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Comparative transcriptomics and
proteomics of three different aphid species
identifies core and diverse effector sets
Peter Thorpe1,3, Peter J. A. Cock2,3 and Jorunn Bos1,3,4*

Abstract

Background: Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide.
While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation.
The identification and characterization of these effectors from different species that vary in their host range is an
important step in understanding the infestation success of aphids and aphid host range variation. This study
employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and
compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and
F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid).

Results: Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues
as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species
and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously
identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies.
Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting
candidates for further validation and characterization with regards to species-specific functions during infestation.
We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with
DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this
reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene
duplication remains to be investigated.

Conclusion: Our work provides a comprehensive overview of the candidate effector repertoires from three different
aphid species with varying host ranges. Comparative analyses revealed candidate effectors that are most likely are
involved in general aspects of infestation, whereas others, that are highly divergent, may be involved in specific
processes important for certain aphid species. Insights into the overlap and differences in aphid effector repertoires are
important in understanding how different species successfully infest different ranges of plant species.
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Background

Aphids are phloem-feeding insects that cause substantial

damage to agriculture worldwide due to feeding-related

damage and the transmission of economically important

plant viruses [1]. Effective control of aphids in field

crops currently relies heavily on the use of insecticides.

However, aphids have been shown to develop resistance

to many of the different types of available insecticides

[2–4]. In addition, there are an increasing number of

restrictions in place on the use of insecticides under EU

legislation due to their environmental impact [5]. There-

fore, there is a pressing need to develop novel aphid

control strategies, which requires a better understanding

of the molecular basis of plant-aphid interactions.

Among the over 4000 aphid species, around 10 % are

considered pests of economically important plants and
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trees [6]. While most aphid species are highly specialized

and can only infest plants in a single taxonomic family

or several related plant species, some aphid species have

an exceptionally broad host range and are able to infest

plants in many families [1]. The latter group of aphid

species includes some major pests, like Myzus persicae

(green peach aphid), which infests plants in over 40 fam-

ilies, including crops like potato and oil seed rape [1]. In

contrast, a close relative of M. persicae, M. cerasi (black

cherry aphid), is only able to infest cherry and a few

herbaceous plants. Also, some aphids, like Rhopalosi-

phum padi (bird cherry-oat aphid), mainly infest cereals.

Interestingly, we previously showed that aphid species

M. persicae, M. cerasi and R. padi exhibited probing be-

haviour on Arabidopsis thaliana during host, poor-host

as well as nonhost interactions [7]. This implies that

during these different types of interactions there is an

opportunity for molecular interactions to take place.

Moreover, we found that Arabidopsis transcriptional re-

sponses to these three aphid species showed a high level

of overlap, suggesting that also aphid responses likely

play a key role during the different types of interactions.

Although the molecular mechanisms underlying aphid

host range differences remain elusive, it is likely both

plant and aphid molecules are involved [8].

For a plant pathogen or pest to be successful on a

host, it is important to manipulate host cell processes to

promote virulence. This generally involves the secretion

of molecules, termed effectors, inside the host, which

target host molecules [9]. A number of recent studies

have now shown that insects, including aphids, produce

and secrete effectors that suppress or induce plant de-

fence responses [10–13]. These aphid effectors are

thought to be produced predominantly in the salivary

glands and secreted within aphid saliva during probing

and feeding [14–19]. The recent availability of aphid

genome and transcriptome sequence data has facilitated

the development of approaches to identify aphid candi-

date effectors [10, 11, 20–22]. More specifically, bio-

informatic pipelines to identify putative secreted

proteins have been developed e.g. [23] and applied to

several aphid species [10, 11–20]. In addition, saliva col-

lection methods based on artificial diet-feeding systems

in combination with mass spectrometry have allowed

the identification of proteins present in saliva of several

aphid species [10, 21, 24]. These efforts have generated

lists of candidate effector proteins for a number of spe-

cies and led to the functional characterization of several

candidates in plant-aphid interactions.

We were interested to gain a comprehensive insight

into the diversity of aphid effector repertoires of species

with varying host ranges. Therefore, we employed a

combined transcriptomic and saliva proteomic approach

to identify and compare the effector repertoires from

three different aphid species, M. persicae, M. cerasi and

R. padi. For M. persicae, we included three different ge-

notypes to also assess variation within this species.

These were genotype O, which is currently most preva-

lent in the UK, genotype J which was prevalent in the

UK around 1970 but is currently only found occasion-

ally, and genotype F, which was prevalent in 1995 but is

not currently found (Brian Fenton, personal communica-

tion, 2015). These genotypes show differences in growth

rates on different host species, with genotype F showing

a significantly slower growth on all host species com-

pared to other genotypes [25].

We found a large number of predicted secreted aphid

proteins to be highly conserved among the different

aphid species, which we propose reflects the potential

aphid core effector repertoire. Many proteins within this

repertoire were predicted to be of unknown function

and specific to aphids. Therefore, these proteins may ex-

hibit highly conserved functions important in establish-

ing plant-aphid interactions. In addition, we identified

sets of effectors that were highly divergent among the

different aphid species and/or genotypes, as well effec-

tors potentially specific to one of the aphid species.

Some of these effectors showed evidence of positive

selection. We propose that such effectors are strong can-

didates for contributing to aphid species-specific infest-

ation strategies.

Results and discussion

De novo RNA-seq data assembly

To define the effector repertoires from aphid species M.

persicae (genotypes O, J and F), M. cerasi and R. padi,

we sequenced libraries generated using RNA extracted

from both body and head tissues. Quality control and de

novo assembly was performed for each species and geno-

type. We performed differential gene expression analyses

by mapping reads for each biological replicate dataset

back to the assemblies and then generated normalised

digital gene expression (TMM-FPKM) (Fig. 1). Details

on the numbers of assembled contigs, reads, predicted

coding sequences (CDS) and differentially expressed

genes are summarised in Table 1.

Predicted unigenes from the de novo assemblies were

subjected to BLAST searches against the NCBI NR

database (March 2014) to annotate the transcript coding

sequences (CDS) and identify potential contaminants

through kingdom assignment. In summary, the de novo

R. padi RNA-seq assembly resulted in the prediction of

28,542 CDS, of which 1189 did not have any BLAST hit

(1e-5 threshold) (Table 1). The majority (91 %) of CDS

showed similarity to Acyrthosiphon pisum (pea aphid),

for which the genome sequence is available [26]. Only 2

sequences were identified as viral, and matched to puta-

tive replicase proteins from the insect virus Euprosterna
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Fig. 1 Diagrammatic representation of the experimental procedure used to identify putative effectors from Myzus persicae genotype O, J and F,

M. cerasi and Rhopalosiphum padi. (1) Aphids were dissected into biological replicas of heads and separately bodies (without nymphs). RNA was
extracted and subjected to Illumina HiSeq sequencing. Following quality control (QC) and assembly, differential expression was performed to
identify transcripts upregulated in head samples that encoded predicted signal peptides. These were categorised as putative effectors. (2) Aphid

saliva was collected in artificial feeding chambers. The saliva was subjected to LC-MS/MS analysis. The resulting data was interrogated against the
transcriptome assemblies in order to identify salivary secreted proteins. These were categorised as putative effectors. (3) Reciprocal best BLAST hit

analysis was used to identity 1:1 ratio orthologues between M. persicae genotype O, J and F, M. cerasi, R. padi, Acyrthosiphon pisum and Aphis

glycines. Clustering of the 1:1 ratio orthologous sequences was performed and where the resulting orthologous clusters contained a putative
effector, they were subjected to DN/DS analysis. Clusters with a DN/DS value greater than 1 were identified as potentially under selection pressure. (4)

Whole transcriptome clustering based on sequence similarity using BLAST and MCL, using the species listed above including Drosophila melanogaster,
was used to identify clusters of putative effectors and those which maybe novel, termed pioneers in this study
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elaeasa, and 29 sequences were bacterial, including 2 se-

quences from the aphid endosymbiont Buchnera. The

number of transcripts assembled for R. padi was sub-

stantially less than that of the other assemblies, likely

due to the lower number of reads generated for this spe-

cies. For M. cerasi we identified 28,408 unigene CDS,

with 76 % showing BLAST hits to A. pisum. The M. cer-

asi CDS set included 18 viral sequences, and 183 bacter-

ial sequences of which 120 were Buchnera-derived. For

the M. persicae genotypes the numbers of CDS ranged

from 21,441 to 24,742, with around 90 % showing

BLAST hits against A. pisum. The number of sequences

with similarity to insect viruses ranged from 8 to 11, and

the number of bacterial sequences ranged from 114 to

228, with 73 to 164 being derived from Buchnera. We

also identified a number of transcripts that showed

BLAST hits to plant genes (114 for R. padi, 56 for M.

cerasi, 43 for M. persicae genotype J, 24 for M. persicae

genotype F, and 27 for M. persicae genotype O). How-

ever, it is unclear whether these transcripts are incor-

rectly annotated in the database or whether they are

indeed present in insect tissue. We also found a number

of secondary BLAST hits against Clostridium sordellii

sequences from one particular dataset (ATCC 9714)

[27], which included hits for some well characterized

aphid effectors, such as MpC002 and Me10. However,

additional BLAST searches showed that these aphid

effectors do not show any hits against other bacterial

databases, including other Clostridium datasets. Also

effectors like C002 contain introns and are confirmed to

be aphid derived using various independent approaches,

including proteomics and genomics [17, 20–22]. The

relatively high number of matches to a specific C. sordel-

lii database is therefore unlikely due to contamination of

our samples.

We used our de novo transcriptome datasets as well as

the A. pisum genome sequence, and the publicly

available transcriptome datasets for Aphis glycines (soy-

bean aphid) [28] and A. gossypii (melon aphid) [29], for

phylogenetic analyses to assess the relationships of the

different aphid species used in this study. We selected a

set of single copy orthologous genes described by Misof

et al. [29] for reciprocal best BLAST hit and phylogen-

etic analyses (Additional file 1). As expected the two

different Myzus species were more closely related to

each other than to the other species in the phylogenetic

tree (Fig. 2). Also, the three M. persicae genotypes clus-

tered together, with genotype O being phylogenetically

closer to genotype J than genotype F (Fig. 2).

In addition, we looked at the predicted functions of

the most abundant transcripts for each aphid species

and genotype. Annotation of the 100 most abundant

transcripts in the (combined head and body) transcrip-

tome datasets revealed a high level of similarity across

the species/genotypes (Additional file 2). For example

ribosomal proteins, cuticle proteins, ATP synthases,

elongation factor 1-alpha, myosin light chain protein,

putative sheath protein, chemosensory proteins, and heat

shock-associated proteins were present in the 100 most

abundant transcripts for all species. Interestingly, we

identified transcripts with sequence similarity to several

previously identified putative aphid effectors among the

100 most abundant transcripts. For most aphid species/

genotypes we identified transcript sequences with simi-

larity to effector Me10 from Macrosiphum euphorbiae

(potato aphid), which has previously been shown to pro-

mote aphid virulence [10]. Moreover, we also identified

several transcripts in the various datasets with similarity

to candidate effectors, including Mp10 (M. cerasi, M.

persicae genotype O and F), Mp12 (M. persicae genotype F

and O), Mp17 (M. persicae genotype O), Mp23 (M. persicae

genotype O, F and J), Mp44 (M. persicae genotype F), and

MpC002 (M. cerasi) [22]. The high level of overlap in

predicted functions of the most abundant transcripts for

Table 1 Statistics, number of differentially expressed transcript and predicted effectors for the de novo RNA-seq assemblies generated in
this project for Myzus persicae genotype O, J and F, M. cerasi and Rhopalosiphum padi

M. cerasi R. padi M. persicae genotype O M. persicae genotype F M. persicae genotype J

Unigenes from CDS 28,408 28,542 23,822 24,742 21,441

Transcripts: 126,245 35,426 125,222 122,733 108,577

Components (genes): 60,095 32,357 62,850 63,350 55,644

Percent GC: 34.6 36.3 34.6 34.5 34.3

Total assembled bases: 193,365,154 22,967,672 192,529,031 168,958,624 164,626,862

Upregulated head 1410 950 1370 3762 1383

Secreted 144 165 276 541 355

Secreted w/NLS 12 18 45 84 64

Upregulated bodies 848 893 796 2575 2692

Secreted 64 94 133 252 278

Secreted w/NLS 3 10 9 25 28

Thorpe et al. BMC Genomics  (2016) 17:172 Page 4 of 18



Drosophila melanogaster

Aphis glycines

Aphis gossypii

Rhopalosiphum padi

Acyrthosiphon pisum

Myzus cerasi

Myzus persciae genotype F

Myzus persciae genotype O

Myzus persciae genotype J

100

100

97

100

100

99

0.05

Fig. 2 Phylogenetic tree from maximum likelihood analysis of an alignment of 71 EOG genes per species using 150 bootstraps
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the different aphid species reflects their importance to

aphid biology. Although we identified transcripts with

similarity to several known putative effectors for the Myzus

species, we only identified one previously predicted effector

sequence (similar to Me10) in the R. padi top 100 transcript

set. It is possible this aphid species utilizes a different effec-

tors repertoire than Myzus species during plant infestation.

Prediction of putative effector repertoires from different

aphid species

Effectors are thought to be expressed and synthesised in

the salivary glands, which are located in the aphid head

[17]. Aphid species vary in size and therefore dissection

of salivary gland tissues to use for transcriptome analyses

is challenging and not always feasible. To be able to

identify transcripts encoding putative effectors for the

different aphid species, which are most likely expressed

in the salivary glands, we compared datasets generated

from aphid head versus body tissues and looked for tran-

scripts that were up-regulated in head tissue.

First, we identified transcripts up-regulated in head

versus body tissues and vice versa for each species

(Table 1). Then, we applied a bioinformatics pipeline to

these transcript sets to identify transcripts up-regulated

in aphid heads that are predicted to encode secreted

proteins. This identified 144 transcripts for M. cerasi,

165 for R. padi, 276 for M. persicae genotype O, 541 for

M. persicae genotype F, and 355 for M. persicae geno-

type J (Table 1; Additional file 3). In addition we pre-

dicted the presence of nuclear localization signals (NLS),

which identified 12 to 84 predicted secreted proteins

with a predicted nuclear localization (Table 1). Interest-

ingly, these results show variation in numbers of

predicted effectors within M. persicae. For example, for

genotype F we nearly predicted twice the number of

effectors as compared to genotype O despite similar

numbers of total CDS. Whether these differences are

due to the quality of the assembly or reflect any bio-

logical relevance remains to be investigated.

In parallel, we examined the gene expression profiles

of a set of genes commonly used for normalisation of

qPCR data and thought to be constitutively expressed

[30, 31]. Sequences annotated as elongation factor 1

alpha, actin, succinate dehydrogenase and CDC42 (cell

division control protein) were selected for assessment of

their expression profiles. Of the 128 aphid gene se-

quences we identified using sequence similarity searches

to these select genes, only 4 were found to be differen-

tially expressed (Additional file 4). One was an actin

transcript, and the other three were succinate dehydro-

genase transcripts. However, two out of the three differ-

entially expressed succinate dehydrogenase genes were

only expressed, to low levels, in one of the aphid sam-

ples (M. persicae genotype F - head) with no expression

in the other samples, thus leading to differential expres-

sion (Additional file 4). Some actin genes could be af-

fected in their expression by differences in aphid growth.

Similarly, actin was highly expressed in J2 nematodes

versus those in other life stages in the case of Globodera

pallida [32]. Despite this, 124 of the 128 transcripts did

not show any differential gene expression within our

dataset indicating that these genes are not regulated

similarly to those in our candidate effector sets.

Previous studies have identified salivary proteins in

aphids using proteomics and/or bioinformatics ap-

proaches [10, 11, 20, 21, 33]. We compared the pre-

dicted aphid effectors identified by Bos et al. [11],

Atamian et al. [10], and Carolan et al. [20] to the

datasets we generated in this study and found similar

sequences for many of the previously identified candi-

date effectors (Additional file 3). For example, we

identified sequences similar to previously identified

effectors C002 [17] and Me10 [10], to the candidate

effectors identified by Bos et al. [22] and to 276 candi-

date effectors described by Carolan et al. [20] based on

a BLASTP cut-off of 1e-10 (Additional file 3).

GO annotations were assigned and GO enrichment

analyses revealed an over-representation in the predicted

effector repertoires of all species of the functional

categories “structural molecule activity” and “constituent

of cuticle and extracellular region” (Additional files 5

and 6). However, many putative effectors identified to

date from different pathosystems have no known GO

domains [34]. Therefore these GO-term data may not

reflect the biological function of a large number of aphid

predicted effectors.

We then looked at BLAST similarity searches of our

predicted effector repertoires to look at putative functions

(Additional file 3). Interestingly, we identified two predicted

aphid effectors from M. persicae with similarity to a pea

aphid E3 ubiquitin ligase [GenBank: XP_001945627.1].

These enzymes are important components of the ubiquitin-

proteasome pathway. The ubiquitin-proteasome pathway

is implicated in a wide range of plant-pathogen

interactions and it is possible that aphids exploit this

pathway in order to manipulate host responses [35, 36].

Also, we identified putative effectors with potential

roles in detoxification and digestion (Additional file 3).

It has been suggested that aphids secrete cellulase en-

zymes in order to minimise the mechanical damage

caused during stylet movement [15]. We did not find

cellulase enzymes or any other glycosyl hydrolase (GH)

domain containing protein involved in cell wall degrad-

ation in our predicted effector repertoires. However,

when interrogating the whole transcriptome, rather than

the effector repertoire sets, we found 10 transcripts

corresponding to GH5 domain cellulases (M. persicae

and M. cerasi only), of which 8 were predicted to encode
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secreted proteins. However, these transcripts were simi-

larly expressed in body and head tissues. It is possible

that some effectors may be produced in other tissues

than the salivary glands and are then transported to the

salivary duct and secreted into saliva. Therefore, our

selection of candidate effectors based on high expres-

sion levels in head versus body tissues may have missed

some potential effectors of interest. Moreover, secreted

enzymes in the aphid digestive tract are likely involved

in the detoxification and degradation of plant

compounds [37, 38].

Carolan et al. [20] previously identified some similarity

between nematode effectors and predicted pea aphid ef-

fectors based on functional annotations. We assessed

our datasets for such similarity and identified sequences

with predicted functions similar to those of several root

knot nematode effectors (i.e. m1 zinc metalloprotease,

calreticulin and glutathione peroxidase) (Additional file

3). In addition, we compared amino acid sequences

within our candidate effector sets to the predicted ef-

fector repertoire of the cyst nematode Globodera pallida

[34]. We only found M. persicae sequences with similar-

ity to three proteins, which are potentially part of a

family [GeneDB/WormBase: GPLIN_001205000, GPL

IN_000990400, GPLIN_000574800] and are predicted to

encode a gland cell secretory protein 3, which contains a

thioredoxin-like domain, and shows similarity to a

protein with a kinase domain [GeneDB/WormBase:

GPLIN_000510600] (BLASTP e-value p < 1e-21). Over-

all, there is very little, if no, convergent evolution be-

tween the effectors repertoires of the aphid species used

in this study and those of plant pathogenic nematodes.

We also compared our findings to transcriptome stud-

ies aimed at identifying salivary gland genes from other

sap-sucking insects within the order Hempitera, such as

the potato leafhopper Empoasca fabae [39], the whitefly

Bemisia tabaci [40], and the brown planthopper

Nilaparvata lugens [41]. Genes with functions predicted

to be involved in plant-hemipteran interactions, that

may have similar roles to those identified in this study,

include peroxidases [42], sucrase [43], peptidase, lipase

[39, 44], phosphatase [45], glucose dehydrogenase [45]

and a number of hypothetical pea aphid proteins. Previ-

ously it has been shown that some predicted secretory

salivary proteins from the whitefly show similarity to

putative pea aphid effectors [40]. For example, predicted

whitefly effectors showed similarity to an GMC oxire-

ductase, glucose dehydrogenase, Mp12, Mp43, Mp11,

Mp43, Mp46, sucrase, and M1 zinc metalloprotease [40].

Moreover, comparative analyses between a planthopper

salivary gland transcriptome and the pea aphid identified

number of similar sequences which may function in

insect-plant interactions such as a glucose dehydrogen-

ase, peroxidase-like, vitellogenin-6-like, serine protease

snake-like isoform 1 carboxypeptidase, and digestive

enzymes [41]. This shows that these insects may use

some common proteins in order to successfully infest

their hosts. However, a large number of aphid putative

effectors identified here are aphid specific, consistent

with previous research [20], indicating aphid specific

evolution.

Prediction of putative effectors using saliva proteomics

Complementary to our transcriptomics approach we

performed aphid saliva proteomics for the three aphid

species/genotypes in our study to identify candidate

effectors. We collected saliva using an artificial feeding

system [21, 22] and subjected samples to LC-MS/MS

analyses. MASCOT software searches for peptide identi-

fication were run against the de novo assemblies gener-

ated in this project (Fig. 1). In total we identified 56

proteins in the saliva of R. padi, 19 proteins in the saliva

of M. cerasi, and 40, 42 and 47 proteins in saliva of M.

persicae genotypes F, O and J, respectively (Additional

file 7). The differences in protein numbers could reflect

that these aphid species produce variable amounts of

saliva when exposed to artificial feeding system or that

they secrete effector repertoires with different complexities.

Also, we also performed MASCOT searches using the

NCBI NR database, which led to a relatively small num-

ber of proteins being identified when compared using

the de novo assemblies (Additional file 7). More specific-

ally, we only identified 10 proteins for R. padi, 2 for M.

cerasi, 6 for M. persicae genotype F, 15 for M. persicae

genotype O, and 12 for M. persicae genotype J. This

highlights the importance of generating de novo tran-

scriptomes for different species in applying a proteomics

approach for protein identification.

Out of 204 proteins identified for the different species

and genotypes in total, only 61 contained predicted sig-

nal peptides with no transmembrane domain. Nineteen

of these were in our predicted aphid effector datasets

based on RNA-seq analyses. Overall this shows that

based on our analyses less than one third of the 204 pro-

teins contain secretion signals, and that only a small

number of candidate effectors were identified by both

the proteomics and transcriptomics approach. When

assessing the gene expression profiles of the candidate

effectors identified by proteomics we found that the ma-

jority of corresponding transcript where more highly

expressed in head versus body tissue (Additional file 8).

However, when applying statistical analyses we found

that for only 63 out of the 204 proteins the transcripts

were significantly more abundant in head tissues. Lack

of differential expression therefore partly explains the

lack of correlation between our effector sets defined by

RNA-seq and proteomics approaches.
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Another reason for the lack of overlap could be miss-

ing 5′-sequences in our transcriptome dataset required

for prediction of signal peptide sequences. We per-

formed an overall assessment of the de novo assemblies

for full-length transcripts using TransDecoder. Out of

28,542 R. padi predicted transcripts only 4590 were pre-

dicted to be complete (16 %), 14,505 were internal

(50 %), 6306 were 5′-partial (22 %), and 2241 were 3′-

partial (7.6 %). Similar numbers were obtained for the

other aphid species and genotypes. In addition, we

assessed whether full-length transcript sequences were

available for the 204 proteins identified by proteomics

within the de novo assemblies generated for each species.

For the 56 R. padi proteins identified by proteomics, we

only found full-length transcript data for 8 proteins,

which limited our ability to predict signal peptide se-

quences. Twelve out of the 56 proteins were predicted

to contain a signal peptide, with 4 of these containing

transmembrane domains. For M. cerasi, full-length tran-

scripts were available for 12 out of 19 proteins identified

by proteomics. Ten proteins contained signal peptide se-

quences, of which 2 contained transmembrane domains.

For the M. persicae genotypes we found that full-length

transcripts were available for about 50 % of the proteins

identified by proteomics.

We then compared functional annotations of saliva

proteins from the different aphid species. We found

that a putative sheath protein [GenBank: AFT82624.1],

several uncharacterized proteins [GenBank: XM_

003246795.2, XM_003246613.2, XM_008184371.1 and

XM_003242933.2], and a peroxidase-like [GenBank:

XP_003247027.1], were secreted by all aphid species.

Whereas uncharacterized protein [GenBank: XM_

008184371.1] and trehalase-like isoform X1 [GenBank:

XP_003245895.1] were found in saliva from all Myzus

species, including all genotypes. Glutathione S-

transferase [GenBank: XP_001942714.1] and uncharac-

terized protein [GenBank: NM_001162275.2] were

identified only in saliva from the different M. persicae

genotypes. Twenty-two proteins were found only in

saliva from R. padi such as C002, nine hypothetical/

unknown proteins, carbonic anhydrase and proteins

with proteolytic activity such as aminopeptidase and

cathepsin B-348 (Additional file 7). It is possible that

this aphid secretes different effectors into the artificial

diet, but we cannot rule out that observed differences

are due to differences in saliva amounts secreted and

quality of the RNA-seq datasets used for identification

of peptides.

Although, we cannot draw conclusions regarding the

presence or absence of certain proteins in saliva of spe-

cific species due to the lack of biological and technical

replication in our experimental set-up, our data does

support a model wherein different aphids secrete a core

or common effector set inside their host to manipulate

host processes. Within the common set of secreted

saliva proteins, those predicted to encode enzymes may

be involved in detoxification of chemical defences com-

pounds induced during early plant defence responses to

reduce harmful levels of reactive oxygen species [9].

Detoxification of plant defence responses may be a

common strategy employed by aphids and identifying

and characterizing any common/core proteins involved

in this could provide novel broad range targets for aphid

control strategies.

Cluster analysis to identify core effector sets

One of our key interests in this study was to compare

the predicted aphid effector repertoires to identify com-

mon or core sets of candidate effectors as well as those

potentially unique to specific species and/or genotypes,

or highly divergent across species. To do this, we used

the transcriptome and proteomics datasets for R. padi,

M. cerasi, and M. persicae generated here in combin-

ation with publicly available sequence data sets for A.

pisum [26], A. glycines [28], as well as the fruit fly Dros-

ophila melanogaster [46], for cluster analyses. The tran-

scriptome of A. glycines was re-assembled for our study.

To perform cluster analysis based on sequence similar-

ity, a database of all amino acid sequences from all spe-

cies listed above was generated, including several

previously published candidate effector sets [11, 12, 20].

This amino acid database was subjected to a self-

BLASTP (evalue 1e-35) similarity search followed by

cluster analyses using MCL (Fig. 1). Clusters containing

any of the candidate effectors identified by our tran-

scriptomics or proteomics approach or previously re-

ported [11, 12, 20] were defined as candidate effector

containing-clusters. We identified 444 candidate effector

containing-clusters represented by 6652 sequences out

of the total 43,256 clusters represented by 216,403 se-

quences. Within the candidate effector containing-

clusters we looked for those that were represented by 5

of the 8 aphid datasets, and defined these as core effec-

tors (Additional file 9). This identified 199 core putative

effector clusters containing 4811 sequences (Additional

file 10). Similarity searches revealed that these core

putative effectors showed high similarity to proteins with

a range of different functions, such as a glucose de-

hydrogenase, sheath protein, apolipophorin precursor as

well as previously reported aphid candidate effectors of

unknown function (Additional file 9).

Many of the predicted core effectors encode enzymes

with predicted functions in detoxification or digestion.

However, we also identified predicted effectors that have

no sequence similarity to proteins of known functions,

of which some are aphid-specific. Importantly, our clus-

ter analyses revealed similarity of core effectors to a
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significant number of previously identified candidate ef-

fectors. These include M. persicae effector Mp10, which

triggers a range of plant defences and reduces aphid

virulence when over-expressed in planta [47]. Two clus-

ters contained effectors with known virulence activity,

MpC002 and Me10. C002 is one of the best-

characterized aphid effectors and the M. persicae form

of C002, called MpC002, contributes to aphid virulence

as shown by a combination of in planta overexpression

and RNAi experiments [11, 13]. In addition, the M.

euphorbiae effector Me10 enhances aphids virulence

upon in planta over-expression [10].

Identification of potential aphid species-specific candidate

effectors

In addition to the conserved effectors, we also looked

for any MCL clusters that contained candidate effector

sequences with no BLAST hit against the NCBI NR

database (e-value 1e-5) or Pfam A domains specific to a

single aphid species or genus. These were defined as pi-

oneer candidate effectors. We found 7 clusters corre-

sponding to 10 sequences specific to R. padi, and 8

clusters corresponding to 11 sequences specific to M.

persicae. We found 4 clusters, containing 16 sequences

that were specifically represented by the two Myzus spe-

cies (Additional file 10). These pioneer candidate effec-

tors were all predicted based on our transcriptomics

analyses and therefore showed significantly higher

expression in head samples than in body samples

(p < 0.001).

To determine whether these potentially species-

specific effectors are indeed species-specific further

characterization will be required. This will address

whether M. persicae-specific effectors contribute to host

range and whether the cereal pest R. padi requires spe-

cific effectors to successfully infest cereals.

DN/DS analysis identifies candidate effectors under

positive selection

In addition to species-specific effectors, aphids may se-

crete different variants of effectors involved in host in-

teractions. For example, some aphid effectors may have

evolved and exhibit diversity reflecting co-evolution of

specific plant and aphid species. To determine if the pu-

tative effectors identified in this study were under selec-

tion pressure, the ratio of the number of nonsynoymous

substitutions to the number of synonymous substitutions

per synonymous site (DN/DS) was calculated for recip-

rocal best blast (RBBH) hit orthologous groups (Fig. 1).

First, we generated a reciprocal best BLAST hit putative

1:1 orthologous group network, by performing reciprocal

best blast hit analyses (BLASTP) using the different

aphid transcriptome datasets (including the pea aphid

predicted genes). A network was generated from the

resulting hits (Additional file 10). We calculated DN/DS

ratios for each RBBH group containing a putative ef-

fector and identified those that scored a DN/DS ratio

>1, indicative of positive selection (Fig. 1; Table 2). Since

our analysis is based on transcriptome rather than gen-

ome sequencing data, we were unable to take potential

gene duplication into consideration, which is known to

occur within aphid genomes [26]. However, previously

identified effectors such as C002, Mp1 and Me10 are

single copy genes based on BLAST searches against the

published pea aphid genome.

In total we identified 430 orthologous groups in our

RBBH network that contained a candidate effector based

on our own analyses and several published candidate ef-

fector sets [11, 12, 20] out of a total of 31,361 groups.

Out of these 430 groups, 49 were identified as being

under positive selection (DN/DS > 1) (Table 2). In paral-

lel, we selected a set of 35 sequences corresponding to

genes not expected to be under positive selection based

on their predicted conserved function in aphids

(CDC42, EF1a, NADH-dehydrogenase, succinate de-

hydrogenase, TATA-box binding protein) for similar

analyses. This generated 7 groups and DN/DS ratios

<0.3, showing that none of these conserved genes were

under positive selection. A further 390 groups corre-

sponding to predicted EOG genes (Eukaryotic Ortholo-

gous Group) [29], also thought to be single copy, were

subjected to DN/DS analysis. Three groups had DN/

DS > 1 (values of 1.1, 1.1 and 1.4, 2dp) which we

consider false positives, and correspond to 0.8 % of the

EOG set. In contrast, 11.4 % of the putative effector

containing clusters were found to have DN/DS > 1.0.

However, we cannot rule out that some of these clusters

actually represent gene duplicates rather than orthologs

of single copy genes.

Putative effector clusters were checked to see if they

contained single copy genes within the pea aphid gen-

ome. Of the 49 putative effector clusters under positive

selection, 24 included an A. pisum sequence. To exam-

ine if these 24 aphid genes are represented by a single

copy in the published A. pisum genome, their protein se-

quences were subjected to BLASTP searches against the

predicted A. pisum protein set, excluding the expected

self-matches. Three out of the 24 sequences returned

hits when using a 70 % identity cut off, reflecting per-

haps recent gene duplication, whilst 10 returned hits

when using a 30 % identity cut-off, suggesting that at

least 14 sequences are likely single copy.

The candidate effector group with the highest DN/DS

ratio (4.17) included a protein of unknown function iden-

tified in the saliva of M. persicae (Table 2). The amino acid

sequences in this cluster are mainly conserved in the N-

terminal region. The C-terminal 51 amino acid region,

which is predicted to be under the greatest positive
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Table 2 Reciprocal best blast hit analysis identified 1:1 orthologues between the transcriptomes. The resulting clusters, if they
contained a putative effector were subjected to DN/DS analysis to identify any clusters under positive selection (DN/DS >1.0). Those
identified as possibly under selection are listed in the table

Putative annotation Identified by DN/
DS

Cluster
number

Species in cluster

Uncharacterized protein LOC100570454 Proteomics 4.17 12679 M. persicae

Twitchin-like A. pisum Proteomics 3.66 11555 M. persicae

Uncharacterized protein LOC100160301 Proteomics, Mp15 (Bos et al., [14]) 3.62 11125 M. persicae

A-agglutinin anchorage subunit-like A. pisum Proteomics 2.93 4788 Myzus

Carbonic anhydrase 7-like A. pisum Proteomics 2.79 4096 Myzus

Hypothetical protein LOC100574284 Proteomics 2.48 12749 M. persicae

Peroxidase-like, partial A. pisum Proteomics 2.32 9497 M. persicae

Uncharacterized protein LOC100167427 precursor A.
pisum

Proteomics, Me10 (Atamian et al.,
[11])

1.90 3800 Myzus, A. pisum, R. padi

Carbonic anhydrase 7-like A. pisum Proteomics 1.43 10713 M. cerasi, A. pisum, R. padi

Glucose dehydrogenase acceptor-like A. pisum Proteomics 1.24 12369 M. persicae

Hypothetical protein LOC100159010 A. pisum Proteomics 1.24 14505 M. persicae, R. padi, A. glycines

Carbonic anhydrase 7-like A. pisum Proteomics, Mp50 (Bos et al., [14] 1.15 6 Myzus, A. pisum, R.padi

Uncharacterized protein LOC100575478 precursor A.
pisum

Mp35 (Bos et al., [14]) 2.99 3804 Myzus

ACYPI43360 A. pisum Mp31 Bos et al., [14] 2.64 1099 Myzus, A. pism

Hypothetical protein LOC100167863 A. pisum MpCOO2 (Bos et al., [14]) 2.63 3810 Myzus

Hypothetical protein LOC100569335 A. pisum Mp6 (Bos et al., [14]) 1.90 1095 Myzus

Hypothetical protein LOC100159632 A. pisum Carolan et al., (2011) 1.47 6601 M. persicae, R. padi

Protein takeout-like A. pisum Mp12 (Bos et al., [14]) 1.48 3497 M. persicae, A. pisum

Uncharacterized protein LOC100159485 precursor A.
pisum

Mp54 (Bos et al., [14]) 1.15 1096 Myzus

Mitochondrial import inner membrane translocase
subunit

Carolan et al., [23] 2.32 6744 M. persicae

Superoxide dismutase Cu-Zn-like precursor A. pisum Carolan et al., [23] 2.02 569 M. persicae, R. padi, A. glycines

Sarcalumenin-like isoform X1 A. pisum Carolan et al., [23] 1.34 244 Myzus, A. pisum, R. padi, A.
glycines

LOC100167075 Carolan et al., [23] 1.14 536 Myzus, A. pisum, A. glycines

Cuticular protein 62 precursor A. pisum Carolan et al., [23] 1.13 6596 M. persicae, A. pisum, A. glycines

LOC100163954 Carolan et al., [23] 1.05 6586 M. persicae, A. pisum

Pioneer Bioinformatics 1.83 12331 M. pericae

LOC100162609 A. pisum Bioinformatics 1.83 12665 M. pericae

LOC100571623 A. pisum Bioinformatics 1.78 1548 Myzus, A. pisum

LIRP-like A. pisum Bioinformatics 1.69 1457 Myzus, A. pisum

ACYPI000490 A. pisum Bioinformatics 1.68 13765 M. persicae, A. pisum

Peroxidase-like Bioinformatics 1.67 6520 Myzus, A. pisum

LOC100570826 A. pisum Bioinformatics 1.65 9610 Myzus

Odorant-binding protein Bioinformatics 1.63 3530 Myzus, A. pisum, R. padi

Cuticle protein Bioinformatics 1.63 4482 Myzus, A. pisum

Zinc finger protein Bioinformatics 1.61 12433 M. persicae

gi|488530945 Bioinformatics 1.56 5718 Myzus

LOC100570068 A. pisum Bioinformatics 1.43 4578 Myzus

Pioneer Bioinformatics 1.42 6006 Myzus

LOC100163563 A. pisum Bioinformatics 1.35 923 Myzus, A. pisum
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selection pressure shows 21 amino acid differences be-

tween the genotype F and O (Additional file 11).

One group, containing M. persicae candidate effector

Mp6 [11] was conserved within M. persicae genotypes,

but divergent between M. persicae and M. cerasi (DN/

DS ratio = 1.90) (Table 2; Fig. 3). We also identified a

group, containing M. persicae candidate effector Mp35,

with a DN/DS ratio of 3.0 that shows high conservation

within M. persicae, but variation between the two differ-

ent Myzus species (Table 2; Fig. 3). The sequences from

these two species contain 32 nucleotide differences that

correspond to 16 amino acid differences. This is also the

case for Mp12 cluster, which is conserved in M. persicae

but shows significant variation when compared to the

pea aphid sequence (Table 2).

For the RBBH group containing the aphid effector

C002 [17] we removed the N-terminal repeat region,

which is highly variable in length among different aphid

species, prior to DN/DS analyses. The full-length M.

persicae form of C002, here called MpC002, contains 5

repeat motifs (NDNQGEE, see Fig. 4(b)), which are im-

portant for virulence activity [13]. Our M. persicae tran-

scriptome analyses identified variants with 2–6 repeat

motifs. It is unclear whether this variation results from

assembly artefacts or whether this is genuine variation.

MpC002 is a single copy gene encoded on the negative

Table 2 Reciprocal best blast hit analysis identified 1:1 orthologues between the transcriptomes. The resulting clusters, if they
contained a putative effector were subjected to DN/DS analysis to identify any clusters under positive selection (DN/DS >1.0). Those
identified as possibly under selection are listed in the table (Continued)

LOC100162393 A. pisum Bioinformatics 1.35 245 Myzus, A. pisum, R. padi

LOC100169018 A. pisum Bioinformatics 1.30 4753 M. persicae

Pioneers Bioinformatics 1.29 4395 Myzus

LOC100160479 A. pisum Bioinformatics 1.24 3806 Myzus, A. pisum

LOC100167515 A. pisum Bioinformatics 1.19 983 Myzus, A. pisum, R. padi, A.
glycines

LOC100167306 A. pisum Bioinformatics 1.17 5666 Myzus, R. padi, A. glycines

ACYPI007464 A. pisum Bioinformatics 1.17 13983 Myzus, R. padi, A. glycines

LOC100168723 A. pisum Bioinformatics 1.16 1851 Myzus, A. pisum

Serine proteinase Bioinformatics 1.15 937 M. persicae, R. padi, A. pisum

LOC100159010 A. pisum Bioinformatics 1.14 5327 Myzus, A. pisum

* *

* * * *

A

B

* * *

Signal peptide

Fig. 3 Orthologues sequences for previously identified effector were identified by reciprocal best blast hit analysis. DN/DS analysis identified

clusters under positive selection pressure. a Sites which are most likely to be under positive selection (P > 0.95) are marked by boxes on the
amino acid alignment for cluster containing Mp6 (DN/DN = 1.9). b Orthologues for Mp35 were identified as being under positive selection. Sites

most likely to be under positive selection (P > 0.95) are marked with boxes (DN/DN = 3.0)
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strand that contains a 105 bp exon, followed by a

2264 bp intron, followed by a 719 bp exon, followed by

a 2498 bp intron, followed by a final 72 bp exon that is

poorly supported by RNA-Seq data (Fig. 4). The repeat

amino acid motifs are encoded within the 719 bp exon,

with no evidence of any intron regions around this area

for splicing to occur. M. cerasi C002 transcripts differ in

this region, but again encode for a variable length repeat

motif, composed of one NDDQGEV motif followed by

four or five repeats of the NDNQGEV motif. No repeat

motifs were found in R. padi C002, and this form was

highly divergent from the M. persicae and M. cerasi

forms and therefore did not fall within the C002 RBBH

group. The DN/DS (2.6) value for the C002 cluster was

based on variations seen between M. persicae and M.

cerasi. The sequences corresponding to C002 within

these species contained 81 nucleotide differences

corresponding to 47 amino acid changes within the 159

amino acid region following the repeat motifs (Fig. 4(c)).

As mentioned above, sequences similar to M. euphor-

biae effector Me10 [10] were among those most highly

expressed in all species included within this study. Our

RBBH and DN/DS analyses revealed the Me10-like se-

quences are under positive selection (Table 2).

We also identified several RBBH groups that contained

sequences under positive selection among the different

M. persicae genotypes (Table 2; Additional file 12). For

example, Group_12749, with similarity to A. pisum

XM_003246613.2, showed high levels of variation be-

tween M. persicae genotype F and the other two geno-

types. Also, in Group_12369, which is annotated as a

glucose dehydrogenase, we found variation between M.

persicae genotypes. Interestingly we found sites under

positive selection that fall within GMC oxireductase

72bp 719bp exon 105bp
2264bp intron2498bp intron

A

*

B

C

* * *

Fig. 4 Analysis of C002 sequences identified. a MpC002 is a single copy gene encoded on the negative strand by three exons. The height of the

histogram-graph lines represents the relative depth of RNA-seq coverage and therefore where the exon boundaries are. Within the 719 bp exon,
variant transcripts, which contain 2–6 repeat motifs, are encoded. b The variant motif region for transcripts from Myzus persicae genotype O.
c Reciprocal best blast hit analysis identified orthologues on a 1:1 ratio between the transcriptomes of C002. The C002 cluster was subjected to

DN/DS analysis (with the multiple repeat region removed for analysis, this corresponded to the first 120 amino acids) was identified as being
under selection pressure (DN/NS = 2.6). The sites most likely to be under selection pressure (P > 0.95) are marked on the alignment by boxes
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domains (Fig. 5). Mutations in these domains may be

important for co-evolution with host plants in a changing

environment. We also identified several pioneer effectors as

being under positive selection. These were included in

Group_12331, which containedM. persicae specific sequences

and Group_6006, which only contains sequences from M.

persicae andM. cerasi (Table 2). This highlights these pioneers

are interesting sequences for further investigation.

Among the 49 RBBH groups we identified as potentially

being under positive selection, 12 contained just the three M.

persicae genotypes (Table 2; Additional file 12). In particular,

we identified predicted effector variants within the transcrip-

tome of genotype F that were different to those from the

other genotypes. Compared to genotypes J and O, this F

genotype is slow with regards to reproduction rates in several

host plant species tested [25]. Whether this slow reproduction

can be due to differences in aphid predicted effector reper-

toires is speculative, and remains to be further investigated.

Conclusion

In conclusion we employed a combination of tran-

scriptomics and saliva proteomics in order to identify

and compare the putative effector repertoires from three

aphid species. We have identified putative conserved

effector sets, which are predicted to exhibit similar

functions in different plant-aphid interactions. Such con-

served effectors could be useful targets for the develop-

ment of alternative control methods to provide broad

range aphid control. Furthermore, we identified more

diverse putative effector sets, which may be important

for specific plant-aphid interactions and therefore in

determining aphid host range.

Methods

Aphids stocks and material

Aphids were maintained in growth rooms at 18 °C with

a 16 h light and 8 h dark period. M. persicae (genotype

O, F and J) was maintained on potato (Solanum tubero-

sum cv. Desiree), M. cerasi was maintained on American

Land Cress (Barbarea verna) and R. padi was main-

tained on barley (Hordeum vulgare cv. Optic). M. persi-

cae (genotype O, F and J) were genotyped prior, during

and after all samples were collected to ensure the integ-

rity of the colony (Aphid lineages supplied and geno-

typed by Gaynor Malloch and Brian Fenton, The James

Hutton Institute).

RNA sample preparation and sequencing

Raw data is available at PRJEB9912 http://www.

ebi.ac.uk/ena/data/view/PRJEB9912. Assemblies are also

available through Aphidbase http://www.aphidbase.com/

Aphid heads, 100–200 per biological replicate, were

dissected under a microscope in 1 % PBS. Aphid bodies

were processed separately, 50–100 per biological repli-

cate, by removing the head and removing any nymphs

inside the aphid bodies. Dissected aphid samples were

preserved in RNAlater (Sigma-Aldrich) until flash freez-

ing in liquid nitrogen. Total RNA was extracted using a

**

Pfam05834

Pfam0073

Pfam05199

* *

*

Fig. 5 Sequences identified from the saliva of aphid species Myzus persicae via mass spectrometry analysis were identified as being under positive

selection (DN/DS = 1.3). These were annotated as glucose dehydrogenase acceptor-like (similar to Acyrthosiphon pisum, gi|328715546). We found
sites most likely to be under positive selection fall within GMC oxireductase PFAM domains (P > 0.95). These sites are marked on the alignment by

boxes. Mutations in these domains may be important for co-evolution with host plants in a changing environment
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plant RNA extraction kit (Sigma-Aldrich), following the

manufacturer’s instructions. We prepared three bio-

logical replicates for heads and bodies for each species

and genotype. RNA quality was assessed using a Bioana-

lyzer (Agilent Technologies) and a Nanodrop (Thermo

Scientific). RNA sequencing libraries were constructed

with an insert size of 250 bp according to the TruSeq

RNA protocol (Illumina), and sequenced at The Genome

Analysis Centre, Norwich (http://www.tgac.ac.uk/) using

Illumina-HiSeq 100 bp paired end sequencing.

Filtering, quality control and assembly of RNA-seq data

An overview of our data analyses pipeline is shown in Fig. 1.

The raw reads were assessed for quality before and after

trimming using FastQC [48]. Raw reads were quality

trimmed using Trimmomatic-0.32 [49], then assembled

using Trinity with its k-mer coverage normalisation (version

r20131110) [50]. CD-HIT (4.5.4) [51], with a threshold of

99 %, was used to reduce redundancy in the final assembly

for M. persicae and M. cerasi datasets. R. padi was repre-

sented by 113,734,137 or 109,521,265 reads before and after

trimming. In comparison M. persicae genotype O was

represented by 137,205,488 or 124,984,399 reads before and

after trimming, these number are representative of the other

datasets. R. padi had the lowest number of reads generated.

The read quantity could account for the smaller assembly

for R. padi. The individual libraries of quality controlled

reads where then mapped back to the post-CD HIT de novo

assembly using Bowtie 1.0 [52] to assess digital expression.

Normalised TMM-FPKM digital expression values and

differential expression analysis was conducted using EdgeR

[53], using p < 0.001 as a statistical threshold. Three bio-

logical replicate head and body libraries for each aphid spe-

cies and genotype were prepared and sequenced. Following

differential expression analysis and clustering of expression

profiles, using EdgeR [53], an outlier head sample from M.

persicae genotype F analysis (809_LIB4703_LDI4448_GAT

CAG_L008_R1 and R2) was removed from downstream

analyses as it did not cluster with the other head samples.

Prediction of coding sequences and annotation

For each component, loosely described by Trinity as a

“gene”, the lowest expressing isoforms were removed as

previously described [54]. This yielded the expressing

transcripts per component. TransDecoder (version

r20131117) [55] was used to predict the coding sequen-

cing within transcripts using PfamA and PfamB defini-

tions as a guide (release 27), transcripts that did not

contain Pfam domains where also predicted by Trans-

Decoder. The resulting coding sequences were annotated

using Trinotate (version r_20131110) [50], HMMER (ver-

sion 3.1b1) [56], Pfam (release 28) [54], SignalP (version

3.0) [57], TMHMM (version 2.0) [58], BLAST+ (version

2.2.30) [59], gene ontology [60], eggNOG (version 3.0)

[61] and RNAmmer (version 1.2) [62]. A Galaxy pipeline

[63] was used to identify putative secreted proteins by

the presence of a signal peptide and the absence of a

transmembrane domain [23]. Nuclear localisation was

predicted using NoD (version 1.3b) [64] and cellular

localisation was predicted using WoLF PSORT (last

modified date 2006 Aug 31) [65], again within Galaxy

[23]. Transcripts that were upregulated in the head tissue

and were predicted to be secreted were classified as

encoding putative effectors. Whereas, transcripts that

were upregulated in body tissue were classified as encod-

ing other secreted proteins. BLAST2GO (version 2.8,

database September 2013) analysis was conducted

using the online service (https://www.BLAST2go.com/

b2ghome) [66]. Read mapping visualisation was per-

formed using a combination of Tablet [67] and IGV [68].

The predicted unigenes were BLASTP searched

against NCBI NR database (e-value 1e-5), BLAST+

version 2.2.30). The best hit was recorded for each

sequence with the NCBI taxonomy ID, kingdom and

genus.

To identify C002 transcripts which would previously

have been collapsed (redundancy) in the assembly due to

the use of CD-HIT, MIRAbait (version 4.0) [69] was used

to identify reads that map onto the published C002 se-

quence (k = 25). The corresponding scaffold for C002 was

identified using http://www.aphidbase.com/node_94263/

Myzus-DB (Scaffold_246: August 2014). The identified

reads were mapped using the splice-aware aligner TopHat

(version 2.0.11) [70].

Comparative transcriptomics

An overview of our data analyses pipeline is shown

in Fig. 1. Predicted protein sets derived from the

transcriptomes generated in this project as well as the

transcriptomes of A. glycines (soybean aphid) [28] and

M. euphorbiae (re-assembled for this project, as de-

scribed for R. padi) [10], and the predicted proteins from

the A. pisum (pea aphid) genome assembly V2.1 [26]

and the D. melanogaster (fruit fly) genome release 5.55

[46] were clustered based on sequence similarity. Nu-

cleotide coding sequences can be found in the following

additional files: Additional files 13-17. All amino acid se-

quences were BLASTP searched against each other. The

resulting BLAST network was then subjected to cluster

analysis using MCL (version 12–135) [71]. Clustering

analysis was conducted using BLAST threshold of 1e-35

with an MCL inflation value of I = 6. These values were

chosen as they produced the greatest number of clusters

representing the greatest number of sequences; increas-

ingly strict BLAST e-value thresholds (e.g. 1e-36 to 1e-

50) resulted in greater singleton clusters and sequences

not represented in the cluster network.
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In addition, we performed clustering of putative ortho-

logous sequences as described in [72]. Briefly, putative

1:1 orthologues were identified using RBBH (Reciprocal

Best BLAST Hit Analysis) between the amino acid

sequences predicted from the 5 aphid transcript datasets

generated in this project, the gene models for the pea

aphid, and the soybean aphid (reassembled for this

project), as described above. The thresholds for identifi-

cation for putative 1:1 orthologues included using a

minimum threshold of 70 % identity and 50 % query

coverage. Tied top scoring BLAST hits (as might be

expected with recent gene duplications) were rejected by

the RBBH script, which identified pairs only https://

github.com/peterjc/galaxy_blast/tree/master/tools/

blast_rbh [73]. This analysis is limited by the availability

of transcriptome data only, and did not take into consid-

eration possible gene duplication, which is common in

aphid genomes. Once we identified RBBH-partner se-

quences, a network was generated using MCL from the

RBBH data, resulting in RBBH-clusters. The RBBH data

was passed into MCL as an abc file: query, hit, e-value.

We calculated the DN/DS values for each cluster that

contained a predicted effector protein based on our

work as well as several published studies [11, 12, 20]. To

calculate the DN/DS ratio for a cluster of orthologues,

the sequences were aligned using MUSCLE (version

3.8.31) [74], then the nucleotide sequences were back-

translated onto the alignments (https://github.com/

peterjc/pico_galaxy/tree/master/tools/align_back_trans)

[75]. These were then manually altered using Jalview

[76] by removing non-consensus, possibly miss-

predicted 5′ and 3′ regions based on either pea aphid

genome annotations and/or consensus sequences, where

appropriate. Indel regions were also removed, as was the

repeat motif region in putative effector C002. Modified

alignments were subjected to DN/NS analysis using

CodonPhyml (version 1.0) [77]. The trees generated by

CodonPhyml were then used by PAML (version 4.8)

(Codeml) [78] to identify the site most likely to be under

selection pressure.

Phylogenetic analysis

Single copy orthologous genes identified and analysed by

Misof et al. [29] were used as a basis for phylogenetic

analysis. RBBH analysis (as described above) between

the transcriptomes and the pea aphid protein set identi-

fied orthologous sequences. This was used to identify

orthologues from the transcriptomes to those genes used

for the pea aphid sequences in Misof et al. [29]. Only

712 out of 1478 orthologues from the genes used by

Misof et al. [29] were identified. We only included genes

represented by 4 or more of the aphid species used for

analyses, which amounted to 71 genes. The amino acid

sequences corresponding to these genes were aligned

using MUSCLE (with refine option) and the nucleotide

sequences were back-translated to the alignment. The 71

aligned orthologous genes from Misof et al. [29] were

concatenated with the back-translated alignments (as

described above) and subjected to further alignment.

MEGA6 [79] was used for phylogenetic analysis (Max-

imum likelihood 150 boot straps).

Proteomic analysis

Aphids were transferred to a feeding chamber as de-

scribed in Harmel et al. [22]. We used a diet similar to

phloem sap (15 % sucrose, 100 mM L-serine,

100 mM L-methionine and 100 mM L-aspartic acid with

a pH of 7.2 (KOH)) [18]. Approximately 60,000 aphids

per species per genotype were fed on this artificial diet

system. Diet/saliva mixes were collected 24 h after ex-

posing the aphids to the diet. Samples were then con-

centrated using protein concentration columns with a

9KDa molecular weight cut off (Thermo Scientific).

Concentrated samples were run on SDS-PAGE gels and

lanes were divided in three parts of equal size. Gel slices

were processed and subjected to LC-MS/MS analyses

using a RSLCnano UHPLC system coupled to a LTQ

Orbitrap Velos Pro MS system (Thermo Scientific) at

the University of Dundee Fingerprints Facility. We also

analyzed the samples containing peptide and proteins

<9 kDa, the flow through from the concentration col-

umns, by LC-MS/MS. MASCOT software (version 2.4.1)

searches against our transcriptome datasets as well as

NCBI NR were used for peptide identification.
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