0.58ns

AE4 6.2% 0.41 0.34 0.13ns

AE5 4.9% 0.22 0.37 0.07ns

C18_1 18.5% 0.28 0.23 0.17ns

C18_2 9.3% 0.20 0.59 0.11ns

C18_3 6.6% 0.40 0.17 0.15ns

C18_4 6.3% 0.28 0.31 0.49ns

C18_5 4.8% 0.22 0.38 0.38ns

aAmount of total variance explained by the PC.

bAmount of variance explained by Animal or Timepoint.

cSignificance of Drug effect (pre vs. post vs. inter for transcriptome; post vs.

inter for metabolome), also showing which effect was differentiated.

may reflect filtration of the metabolites with the highest technical

variance during peak calling.

HIERARCHICAL CLUSTERING OF THE OMIC DATA

The preceding analysis tells us that both animal and time influ-

ence gene expression, but not which animals or timepoints are

more similar. A quick means of visualizing these relationships is

by two-way hierarchical clustering (Figure 3; Eisen et al., 1998).

Applied to the raw data, in a joint analysis of the BM and PB,

the gene expression of the two tissue types is clearly distinct,

and the greater contribution of animal to the PB than the BM

is seen by the perfect clustering of each of the seven timepoints

within each animal grouping (Figure 3A). In the BM, there is

some mixing of samples across animals, but it is also striking

that TP4 is somewhat distinct since the data from four of the

five animals cluster together. After standardization to z-scores for

each gene, which removes the effect of overall abundance level for

each transcript on the hierarchical clustering, these relationships

are largely maintained (Figure 3B). The separation of TP4 in the

BM is enhanced, although the clustering within animals is dis-

rupted for a few PB samples. The situation for the metabolome is

very different (Figure 3C) as neither the animals nor timepoints

form discrete clusters. Both LC columns have almost identical

topologies (data not shown), and technical variability does not

explain these results since almost without exception all three tech-

nical replicates of each metabolite sample cluster adjacent to one

another.
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FIGURE 2 | Principal component variance component analyses. Bar

graphs show the weighted average contribution of among animal (red) and

among timepoint (blue) variance to gene expression, metabolite, and

complete blood counts. (A) Full data set. (B) Reduced dataset after removal

of low abundance transcripts or metabolites.

With respect to blood cell counts, the hierarchical cluster-

ing topology of monocytes, lymphocytes, granulocytes, RBC,

and platelets did not correspond to either the transcriptome

or metabolome topologies. The final two timepoints (TP6 and

TP7) cluster to the exclusion of the earlier timepoints with

a couple of exceptions, and within the two large clusters the

individual animals are adjacent. However, there is no strong

relationship between blood cell counts and overall gene expres-

sion (Figure 3D). Since each blood cell type has a characteristic

expression profile which allows each cell to perform its spec-

ified role(s), including the limited mRNA complement in a

nuclear RBC, we hypothesized that the macaques that clustered

together in the expression profile would also have similar lev-

els of the major cell types. However, we do not observe such a

trend: macaques RCs13 and RWr13 (relative to RTi13, RUn13, and

RZe13) form two sets of transcript profiles, whereas RTi13 and

RWr13 are most similar for CBC with RZe13 the most variable.

Therefore, we conclude that the CBC is capturing information

about the system that is non-redundant with the transcriptome.

This result is particularly striking when considering that both

the transcriptome datasets as well as the CBC datasets have the

variance component of animal explaining more than 30% of the

variance.

INTEGRATION OF THE TRANSCRIPTOME AND METABOLOME PROFILES

These analyses suggest that the transcriptomes and metabolome

are poorly correlated overall across all timepoints and animals,

but do not exclude the possibility that subsets of features in the

BM, the PB, or the plasma may be co-regulated. To test this using

our top-down strategy, we evaluated the covariance between the

major PC of each of the four omic datasets. Figure 4 shows the

pairwise regression coefficients for each of the first 10 PC, allow-

ing for the possibility that minor PC involving strong covariance

of a small number of transcripts or metabolites may contribute.

The pattern that emerges is informative in many ways. Firstly,

it shows that the two metabolomic datasets are highly corre-

lated. This is to be expected since metabolites are being measured

from the same plasma sample; the difference between the two

datasets is the use of different liquid chromatography columns

to optimize peak resolution across different classes of metabolites

(broadly, sugars and amino acids on the AE anion exchange col-

umn, and lipids on the C18 column). PC1 and PC2 scores for the

two columns are highly significantly correlated; many lower PC

scores are also correlated. Unlike the metabolomic datasets, the

two transcriptomic datasets, representing the BM and PB, do not

show as much correlation (Figure 4, top left quadrant). Statistical

analysis however does indicate that PC1, PC2, PC3, and PC4 in

the PB are significantly correlated with PC2, PC4, PC1, and PC5

from the BM, respectively (Bonferroni corrected p < 0.05). Such

a result is not unexpected considering that the two compartments

have different functions yet one (blood) is composed of cell pop-

ulations derived from the other (marrow). In some cases the sign

of the regression is negative, but this is simply a function of PCA

which commonly reverses signs and order of PC due to sampling

variance. One difference between the compartments is that the

marrow contains many cell types that are rapidly dividing whereas

most of the cells in the blood are likely to be post-mitotic and

terminally differentiated.

Strikingly, there is no significant correlation between the tran-

scriptome PC scores and the metabolome PC scores across ani-

mals and timepoints. Figure 4 (top right box) seems to show

some relationships, but none of these are significant after mul-

tiple testing correction. We also explored 2-block partial least

square analysis (González et al., 2012) to identify minor vari-

ance components that may correlate in a joint analysis, but did

not observe any significant enrichment between the two data

types. This could be explained by the fact that the transcrip-

tome of these two immune compartments is contained within

the cell whereas the metabolome that we are interrogating is in

the plasma. Furthermore, the plasma is not only influenced by

metabolites from blood cells, but by metabolites secreted from all

tissues in the body and taken up from the environment.

The correlation of the major PC between the PB and the

BM datasets is dominated by among animal differences from the

variance component analysis, but also includes a temporal com-

ponent. The pre-drug samples in the BM are distinct from the

post- and inter-drug samples, but TP4 is the most differenti-

ated. In the PB, the baseline sample (TP1) is most differentiated,

but TP4, and, even more strongly, TP5 are also somewhat diver-

gent from the remaining samples. To assess the significance of

the overlap, we extracted the genes that were up-regulated in

the TP4 samples from the BM and performed a binomial sign-

test of whether the same genes were up-regulated at TP5 in the

PB. The result was highly significant (p < 3 × 10−16). A similar
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FIGURE 3 | Two-way hierarchical clustering. Each heat map shows the

abundance of each transcript or metabolite (rows) in each sample

(column) with red indicating high expression, blue low, gray

intermediate. (A) Transcriptome, based on absolute log-2 intensity

estimates, and (B) based on standardized log-2 intensities, in both

cases combining both BM and PB in the same clustering. (C) Plasma

metabolome, where each column is a technical replicate, showing

almost perfect alignment of each of the three replicates of each

sample. (D) Complete blood counts are clustered with the branches of

the dendrogram colored according to the identity of the animal, and

cell types ordered as Red Blood Cells, Lymphocytes, Monocytes,

Platelets, and Granulocytes (R, L, M, P, G respectively). Each macaque

is abbreviated as C, T, U, W, or Z for RCs13, RTi13, RUn113, RWr13,

or RZE13 respectively, and numbers refer to timepoints.

result was obtained for the down-regulated genes, but the control

comparison of TP6 and TP7 in the PB for the same up- and down-

regulated genes and did not result in any enrichment (p = 0.74).

These data show that differential gene expression in the BM is

reflected in the PB with a time lag (though contamination of

BM with PB cannot be excluded). Note as well that in both tis-

sues the TP4/5 differentially expressed genes are similar to the

TP1 genes, but with opposite sign of effect, implying that genes

up-regulated at baseline are down-regulated at TP4/5, and vice

versa.
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FIGURE 4 | Pairwise correlation of principal components. Heatmap shows

correlations of the first 10 principal components for each of the four omic

datasets ordered by peripheral blood, bone marrow, AE and C18 (blue

negative, red positive, stronger hues indicate stronger correlation). The

highlighted boxes in the top left and bottom right quadrants show the

correspondence between PC scores for the two transcriptomes and two

metabolome columns, respectively; stronger colors along the diagonal

indicate that those PC are capturing similar signals. Although there are

scattered stronger colors in the top right quadrant comparing transcriptome

and metabolome, the actual correlations are not significant.

IDENTIFICATION OF DRUG-RESPONSIVE GENES AND METABOLITES

The major temporal component of variation is not a cyclical

response to drug administration, which would have produced a

pattern where TP3, TP5, and TP7 were distinct from TP4 and

TP6 and again from TP1 and TP2. None of the first 10 PC in

PB showed a significant effect of drug administration on gene

expression by analysis of variance with pre, inter and post lev-

els of drug (Table 1). We nevertheless employed three strategies to

identify potential drug-responsive genes: axis of variance analysis,

pathway-oriented analysis, and gene set enrichment analysis.

The requirement that PCs are orthogonal to one another

introduces a statistical bias that is well-known to obscure under-

lying biology (Biswas et al., 2008). Consequently, we employed

an alternate partitioning of the transcriptional variance based

on conserved patterns of covariance of axes of gene expression

that are observed in all large human PB transcriptome datasets

(Preininger et al., 2013). Each of 9 axes is defined by 10 BITs that

are highly co-regulated, and the first PC of these BITs is used as

a measure of activity of genes in the axis. Each axis is thought to

represent an aspect of immune function, such as T- or B-cell sig-

naling (Axes 1 and 3), innate immune activation (Axis 5) or an

interferon-related axis (Axis 7). We confirmed that the BIT are

co-regulated in macaques, in both the PB and the BM, and asked

whether they vary by animal or timepoint. Figure 5 shows highly

significant among animal effects in the BM for Axes 3, 5, and 7.

Importantly these data also capture a drug response effect that

is not evident from the standard principal components, as Axes

7 and 9 are clearly differentially expressed at TP3, TP5, and TP7

in the BM, representing the post-drug samples. Axis 7 is also sig-

nificantly divergent in the PB, as is Axis 3, while Axis 9 shows a

non-significant trend (Table 2).

Analysis of variance at the level of individual genes was also

effective at recovering timepoint specific responses in the BM, but

not initially in the PB: Table 3 lists the number of features signif-

icant at a False Discovery Rate of 5% (Benjamini and Hochberg,

1995). Recognizing that animal effects may obscure the tempo-

ral differences, we also ran the model with “animal” included as

a random statistical effect, and recovered almost twice as many

timepoint-responsive transcripts in the BM, and 292 in the PB.

Similarly, ANOVA of the metabolome yielded many more signifi-

cant timepoint-responsive metabolites after inclusion of “animal”

as a random effect.
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FIGURE 5 | Axis of variance analysis. Each plot shows the indicated Axis score (PC1 of the 10 BIT for the Axis) in the five animals (A–C) or at the seven

timepoints (D–F). In bone marrow, Axes 7 and 9 are significantly differentiated at TP3, 5, and 7, the post-drug timepoints.

Table 2 | Axes of variance analysis.

Axis Bone marrow Peripheral blood

PVE by PC1a Sig Animalb Sig Drugc PVE by PC1a Sig Animalb Sig Drugc

1 45 0.0034 0.0006 43 ns ns

2 77 8 × 10−6 0.0061 68 0.0002 0.0025*

3 63 1 × 10−10 0.0169* 91 2 × 10−13 ns

4 25 ns ns 41 0.0005 ns

5 55 5 × 10−6 0.0022 73 0.0003 ns

6 35 0.0066 0.0005 29 0.0002 ns

7 54 3 × 10−6 0.0008* 76 3 × 10−5 0.0267*

8 45 ns 0.0183 58 2 × 10−5 ns

9 35 0.0002 1 × 10−6* 44 0.0234 ns

aThe percent of variation in the BIT explained by PC1 (>35% implies strong covariance).

bThe signficance of the among-animal effect.

cThe significance of the pre-/post-/inter-drug treatment after removing the animal effect.

*Implies the post-drug treatment effect was extreme relative to pre- and inter-drug.
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The most interesting timepoint effect with respect to drug

exposure is where each of the post-drug timepoints is greater (or

less) than the immediately preceding pre-drug timepoint, namely

TP3 > TP2, TP5 > TP4, and TP7 > TP6. Again, this situation

was only observed in the BM: 73 genes were consistently greater

post-drug, and 25 consistently less strongly expressed post-drug,

but no genes satisfied this criterion in PB (paired t-test, p < 0.05

at each of the three comparisons in 5 animals). A list is provided

in the Supplementary data, and is notable for multiple immune-

related genes, including TLR4, IL1RAP, IL1RAP, IL10RB, and

MAP2K1.

PATHWAY-ORIENTED ENRICHMENT ANALYSES

We next visualized the broad distribution of gene expression in

pathways across the time course of pyrimethamine treatment

Table 3 | Differential gene expression between timepoints.

Data type Tissue Without animal With animal

in model in model

RNA-Seq Bone marrow 3678 6483

RNA-Seq Whole blood 0 292

AE MS Plasma 651 927

C18 MS Plasma 1254 1992

CBC Whole blood 10 13

Table shows number of genes significant at 5% FDR rate for each data type,

contrasting seven timepoints for RNA-Seq, and 5 timepoints for metabolomics.

by performing hierarchical clustering of a summary measure of

each of 270 KEGG pathways. For each pathway with at least five

transcripts expressed in both BM and PB, we generated the first

principal component (PC1) of all of the transcripts annotated to

the pathway, measured in all five monkeys at seven timepoints.

These pathway PC1 values were averaged across the monkeys,

and clustered by Ward’s method in JMP. Figure 6 shows heat

maps of the average PC1 scores for BM (A) and PB (B) with red

corresponding to a high positive score, generally high transcript

abundance, and blue a negative score, generally lower abundance

on average.

In the BM, we observed seven clusters of pathway PC1 scores,

with the major division of timepoints grouping TP1, TP2, and

TP3 separately from TP4 through TP7. There was no clustering of

pathways at the three post-drug timepoints (TP3, TP5, and TP7).

In the PB, we observed just six clusters of pathway PC1 scores,

with the major division of timepoints separating TP1, TP4, and

TP6 from the remainder. Again, there was no evident clustering

of the post-drug timepoints. The grouping of TP4 and TP6 corre-

sponds to expected absence of drug, as does the baseline TP1, but

this does not seem to relate to drug exposure since TP2 sampled

immediately prior to the first drug administration, groups with

the post-drug samples.

Comparing both sample types, 10% of the cluster identities in

the PB are explained by the cluster identities in the BM (Pearson

Chi-square, p < 10−6). However, this also means that the major-

ity of the pathways change their average PC1 profile between the

BM and the PB. There are nevertheless some interesting clusters.

FIGURE 6 | Differential representation of pathways across timepoints.

The two-way hierarchical heat maps summarize co-expression of genes

within pathways in the bone marrow (A) and peripheral blood (B). Data

points are the mean PC1 score for each of 270 KEGG pathways. Rows

are timepoints, and the major clusters of PC1 scores are indicated.

Black tick marks below the heatmap in (A) indicate pathways that

are significantly different for the contrast of post- versus pre-drug

treatment.
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For example, the small green cluster 2 to the left in Figure 6A that

is high prior to drug administration and low at the final three

timepoints includes Ras and Rap 1 signaling, purine metabolism,

and infectious disease response. By contrast, the yellow cluster 7

that is more highly expressed uniformly after first drug adminis-

tration includes inflammatory autoimmune pathways, as well as

extracellular matrix and cell adhesion. Most of the DNA repair

and recombination pathways show the inverse pattern (clusters

4 and 5) implying down-regulation after persistent exposure to

pyrimethamine, as might be expected due to reduction of cell

division in response to folate inhibition. In the blood, the small

blue-green cluster 5 that is high at TP4, TP5, and TP6 involves

diverse pathways indicating perturbation of a variety of aspects of

cellular physiology during that interval of time.

These trends were not necessarily consistent across all five

monkeys. Similar hierarchical clustering of the 270 pathway PC1

scores of all 5 animals showed that two (RCs13 and RWr13) have

quite similar profiles, while another two (RUn13 and RZe13) are

only similar if TP4 is withdrawn from the analysis. Intriguingly,

these pairs of monkeys were each housed together in the same

cage, but there is no way of knowing whether that is coinci-

dence or reflects an effect of shared environment. The result

does however underline the conclusion that any effect of drug

administration is to a large extent animal-specific.

TARGETED AND GENE SET ENRICHMENT ANALYSIS

A disadvantage of the pathway-oriented approach is that it

assumes that the covariance of genes within pathways that is cap-

tured by PC1 represents the most relevant aspect of perturbed

gene expression. A more common approach is to identify differ-

entially expressed genes and then ask whether they are enriched

in particular pathways. We thus applied Gene Set Enrichment

Analysis (GSEA) to the dataset, focusing on genes that are glob-

ally altered at the 5% FDR level following drug treatment, namely

different between the two pre-drug samples and all five post- and

inter-drug samples. In the BM, analysis of 4178 genes revealed

13 pathways down-regulated following pyrimethamine exposure,

and 12 pathways up-regulated, at p < 0.001 and FDR q < 0.01;

these are listed in Table 4. The down-regulated pathways reflect

functions in the cell-cycle and metabolism including nucleotide

biosynthesis and DNA repair, as well as oxidative phosphorylation

(and glycolysis/gluconeogenesis trends in the same direction).

The up-regulated pathways are all involved in immune signal

transduction. Notably, in many cases the gene expression appears

to be intermediate at TP3, suggesting a gradual transition in

response to first drug administration that was reinforced with

subsequent administrations and lasted several months.

A good example of this is provided by focused analysis of

the one-carbon pool by folate pathway, which we expected to

be influenced by pyrimethamine, since the drug functions by

inhibiting the enzyme dihydrofolate reductase (DHFR). The

pathway was too small to include in the GSEA, but neverthe-

less 12 of 17 genes expressed in the macaque and annotated to

KEGG map00670 are positively co-regulated in both BM and

PB samples, with PC1 capturing 51% and 40% of the variance,

respectively (Figures 7A,B). The trajectory of this score trends

downward beginning at TP3 in the BM and over half the variance

Table 4 | Gene set enrichment analysis.

KEGG ID Pathway name Size p FDR p

DOWN REGULATED AFTER PYRIMETHAMINE

3030 DNA replication 26 <0.001 <0.001

4110 Cell cycle 57 <0.001 <0.001

3410 Base excision rep. 18 0.002 <0.001

3420 Nucleotide excis’n 22 0.004 0.006

0072 Ox phosphoryl’n 45 <0.001 <0.001

0010 Glycolysis 23 0.011 0.019

0480 Glutathione 24 <0.001 <0.001

0240 Pyrimidine 37 <0.001 <0.001

0230 Purine 60 0.003 0.006

3040 Spliceosome 46 <0.001 <0.001

5016 Huntington’s 56 <0.001 <0.001

5012 Parkinson’s 44 <0.001 <0.001

5010 Alzheimer’s 53 <0.001 <0.001

5322 SLE 34 0.005 0.008

UP REGULATED AFTER PYRIMETHAMINE

4660 TCR signaling 44 <0.001 <0.001

4650 NK-mediated cytotox 34 <0.001 <0.001

4630 JAK-STAT signaling 36 <0.001 0.001

4070 PI signaling 19 <0.001 0.001

4210 Apoptosis 23 <0.001 0.011

4662 B cell receptor signaling 21 <0.001 0.014

4370 VEGF signaling 19 0.002 0.013

4150 mTOR signaling 19 0.002 0.015

4310 WNT signaling 42 0.007 0.022

4722 Neurotrophin signaling 40 0.007 0.025

4012 ErbB signaling 24 0.007 0.028

4514 Cell adhesion 37 0.007 0.031

is among timepoints (ANOVA p < 0.0001), whereas in the PB

there is no differential expression (Figures 7C,D).

In the PB, purine (KEGG map00230) and pyrimidine (KEGG

map00240) metabolism pathways both show a very large coor-

dinated reduction in PC1 after TP1, namely before the first

drug administration, and remain low throughout the experiment.

Similarly, oxidative phosphorylation (KEGG map00190) is dom-

inated by a transition that precedes drug administration, as is

glycolysis (KEGG map00010), although it occurs in the opposite

direction (i.e., gene expression increases). These results suggest

that the animals experienced a shift in their major mode of energy

production in the circulating blood cells after introduction into

the experimental cages. Fatty acid biosynthesis also shows inter-

esting patterns that we do not have space to describe in detail. All

of these observations await confirmation at the metabolite level

once the annotation of the m/z features on the platform is more

advanced.

BAYESIAN NETWORK ANALYSIS OF THE TRANSCRIPTOME

Finally, we adopted an orthogonal exploratory approach to

describe networks of highly co-regulated genes. Each of the 1000

genes most differentially expressed relative to drug administration

in the BM samples (that is, in the comparison of post- vs. inter-

drug timepoints) were carried forward to quality-thresholded
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FIGURE 7 | Targeted analysis of the folate pathway. (A,B) Loadings of

the first two PC for each of 17 genes in KEGG map00670 (One carbon

pool by folate) in BM and PB, also indicating the percent variation

explained by each PC. Note that MTHFR switches direction effect

between the cell sources. (C,D) Corresponding profiles across the

timecourse, showing decline in PC1 generally in BM following drug

exposure, but no significant differential expression in PB. Colors

correspond to the five monkeys as in Figure 5.

clustering (De Smet et al., 2002). We identified 26 clusters of 10 or

more transcripts, the first 4 of which have at least 50 transcripts

each (Figure 8A). Permutation of sample labels across timepoints

or the entire data set never identified this degree of covariance:

full permutation of sample labels for each gene independently

recovered zero clusters, while permutation of timepoints within

animals for each gene independently yielded just one cluster with

two genes, indicating that the clusters found were not artifacts

of the underlying data distributions while also increasing confi-

dence that the clusters are biologically motivated. Permutation of

animals within timepoints recovered a similar number and size of

clusters as the true data, indicating that animal effects had been

largely (but not completely) removed in generating the residuals.

Since Bayesian network inference is typically much more robust

and reliable with many more than the 35 samples available in

this study, we increased the effective number of observations per

variable by treating each gene (at each timepoint) as an obser-

vation of the behavior if its cluster. To do this, we concatenated

the top 10 genes most closely correlated with the cluster centroid,

yielding 350 observations for each of the 26 clusters. The most

robust and likely connections in the emergent networks were then

determined by subsampling and permutation as described in the

Methods.

An efficient and powerful method for Bayesian network struc-

ture learning, the Sparse Candidate Algorithm (Friedman et al.,

1999), was used to uncover the potential connections between

the clusters. Networks were inferred for 1000 randomly generated

subsamples of 90% of the data for each gene to ensure the robust-

ness of the learning results; all connections shown in Figure 8B

satisfy the criterion that each connection must exist in at least

50% of all of the resampling simulations for the original data, and

in each of the three permutations of that data; we found an aver-

age overlap of 66.7% of interactions conserved between the orig-

inal dataset and each of the three shuffles for the BM data, with

13 connections consistently detected in all datasets (see detailed

descriptions of robustness testing in the Methods). Core features

of this BM network were further investigated by inspection, and

validated by gene set enrichment analysis (Subramanian et al.,

2005). For instance, cluster 1 shows complimentary patterns to

clusters 8 and 22, while it is most similar to clusters 20 and 24. The

core genes in each of these clusters suggest functions in immune

T-cell responses. Clusters 1 and 3 are “hubs” with a relatively high

degree of connectivity in a graph that is otherwise quite sparse.

Although there was little evidence for significant differential

expression among the three drug response classes (pre-, post-, and

inter-) in the PB, we nevertheless assessed whether the BM cluster
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modularity may be present in the PB. Projected onto the PB, many

of the BM clusters appeared to be co-regulated. To statistically

validate this inference, for each cluster we computed the correla-

tion of each gene with the centroid in the PB data, and compared

the observed distribution with that of 100 random samples of the

same size as that cluster, taken from the 660 transcripts contained

in all of the clusters. Figure 8C shows the proportion of permuta-

tions showing a significant deviation in the direction of stronger

FIGURE 8 | Bayesian Network analysis. (A) The results of quality-based

clustering on BM transcriptional data provide tight clusters of coregulated

genes used as input for Bayesian network inference. (B) The resulting robust

network, defined as those connections present in at least 50% of all

subsample analyses for each of four different permutations of the dataset.

The size of nodes indicates the size of the clusters (also included in A), and

the size of edges connecting nodes reflects the relative likelihood of a

connection based on its overall frequency of occurrence across subsample

replicates. (C) Statistical testing of the significance of correlations within

clusters of PB data derived from BM data clustering. For each cluster, 100

random samples of genes of the same size of the cluster were compared to

the PB data using the BM clustering of genes. The distributions of gene

profile correlations to the centroid of their cluster were compared using a

one-tailed Kolmogorov–Smirnov test. Histogram bars represent the number

of random samplings showing statistically significant increases in correlation

of the actual data compared to random data. (D) The PB network derived

using BM clusters; of note there is one conserved connection between this

and the BM network.
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concordance in the observed data, providing good evidence for

cluster conservation in the PB for 12 of the 13 largest clusters,

as well as several of the smaller ones. Furthermore, the Bayesian

network approach identified a number of robust connections in

the PB data, showing an average 37.5% overlap between the orig-

inal data and any of the permutations, and three connections

were observed in common across all permutations (Figure 8D).

One of those three connections was observed in both the PB and

the BM, implying robust dependence of cluster 13 on cluster 2

between the two compartments. Of note, the genes in both of

these clusters have been implicated in 6 and 24 h responses to

the anti-tumor aminopeptidase inhibitor Tosedostat (Krige et al.,

2008). The other two connections (cluster 3 to 2, and cluster 4 to

12) are found in PB but not in BM, suggesting that not only is

there conservation of modularity between the compartments, but

that new relationships using the modularity of one compartment

can be observed in the other.

Application of a similar pipeline to the metabolome data also

revealed novel structure to the data. Since there are fewer differ-

entially abundant m/z features in the plasma, this analysis was

performed on 500 features for each column with relatively high

false discovery rates on the post- vs. inter-drug samples, namely

28% for C18 (p < 0.01) and 36% for AE (p < 0.031). Quality-

thresholded clustering identified 11 and 10 clusters respectively

with more than 5 m/z features, and 4 and 3 with more than

10 m/z features. The profiles of the larger clusters in each of the

two columns are concordant (Figures 9A,B), and most were also

recovered in a joint analysis of both columns, with approximately

double the number of features. This suggests that the two columns

reproduce the same tight clusters of metabolites across animals

and times, although the actual m/z values do not match, suggest-

ing that different ionizations or adducts may have been included

in the selected features for each column. After Bayesian Network

analysis, three robust connections were observed between AE

clusters, but none with the C18 data (Figures 9C,D).

To investigate possible integration of the metabolic and tran-

scriptional data types, we first simply performed correlation

analysis between the centroids of all of the clusters. The strongest

interaction that was identified had a correlation coefficient

of −0.61. Using Bayesian network inference on all clusters of

size greater than 10 between BM transcriptional data and AE

column metabolomics data (using only timepoints 3–7 for all

based on availability of metabolomics data), we found little in the

way of robust connections between the two data types (data not

shown). There were no connections conserved across 50% of the

subsampling analyses in each of the original and four permuted

datasets; however, relaxing this criterion slightly to include any

connection present for 50% of all subsampling runs across all

four datasets (not 50% in each individual dataset) revealed one

potential connection between the two data types.

DISCUSSION

This study with naïve healthy rhesus macaques precedes others

that will involve specific infection and treatment regimens, and,

importantly, it has served to establish logistics and methodolo-

gies for systems biological approaches requiring the monitoring

FIGURE 9 | Quality-thresholded clustering of metabolomics data.

Each plot shows the standardized levels of the indicated number in

parentheses of m/z features in Qt-clusters that have at least 5

features. The order of samples along the x-axis is {RCs18, RTi18,

RUn18, RWr18, and RZe18} at TP3, 4, 5, 6, and 7, and the solid blue

line indicates the centroid of the cluster. (A) AE column. (B) C18

column. (C,D) Bayesian networks assembled on clusters with five

metabolites and seven levels of discretization, and 80% subsampling

threshold, similar to the analyses used to generate the transcriptomic

networks in Figure 8B.
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and evaluation of clinical data, collection of PB and BM samples,

and the integrative analysis of multiple omics and other datasets.

The biological objective of this study was to use the combined

power of transcriptomic and metabolomic profiling to investi-

gate the effects of an anti-malarial drug on the physiology of the

PB and BM. Five rhesus macaques were injected with a prepa-

ration of uninfected Anopheles dirus salivary glands, to mimic an

inoculation of Plasmodium sporozoites, and then followed for 100

days with intermittent administration of pyrimethamine, a drug

known to have an effect on the BM.

Ideally the unbiased top-down analytical approach that we

adopted would identify components of variation in both the

transcriptional and metabolomic domains that covary with drug

administration, and enrichment analysis of both would point

to a common aspect of metabolic regulation such as nucleotide

biosynthesis. To some extent we were thwarted in this objective

by three findings: (i) there is very low correspondence between

the transcriptome and metabolome and no major components of

variation correlate with repeated pyrimethamine administration;

(ii) among animal effects dominate the transcriptome raising

the possibility that pyrimethamine responses are variable among

individuals and obscure any common response; and (iii) although

the metabolomics platform reports thousands of features, anno-

tation is not yet robust enough to support global enrichment

analysis in this dataset (but see Li et al., 2013, for encouraging

developments).

Additionally, we must acknowledge that this is a relatively

small study, with just five monkeys and seven timepoints. The

failure to detect strong drug responses or covariance of the blood

and transcriptome may simply be a function of lack of statis-

tical power. For example, although we can attribute the largest

PC to specific sources of variance, those explaining much less

than 10% of the variance might be regarded as noise, and are

unlikely to replicate. That is one reason why we turned to the Axis

of Variation analysis, since the axes have a more biological basis

that is not as dependent on sample size. The pathway-oriented

analysis also highlights how interpretation of single gene effects

must be placed within the context of the major sources of vari-

ance, in this case animal effects and some temporal shifts that

may not relate to drug administration. It is likely that much

larger studies would be required to detect strong transcriptome-

metabolome covariance: for example, our analysis of 20 strains

of Drosophila profiled on four diets with considerable techni-

cal replication did suggest some specific examples of covariance

despite general absence of correspondence of the major PC axes,

and even in the presence of large genotype-by-diet interactions

(Reed et al., 2014). Studies with hundreds of NHPs are imprac-

tical, so we must make do with analytical methods such as

those reported here, but recognizing that there is low power

and the potential to over-interpret those associations that are

detected.

Nevertheless, several key findings contradict our expectations

and highlight aspects of the biology that emerge from multi-omic

analyses. Most striking is the magnitude of the among-animal dif-

ferentiation of the transcriptome. This is even stronger in the PB

than the BM, with almost perfect clustering of all seven time-

point samples within animals. Each of the major PC and Axes of

variation are significantly different among animals. In the BM, an

unknown variable caused TP4 to generate a markedly different

profile common to all five macaques, yet the individual profiles

return to the animal-specific baseline within weeks. Persistent

among-individual differential expression in the PB has also been

reported in humans (Whitney et al., 2003; GG unpublished), but

here we demonstrate for the first time that the differential expres-

sion is initiated in the BM and the data suggests that it precedes

and is independent of individual-specific environmental influ-

ences faced in the PB. Persistent inter-individual variation is less

marked in the metabolome, but nevertheless present as previously

observed by Park et al. (2009) in a human dietary intervention

study.

The temporal component of transcriptional variance shows

some sign of cycling with drug administration, but it is domi-

nated by timepoints that are not primarily associated with recent

administration of the drug. In the PB, TP1 is most divergent,

possibly indicating incomplete acclimatization of the animals to

their new experimental housing and experimental procedures.

Indeed, one of the pathways elevated at TP1 denotes a general-

ized stress response, as we have previously observed in captive

relative to free range red wolves (Kennerly et al., 2008). This

effect is much less in the BM, and since TP1 and TP2 differ

from the remaining timepoints for 2 of the first 5 PC and 3

of 9 Axes (e.g., Figures 5D,F). Consistent with the observation

that pyrimethamine has an effect on the BM (Wickramasinghe

and Litwinczuk, 1981) our data indicates that in the BM there

is a global impact of pyrimethamine that persists throughout

the experiment following the first administration. Then at TP4

in the BM and TP4 and especially TP5 in the PB, there is fur-

ther differentiation of gene expression consistent with a height-

ened response to the drug. TP4 is an inter-treatment timepoint,

over 20 days after the previous administration at a time when

pyrimethamine should no longer be in circulation based on its

half-life of 140 h (Almond et al., 2000). Based on this figure there

should nevertheless be around one third of the administered dose

still available at the post-drug timepoints (TP3, 5, and 7), but we

do not know to what extent it would be directly available to cells

in the BM or circulating in the blood. Consequently, it is possible

that the relatively weak drug effects are because the animals are

no longer functionally exposed to pyrimethamine at the sampled

timepoints. We have been unable to correlate the change at TP4

with any variable such as a change in handler or cage conditions.

The null hypothesis of no differential expression across time is

rejected, but we do not have a clear alternate hypothesis for the

effect.

In the metabolome, there is very good correspondence

between the PC and the hierarchical cluster profiles of the two

columns, but the major variance components do not correlate

with either animal or drug response. Since retention times dif-

fer between the columns, and m/z peaks included in feature

selection may be from different adducts for several metabo-

lites, it is not straightforward to combine the analysis of both

columns. The major temporal effect is at TP7, which shows a

correlated response across all five animals. It is unclear whether

this represents a long-term effect of more than two months of

drug treatment, or some other unidentified stimulus, but it has
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no correlate in the transcriptome. Several hundred metabolite

features are globally different in the post-drug samples, even

though the major PC also differentiate the post- and inter-drug

timepoints.

The antimalarial drug pyrimethamine interferes with folate

by inhibiting the enzyme dihydrofolate reductase and disrupts

the parasite life cycle by interfering with nucleotide metabolism

and replication. It also affects host metabolism, and in fact

folate supplementation is often used to sustain healthy erythro-

poiesis in pregnant women and infants (Titaley et al., 2010).

Gene set enrichment analysis (Subramanian et al., 2005) of the

transcriptome provides some evidence for effects on metabolism

and cell division. Briefly, contrasting the pre- with the post-

and inter-drug timepoints, some common pathways between the

BM and PB, as well as BM-specific changes, are observed. The

former are of a metabolic nature, including oxidative phospho-

rylation, pentose phosphate, glyoxylate, butanoate, and linoleic

acid metabolism; the latter include multiple KEGG pathways

related to the cell cycle such as DNA replication, recombina-

tion, and repair. Our Bayesian network approach also focuses

attention on regulation of cell division since one of the key

enrichments in the BM is with targets of Tosedostat, an anti-

cancer drug that antagonizes aminopeptidase activity (DiNardo

and Cortes, 2014). Results such as this generate hypotheses that

can be tested by targeted metabolomics and manipulation of gene

expression, suggesting a new integrative genomics approach to

pharmacogenetics.

Our top down analyses also provide some important lessons

regarding the joint use of different data integration strategies

in MaHPIC (or similar) experiments where a relatively small

number of individuals will be followed longitudinally during

an intervention. While the principal components approach effi-

ciently defines the major sources of variation, it misses important

biological results and is not obviously the best strategy for integra-

tion of multiple omic and immunological measures. In particular,

the axis of variation analysis picks up effects of drug admin-

istration on broad aspects of immune function, most notably

interferon-related gene activity highlighted by Axis 7 in both PB

and BM samples. It is unlikely in this case that the elevation

of this axis is due to viral activity, but this result and weaker

evidence for dysregulation of Axes 2 and 9 in the week after

pyrimethamine administration show that the network of immune

interactions is perturbed and that drug activity is not narrowly

restricted to the immediate effects of folate. Finally, given the

small number of animals and timepoints in this experiment, sta-

tistical power is low for formal hypothesis testing, but we begin

to show how Bayesian Network analysis can tease out interaction

effects that are not evident in univariate analysis or in analyses

designed to capture the largest overall components of variance.

The two immune compartments share clusters of co-regulated

gene modules, but the connectivity of these differs between BM

and PB samples. Plasmodium infection will have a much larger

impact on the animals’ physiology than the mock-inoculations

described here, providing ample opportunity for exploring

network-based modeling of the host-parasite interactions that

underlie malaria infections, immunity, pathogenesis, and severe

disease.
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