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Abstract: Ischemic stroke is a multifactorial disease with a complex etiology and global consequences.
Model animals are widely used in stroke studies. Various controls, either brain samples from sham-
operated (SO) animals or symmetrically located brain samples from the opposite (contralateral)
hemisphere (CH), are often used to analyze the processes in the damaged (ipsilateral) hemisphere
(IH) after focal stroke. However, previously, it was shown that focal ischemia can lead to metabolic
and transcriptomic changes not only in the IH but also in the CH. Here, using a transient middle
cerebral artery occlusion (tMCAO) model and genome-wide RNA sequencing, we identified 1941
overlapping differentially expressed genes (DEGs) with a cutoff value >1.5 and Padj < 0.05 that
reflected the general transcriptome response of IH subcortical cells at 24 h after tMCAO using both
SO and CH controls. Concomitantly, 861 genes were differentially expressed in IH vs. SO, whereas
they were not vs. the CH control. Furthermore, they were associated with apoptosis, the cell cycle,
and neurotransmitter responses. In turn, we identified 221 DEGs in IH vs. CH, which were non-DEGs
vs. the SO control. Moreover, they were predominantly associated with immune-related response. We
believe that both sets of non-overlapping genes recorded transcriptome changes in IH cells associated
with transhemispheric differences after focal cerebral ischemia. Thus, the specific response of the CH
transcriptome should be considered when using it as a control in studies of target brain regions in
diseases that induce a global bilateral genetic response, such as stroke.

Keywords: tMCAO; RNA-Seq; contralateral hemisphere of the rat brain; sham-operated rats; gene
expression; transhemispheric differences

1. Introduction

Ischemic stroke is the most common cause of death and disability in the population
of developed countries [1,2]. A recent economic analysis performed in Europe reported
that stroke cost the area EUR 60 billion, with health care accounting for EUR 27 billion
(45%), representing 1.7% of health expenditures in the area [3]. The genomic component
occupies a significant place in the pathogenesis, diagnosis, and treatment of ischemic
stroke. A wide range of high-throughput genomic and post-genomic technologies, as
well as the development of model systems, have allowed the generation of data that
afford a better understanding of effective approaches to overcome challenges in stroke.
Previously, a multiple transcriptomic response in the damaged (ipsilateral) hemisphere (IH)
of the brain was revealed in the ischemic condition in model animals [4–12]. The rodent
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ischemia model systems of permanent middle cerebral artery occlusion (pMCAO) and
transient middle cerebral artery occlusion (tMCAO) were used in these studies. Reverse
transcription polymerase chain reaction (RT-PCR) in real-time, microarray, and genome-
wide RNA sequencing (RNA-Seq) were used to detect the transcriptomic response. Thus,
different studies have succeeded in identifying the modulation of the expression pattern
of genes involved in metabolic cell activity, neurotransmission, inflammation, immune
response, apoptosis, and stress response in the IH. Moreover, previously, we reported the
brain expression profile of key proteins involved in inflammation and cell death processes
(MMP-9, c-Fos, and JNK), as well as in neuroprotection and recovery (CREB), as detected
at 24 h after tMCAO in the IH [13].

It should be noted that samples from the contralateral hemisphere (CH) are often used
as a control to study the processes occurring in the IH of the brain after focal stroke [14,15].
However, previously, it was shown that focal ischemia can lead to metabolic changes not
only in the damaged IH but also in the CH of the brain [16,17]. Abe et al. termed this
phenomenon transhemispheric diaschisis (TD) [17]. Diaschisis is defined as a functional
inhibition of the brain distant from the original site of injury [18]. It is known that spreading
depression/depolarization (SD) also plays a significant role in the pathophysiology of
various diseases, including ischemic stroke [19–22]. SD is a temporary wave of near-
complete depolarization of neurons and glia that is associated with massive transmembrane
ion and water shifts caused by massive damage [19,23]. It has been shown that TD caused
by cortical SD is associated with impaired glucose and oxygen metabolism, as well as
reduced cerebral blood flow, in adjacent areas of the brain [24]. More than 10 years ago,
it was shown that gene expression patterns can change in the CH after focal cerebral
ischemia. In fact, during ischemia, the expression levels of neurotrophin-encoding genes
were significantly changed in the brain regions of the CH compared with the sham-operated
(SO) control [25–27]. Recently, genome-wide mRNA profiling in the CH of the mouse brain
after tMCAO was attempted for the first time [28,29]. Incidentally, the set of differentially
expressed genes (DEGs) in the CH only partially overlapped with the set of DEGs in the
IH [29]. These results indicate the complex process of formation of cellular responses in the
CH during ischemia. To study gene expression changes in the IH, the use of appropriate
samples of SO animals is a rational alternative to using the CH as a control [7,30,31].

In the present study, a tMCAO (90 min) rat model was implemented using an MRI
control. An RNA-Seq analysis of IH subcortical brain structures was carried out using SO
as well as CH control brain samples. PCR verification of the changes in the expression
of individual genes in the IH vs. SO and CH controls was performed. As a result, both
types of controls allowed the identification of overlapping DEGs that reflected the general
transcriptome response of IH subcortical cells at 24 h after tMCAO. Concomitantly, we
identified sets of non-overlapping genes that were unique for use in SO and CH controls.
Such DEGs can record the transcriptome changes in IH subcortical cells associated with
transhemispheric differences under ischemia model conditions. The functional annotation
of gene sets was performed using an enrichment analysis. Thus, the comparative use of
contralateral and SO controls revealed traces of a bilateral genetic response in the brain
after focal stroke.

2. Results
2.1. MRI-Based Detection of the Location and Volume of Ischemic Foci

According to the MRI data, we detected the location and volume of ischemic foci in
animals after tMCAO. A typical example of diffusion-weighted imaging (DWI) with an
apparent diffusion coefficient (ADC) map and T2-weighted imaging (T2 WI) scans of the
formation of the ischemic injury in the brain of rats at 24 h after tMCAO are shown in
Figure 1. The hyperintense signal corresponded to ischemic damage in the territory of
the right middle cerebral artery in all test rats. Thus, all rats in the IR group had a focal
hemispheric lesion lying in the ipsilateral subcortex region that spread to the adjacent
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cortex. Concomitantly, no pathological changes in the CH of ischemic rats were observed,
according to the MRI data.

Supplementary Table S1 shows the T2 WI data pertaining to the size (in mm3) of the
ischemic brain damage in rats in the IR group.
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Figure 1. MRI of ischemic foci after tMCAO. DWI with an ADC map and T2 WI scans of the formation
of ischemic injury areas with ipsilateral hemispheric (subcortex plus cortex) localization in the brain
of rats at 24 h after tMCAO. Concomitantly, no pathological changes in the CH of ischemic rats
observed according to the MRI data.

2.2. RNA-Seq Analysis of the Effect of IR on the Level of mRNAs in Subcortical Structures of the
IH Related to the CH

The use of RNA-Seq allowed the evaluation of the transcriptional activity of 17,367 genes
(mRNAs) in the subcortical structures of the rat brain at 24 h after tMCAO. We used two
types of control groups to study the transcriptomic effects in the IH, namely symmetrically
located areas in the CH and corresponding brain samples of SO rats (Figure 2a).

First, we used the CH samples as a control of the IH in the IR-i vs. IR-c compar-
ison, which led to the identification of 2162 DEGs (1032 up- and 1130 downregulated)
(Supplementary Table S2). A volcano plot illustrates the differences in mRNA expression
between the IR-i and IR-c groups (Figure 2b). The top 10 DEGs included Il1rn, Serpina3n,
Itgad, Il6, and Cxcl1, which were upregulated by more than 26-fold, whereas the Ltc4s,
Wnk3, Erbb4, Dok6, and Acvr1c DEGs were downregulated in this comparison group by
more than seven-fold (Figure 2c).

2.3. RNA-Seq Analysis of the Effect of IR on the Level of mRNAs in Subcortical Structures of the
IH Related to the SO Rats

We next assessed the effect of focal IR on the mRNA levels of genes in subcortical
structures of the IH relative to the corresponding SO control (Figure 2a). We identified
2802 DEGs with 1390 upregulated and 1412 downregulated mRNAs in the rat ipsilateral
subcortex (IR-i vs. SO-r) (Supplementary Table S3). The volcano plot illustrates the dif-
ferences in mRNA expression between the IR-i and SO-r groups (Figure 2d). The top five
upregulated DEGs Hspa1a, Ptx3, H19, Atf3, and Il11 exhibited an increase of ≥63-fold in
their expression in the subcortex of the IH at 24 h after tMCAO. Concomitantly, the top
five downregulated DEGs Dok6, Erbb4, Wnk3, Acvr1c, and Kcnh5 exhibited a decrease of
≥7-fold in their mRNA levels in IR-i vs. SO-r (Figure 2e).
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Figure 2. Genome-wide transcriptome changes recorded at 24 h after tMCAO in subcortical structures
of the IH related to the sham-operated (SO) and contralateral controls. (a) The data comparison
scheme is presented. The blue arrows indicate comparisons of IH samples from ischemic (IR) rats
vs. right hemisphere samples of SO rats, as well as between IH and CH samples of IR animals.
(b,d) The RNA-Seq results presented are for IR-i vs. IR-c (b) and IR-i vs. SO-r (d) using volcano
plots. The cutoff for gene expression changes was a 1.50-fold change. Only those genes with p-values
adjusted using the Benjamini–Hochberg procedure (Padj < 0.05) were selected for analysis. Up-
and downregulated DEGs are represented as green and red dots, respectively. Genes that were not
differentially expressed are presented as dark purple dots (fold change ≤ 1.50; Padj ≥ 0.05). (c,e) Top
10 genes that exhibited the greatest fold change in expression in IR-i vs. IR-c (c) and IR-i vs. SO-r (e).
The data are presented as the mean ± standard error (SE) of the mean. Three animals were included
in each comparison group.

2.4. Comparisons of the Results of DEGs in Subcortical Structures of the IH at 24 h after tMCAO,
as Assessed Using CH and SO Controls

A violin plot was utilized to compare the distributions of the intensities of the ex-
pression changes in DEGs from each pairwise comparison of IR-i vs. SO-r and IR-i vs.
IR-c (Figure 3a). Moreover, we identified 1941 overlapping DEGs using two controls in
a pairwise comparison of IR-i vs. IR-c and IR-i vs. SO-r (Figure 3b). All of them codirec-
tionally changed the mRNA level in both comparison groups (Supplementary Table S4),
with the exception of the Parpbp gene, which encodes the PARP1 binding protein and was
downregulated in relation to the sham operation but upregulated in relation to the CH of
ischemic rats. A hierarchical cluster analysis of all DEGs in IR-i vs. SO-r and IR-i vs. IR-c
illustrated the mostly codirectional changes in gene expression in IH using both CH and
SO controls (Figure 3c).

Furthermore, the Venn diagram shows that 861 DEGs were unique for IR-i vs. SO-r
(Figure 3b, Supplementary Table S5). For example, the expression of the Cxcr2, Apold1,
Clk2, Egr2, Cdkn2c, Kcne2, Sostdc1, Kcnj13, Tnnt2, and Slco1a5 genes, among others, was
significantly altered in IR-i vs. SO-r (using a SO control), whereas they were non-DEGs in
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IR-i vs. IR-c (using contralateral samples from the “IR-c” group as the control) (Figure 3d).
Thus, these genes may be considered “lost results” when using the CH as a control. Con-
comitantly, there were 221 such DEGs for the IR-i vs. IR-s comparison in the Venn diagram
(Figure 3b). For example, the Cxcl1, Lif, S100a9, Tmem202, Slc47a1, Abcg2, Sult5a1, Ptprv,
Pla2g3, Tnnc1, and other genes were DEGs in IR-i vs. IR-c, but non-DEGs in IR-i vs. SO-r
(Figure 3e, Supplementary Table S6). These genes may be considered “redundant results”
when characterizing the transcriptional activity of cells in the IH after stroke.
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Figure 3. Comparisons of the results of DEGs in the subcortical structures of the IH at 24 h after
tMCAO, obtained using CH and SO controls. (a) Violin plot comparing the distributions of the
intensities of expression changes for DEGs from each pairwise comparison of IR-i vs. SO-r and IR-i vs.
IR-c. (b) The Venn diagram represents the schematic comparisons of the results obtained using two
controls in pairwise comparisons of IR-i vs. SO-r and IR-i vs. IR-c. (c) Hierarchical cluster analysis of
all DEGs in IR-i vs. SO-r and IR-i vs. IR-c. Each column represents a comparison group, and each row
represents a DEG. The green strips indicate high relative expression levels, and the red strips indicate
low relative expression levels; n = 3 per group. (d) The top 10 genes that exhibited the greatest fold
change in expression in IR-i vs. SO-r were non-DEGs that exhibited a fold change <1.50 in IR-i vs.
IR-c. (e) The top 10 genes in IR-i vs. IR-c that were non-DEGs with a fold change <1.50 in IR-i vs.
SO-r. The data are presented as the mean ± SE. Genes with a fold change >1.50 and Padj < 0.05 in the
comparison group are marked with an asterisk (*).

The transcriptome analysis performed as a comparison between the contralateral is-
chemic hemisphere and the sham-operated control left hemisphere (IR-c vs. SO-l) identified
164 DEGs. The comparison of these DEGs with the results obtained using two controls
in pairwise analyses of IR-i vs. SO-r and IR-i vs. IR-c (Figure 3b) allowed us to identify
four sets of genes, which were illustrated in a Venn diagram (Supplementary Figure S1).
First, 86 genes were altered by all pairwise comparisons and overlapped with 1941 genes
that were identified using SO and CH controls. Second, 44 genes overlapped with sets of
“lost results”. All of them (e.g., Apold1, Clk2, Egr2, Sostdc1, Kcnj13, Slco1a5) changed their
expression codirectionally in both the IR-i vs. SO-r and IR-c vs. SO-l pairwise comparisons;
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however, such genes were non-DEGs in IR-i vs. IR-c (Figure 4a). Third, six DEGs over-
lapped with sets of “redundant results”; the S100a9 and Plagl1 genes were upregulated
in IR-i vs. IR-c but downregulated in IR-c vs. SO-l. Conversely, the Arc, Abcg2, Pou3f1,
and Pla2g3 genes were downregulated in IR-i vs. IR-c but upregulated in IR-c vs. SO-l.
Moreover, all of these genes were non-DEGs in IR-i vs. SO-r (Figure 4b). Fourth, 28 genes
were DEGs in IR-c vs. SO-l exclusively (Supplementary Figure S1). As a result, the signifi-
cant expression changes of genes in IR-c vs. SO-l reflect post-ischemic activity in CH and
demonstrate the problems of using CH as a control.
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dundant” (b) results, respectively. (a) The top 10 genes that exhibited the greatest fold change in
expression in IR-c vs. SO-l were DEGs in IR-i vs. SO-r but non-DEGs that exhibited a fold change
<1.50 in IR-i vs. IR-c. (b) The genes that were DEGs in IR-c vs. SO-l and IR-i vs. IR-c but non-DEGs in
IR-i vs. SO-r. The data are presented as the mean ± SE.

2.5. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Verification of the
RNA-Seq Results of the Subcortical Structures of the IH at 24 h after tMCAO, as Assessed Using
CH and SO Controls

An RT-PCR analysis of the expression of nine genes (Hspb1, Mmp9, Socs3, Fos, Cp,
Cyr61, Bcl2l2, Cartpt, and Pla2g3) was used to verify the RNA-Seq results in two pairwise
comparisons, i.e., IR-i vs. SO-r and IR-i vs. IR-c. The primers used are shown in Supple-
mentary Table S7. The Hspb1, Mmp9, Socs3, Fos, and Cyr61 genes were DEGs in both IR-i vs.
SO-r and IR-i vs. IR-c. The Cp gene was a DEG in IR-i vs. SO-r, but a non-DEG in IR-i vs.
IR-c; whereas the Pla2g3 gene was a DEG in IR-i vs. IR-c, but a non-DEG in IR-i vs. SO-r.
Moreover, the Bcl2l2 and Cartpt genes were non-DEGs in both IR-i vs. SO-r and IR-i vs. IR-c
pairwise comparisons. The real-time RT-PCR results adequately confirmed the RNA-Seq
data (Figure 5).

2.6. Signaling Pathways Associated with DEGs in the Two Rat Brain Hemispheres at 24 h
after tMCAO

DAVID, which is a pathway-enrichment analysis, was used to annotate the signaling
pathways associated with DEGs in the rat brain subcortex under tMCAO model conditions
in pairwise comparisons of IR-i vs. SO-r and IR-i vs. IR-c. We used the KEGG PATHWAY
(KP), REACTOME PATHWAY (RP), and WIKIPATHWAYS (WP) signaling pathway annota-
tions for DEGs from the two following pairwise comparisons: IR-i vs. SO-r and IR-i vs. IR-c
(Supplementary Table S8). We found 171 KP (Figure 6a), 44 RP (Supplementary Figure S2),
and 12 WP (Supplementary Figure S3) annotations for the comparison groups in total.



Int. J. Mol. Sci. 2022, 23, 7308 7 of 16Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 5. Real-time RT-PCR verification of the RNA-Seq results. Data for comparisons of IR-i vs. 

IR-c and IR-i vs. SO-r are shown. Nine (Hspb1, Mmp9, Socs3, Fos, Cp, Cyr61, Bcl2l2, Cartpt, and 

Pla2g3) genes were selected for PCR analysis. The reference Gapdh and Rpl3 genes were used to 

normalize the PCR results. Five animals were included in each comparison group. 

2.6. Signaling Pathways Associated with DEGs in the Two Rat Brain Hemispheres at 24 h after 

tMCAO 

DAVID, which is a pathway-enrichment analysis, was used to annotate the signal-

ing pathways associated with DEGs in the rat brain subcortex under tMCAO model 

conditions in pairwise comparisons of IR-i vs. SO-r and IR-i vs. IR-c. We used the KEGG 

PATHWAY (KP), REACTOME PATHWAY (RP), and WIKIPATHWAYS (WP) signaling 

pathway annotations for DEGs from the two following pairwise comparisons: IR-i vs. 

SO-r and IR-i vs. IR-c (Supplementary Table S8). We found 171 KP (Figure 6a), 44 RP 

(Supplementary Figure S2), and 12 WP (Supplementary Figure S3) annotations for the 

comparison groups in total. 

The Venn diagram presented in Figure 6a shows 143 overlapped signaling pathways 

that were annotated according to the most abundant KP annotations between IR-i vs. 

SO-r and IR-i vs. IR-c. The top five signaling pathways of KP and corresponding 

Padj-values as well as the number of up- and downregulated DEGs in IR-i vs. SO-r and 

IR-i vs. IR-c among the overlapped annotations are presented in Figure 6b and c, respec-

tively. Therefore, IR activated the expression of genes related to the mitogen-activated 

protein kinase (MAPK) signaling pathway, proteoglycans in cancer, lipid and athero-

sclerosis, Rap1 signaling pathway, etc., and suppressed the expression of genes related to 

the neuronal system of glutamatergic synapse, oxytocin, calcium signaling pathways, 

etc., in IH, regardless of the type of control used (SO-r or IR-c). 

The Venn diagram depicted in Figure 6a shows annotations that lie outside the in-

tersection and were unique for the effect of IR in IH transcriptome vs. the SO and CH 

controls. The characteristics of the most significant signaling pathways (with a minimal 

Padj) that were unique for IR-i vs. SO-r and were annotated by KP are presented in Figure 

Figure 5. Real-time RT-PCR verification of the RNA-Seq results. Data for comparisons of IR-i vs. IR-c
and IR-i vs. SO-r are shown. Nine (Hspb1, Mmp9, Socs3, Fos, Cp, Cyr61, Bcl2l2, Cartpt, and Pla2g3)
genes were selected for PCR analysis. The reference Gapdh and Rpl3 genes were used to normalize
the PCR results. Five animals were included in each comparison group.

The Venn diagram presented in Figure 6a shows 143 overlapped signaling pathways
that were annotated according to the most abundant KP annotations between IR-i vs. SO-r
and IR-i vs. IR-c. The top five signaling pathways of KP and corresponding Padj-values as
well as the number of up- and downregulated DEGs in IR-i vs. SO-r and IR-i vs. IR-c among
the overlapped annotations are presented in Figure 6b and c, respectively. Therefore, IR
activated the expression of genes related to the mitogen-activated protein kinase (MAPK)
signaling pathway, proteoglycans in cancer, lipid and atherosclerosis, Rap1 signaling
pathway, etc., and suppressed the expression of genes related to the neuronal system of
glutamatergic synapse, oxytocin, calcium signaling pathways, etc., in IH, regardless of the
type of control used (SO-r or IR-c).

The Venn diagram depicted in Figure 6a shows annotations that lie outside the inter-
section and were unique for the effect of IR in IH transcriptome vs. the SO and CH controls.
The characteristics of the most significant signaling pathways (with a minimal Padj) that
were unique for IR-i vs. SO-r and were annotated by KP are presented in Figure 6d, whereas
similar data for IR-i vs. IR-c are presented in Figure 6e. We identified apoptosis-multiple
species, transforming growth factor (TGF)-beta, protein processing in the endoplasmic
reticulum, and other signaling pathways that were unique for IR-i vs. SO-r and associ-
ated with upregulated DEGs predominantly. Moreover, there were endocrine and other
factor-regulated calcium reabsorption, synaptic vesicle cycle, insulin, and other signaling
pathways that were also unique for IR-i vs. SO-r and associated with downregulated DEGs
predominantly (Figure 6d, Supplementary Table S8). Concomitantly, we found a powerful
immune-related genetic response that was specific for IR-i vs. IR-c. Namely, hematopoietic
cell lineage, antigen processing and presentation, antifolate resistance, inflammatory bowel
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disease, and other signaling pathways were predominantly associated with upregulated
DEGs in IR-i vs. IR-c.
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Figure 6. Search for common and unique signaling pathways associated with DEGs at 24 h after
tMCAO in subcortical structures of the IH related to the sham-operated and contralateral controls. A
pathway enrichment analysis of DEGs in two pairwise comparisons, i.e., IR-i vs. SO-r and IR-i vs.
IR-c, was carried out according to DAVID (2021 Update). (a) Schematic comparison of the KEGG
PATHWAY (KP) annotations associated with the DEGs obtained in two pairwise comparisons, i.e.,
IR-i vs. SO-r and IR-i vs. IR-c, as assessed using a Venn diagram. The numbers on the diagram
segments indicate the number of annotations. (b,c) The most significant signaling pathways and
corresponding Padj-values, as well as the number of up- and downregulated DEGs that lay within
the intersection on the Venn diagram (a) in IR-i vs. SO-r and (b) in IR-i vs. IR-c (c). (d,e) The most
significant signaling pathways and corresponding Padj-values, as well as the number of up- and
downregulated DEGs that lay outside of the intersection on the Venn diagrams (a) in IR-i vs. SO-r
and (d) in IR-i vs. IR-c (e). DEGs and signaling pathways with Padj < 0.05 were exclusively selected
for the analysis. Three animals were included in each comparison group.

The KEGG enrichment results were mostly reproduced using RP and WP annotations,
including the presentation of neuronal systems (RP), MAPK (WP), signaling by interleukins
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(RP), IL-3 (WP), IL-5 (WP), and other signaling pathways. The characteristics of the top five
most significant RP and WP annotations that were common or unique between IR-i vs. SO-r
and IR-i vs. IR-c pairwise comparisons are shown in Supplementary Figures S2 and S3,
respectively. It should be noted that only one signaling pathway (Phase 0—rapid depo-
larization, RP) was unique for IR-i vs. IR-c and associated with downregulated DEGs
predominantly. Thus, it was identified using WP annotation and included in the top five
most significant signaling pathways (Supplementary Figure S3e).

3. Discussion

In this study, we studied the role of the genetic factor of stroke that may underlie
the observed post-ischemic events in the brain away from the source of injury. Here,
a tMCAO (90 min) rat model that reflected ischemic stroke events in humans [32,33]
was implemented under MRI control. An RNA-Seq analysis of the IH subcortical brain
structures was carried out using two different controls, namely symmetrically located CH
samples and corresponding brain samples of the right hemisphere of an additional group
of SO rats. When we profiled the transcriptional activity of 17,367 genes (mRNAs) in the
subcortical structures of the rat brain at 24 h after tMCAO, 1941 overlapping DEGs were
revealed using SO and CH controls. The overlapped DEGs most likely reflected the general
transcriptome response of IH subcortical cells at 24 h after tMCAO. Most of them exhibited
codirectional gene expression changes in the IH using both CH and SO controls. These were
the genes that were retained as true results in the differential expression analysis, including
those obtained using the CH controls. Among them were the Hspb1, Mmp9, Socs3, Fos, and
Cyr61 genes. Such genes were verified by us with high confidence using both RNA-Seq
and real-time RT-PCR methods on extended sample groups. A functional enrichment
analysis showed a significant association between transcriptome changes detected after
ischemia and the modulation of the activity of inflammation systems, the immune response,
as well as the neurosignaling and neuroreception systems in the rat brain. These effects
were overlapped when using both the CH and SO controls. In particular, genes that
were upregulated were predominantly involved in the presentation of inflammatory and
immune signaling systems, whereas downregulated genes were predominantly involved
in the presentation of neurotransmitter systems. The data obtained here largely reproduced
previously established effects after ischemia in the IH [7,29].

However, the gene expression profile overlapped only partially when using both
controls. Therefore, non-overlapped DEGs included two groups of results, in reality. The
first group included 861 DEGs that were obtained using the SO control exclusively. Thus,
these genes may be considered “lost results” when using the CH as a control. One of
these genes, the Cp gene, encodes the ferroxidase enzyme ceruloplasmin, which notably
attracted attention in this case. Therefore, differential changes in the expression of this gene
were verified by us using both genome-wide sequencing and local PCR techniques. This
gene was a DEG only when using the SO control. Consequently, Cp is among the genes
that remain at risk of being overlooked when studying the transcriptome of the IH after
stroke using CH controls. It should be noted that Cp may play a significant role in the
functioning of damaged cells. Thus, a correlation between brain ceruloplasmin expression
after experimental intracerebral hemorrhage and protection against iron-induced brain
injury was revealed [34]. Furthermore, differential effects of and changes in ceruloplasmin
in the hippocampal CA1 region between adult and aged gerbils after transient cerebral
ischemia were observed [35]. Moreover, a genetic association between ceruloplasmin and
cardiovascular risk was noted [36–38].

Concomitantly, 221 non-overlapping DEGs were obtained using the CH control ex-
clusively. Such genes may be considered “redundant results” when characterizing the
transcriptional activity of cells in the IH after stroke. The Pla2g3 gene, which encodes a
group 3 secretory phospholipase A2 precursor, is an example of genes representing “redun-
dant results”. In other words, the Pla2g3 gene was a DEG only when using the CH control
and was discovered by us using both RNA-Seq and real-time RT-PCR methods.
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It should be noted that the presence of “lost results” and “redundant results” may not
only reflect the insufficient quality of the CH as a control for studying the consequences
of focal stroke; but also, it may indicate the presence of a complex regulation of cellular
responses in the brain away from the ischemic focus. Identification of DEGs in comparison
between the CH versus the SO control of left hemisphere additionally proves such thesis.
The genes that were in the set of non-overlapped DEGs identified here are more prone to
dynamic changes in expression. It was shown that the phospholipase A2 activity induced
by Pla-family genes was associated not only with ischemic stroke but also with Alzheimer’s
disease and vascular dementia [39]. Moreover, the Pla2g3 gene was included in the top five
upregulated genes in the rat hippocampus in response to acute stress [40]. Previous studies
have shown that the anti-inflammatory S-2474 drug rescues cortical neurons from human
group IIA secretory phospholipase A(2)-induced apoptosis [41]. However, chronic intracere-
broventricular delivery of the secretory phospholipase A2 inhibitor 12-epi-scalaradial does
not improve the outcome after focal cerebral ischemia–reperfusion in rats [42]. Moreover,
previously, we showed that the Pla2g3 gene was upregulated by 2.6-fold in the subcortical
structures of the IH at 24 h after tMCAO relative to the corresponding SO control [7]. In
that study, we used long-term anesthesia, whereas here the anesthesia duration was much
shorter. As a result, the Pla2g3 mRNA level was changed by <1.5-fold and was classified as
a non-DEG in IH vs. SO in this study. Thus, numerous factors can affect the expression of
genes such as Pla2g3. Among them are both essential pathogenetic processes of various
brain diseases or factors of neuroprotective effects of drugs, as well as more subtle factors of
localization of a particular brain sample or the presence/absence of anesthesia in the exper-
iment, among others. It is possible that genes included in the set of non-overlapped DEGs
obtained by us using SO and CH controls exclusively are objects of multiple (pleiotropic)
regulations and should be given increased attention.

In our data, the extensive inflammatory response drew special attention as a result
of the functional enrichment analysis of DEGs using three annotation databases. How-
ever, the response was heterogeneous when we used the CH or SO control. One part of
the data, including MAPK, TNF, NF-kappa B, immune system, and other inflammatory
signaling pathways, overlapped when using both CH and SO controls. Concomitantly, a
significant portion of inflammatory pathways, including antigen processing and presen-
tation, JAK-STAT, cytokine signaling in the immune system, IL-3, IL-5, IL-17, and other
signaling pathways, were detected using only CH controls. It should be noted that stroke
causes a rapid and massive infiltration of peripheral immune cells [43,44]. Moreover, it
has been demonstrated that the infiltration of peripheral immune cells occurs in areas
remote from the sites of the primary injury during the progression of injury and brain
repair [29,44]. Thus, the cumulative set of inflammatory effects may exceed the real one
in IH when using CH as a control. Conversely, the results indicate an expansion of the
zone of inflammatory and immune reactions into the zone of the CH in response to focal
ischemia–reperfusion injury. It is possible that corresponding effects will also be observed
at the protein level. However, the transcriptome profile does not provide reliable criteria
for choosing individual proteins for analysis to show the difference in the use of the SO
and CH controls at the protein level. The correlation between transcriptome and proteome
profiles is non-linear because of post-transcriptional, translational, and post-translational
regulatory events [45–48]. We believe that further integrative functional genetic and pro-
teomic analyses of the processes occurring in CH will allow the establishment of specific
regulatory axes associated with the spread of the effects of focal ischemia to distanced
areas of the brain. This was one of the limitations of this study, which will be overcome in
the future.

Moreover, one of the problems for clinical trials is related to the correlation between
the preclinical results obtained using animal models and human parameters [49–51]. It
cannot be ruled out that the quality of clinical uses is limited by problem of control samples
at the preclinical stage. Here, we characterize genes that can produce “redundant” or “lost”
results of differential expression when using the contralateral hemisphere as a control



Int. J. Mol. Sci. 2022, 23, 7308 11 of 16

under tMCAO conditions. We believe that the correct choice of controls will contribute to
a more reliable interpretation of the data obtained using animal models of experimental
ischemia at the preclinical stage. Thus, it is possible to achieve more effective diagnostic
and therapeutic approaches to the treatment of ischemic stroke at the clinical stage.

4. Materials and Methods
4.1. Animals

White 2-month-old male rats of the Wistar line (weight, 200–250 g) were obtained from
the AlCondi Ltd animal breeding house, Moscow, Russia. The animals were divided into
the “sham operation” (SO) and “ischemia–reperfusion” (IR) groups.

4.2. Transient Middle Cerebral Artery Occlusion (tMCAO) Model in Rats

The tMCAO rat model was induced via endovascular occlusion of the right middle
cerebral artery using a monofilament (Doccol Corporation, Sharon, MA, USA) for 90 min
using the method of Koizumi et al. [52] with modifications. The tMCAO details are de-
scribed in Supplementary Method S1. Before the surgical procedure, rats were anesthetized
using 3% isoflurane. The anesthesia was maintained using 1.5%–2% isoflurane and the
EZ-7000 small animal anesthesia system (E-Z Anesthesia, Braintree, MA, USA). Anesthe-
sia was used exclusively during filament insertion and removal, whereas between these
procedures the rats were taken out of anesthesia. The rats were decapitated at 24 h after
tMCAO. The SO rats were subjected to a similar surgical procedure under anesthesia (neck
incision and separation of the bifurcation), but without tMCAO. The respiratory rate and
body temperature of the animal were monitored. These physiological parameters did not
exceed the permissible values for each rat (body temperature: 37–38 ◦C; respiratory rate:
not less than 33 per min). All rats were alive before decapitation.

Each experimental group consisted of at least five animals.

4.3. Magnetic Resonance Imaging (MRI)

The MRI study of the characteristics of the ischemic injury of rat brains was carried
out using a small animal 7T ClinScan tomograph (Bruker BioSpin, Billerica, MA, USA)
as previously described [31]. The control of blood flow was conducted as previously
described [53].

4.4. Rat Brain Tissues

In rats that were subjected to tMCAO, the subcortical structures of the brain were
isolated from the IH (“IR-i” group of samples) and the CH (“IR-c” group of samples).
From the brain of SO rats, subcortical regions were isolated from the right hemisphere,
corresponding to the IH of ischemic rats (“SO-r” group of samples) and the left hemisphere,
corresponding to the CH of ischemic rats (“SO-l” group of samples). All IR-i, IR-c, SO-r,
and SO-l samples were placed in RNAlater (Ambion, Austin, TX, USA) solution for 24 h at
4 ◦C and then stored at −70 ◦C.

4.5. RNA Isolation

Total RNA was isolated as previously described [40]. RNA integrity was checked
using capillary electrophoresis (Experion, BioRad, Hercules, CA, USA). RNA integrity
number (RIN) was at least 9.0.

4.6. RNA-Seq

The RNA-Seq analysis of the polyA fraction of the total RNA was conducted with
the participation of ZAO Genoanalytika, Moscow, Russia, using an Illumina HiSeq 1500
instrument (Illumina, San Diego, CA, USA) as previously described [40]. At least 10 million
reads (1/50 nt) were generated.
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4.7. Reverse Transcription Polymerase Chain Reaction (RT–PCR) in Real-Time

cDNA synthesis was conducted as previously described [40]. Oligo (dT)18 primers
were used to analyse mRNA.

The polymerase chain reaction (PCR) was conducted using a StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA) as previously described [40].
Primers specific to the genes studied were selected using OLIGO Primer Analysis
Software version 6.31 and were synthesized by the Evrogen Joint Stock Company
(Supplementary Table S7). Each cDNA sample was analyzed three times.

4.8. Statistical Analysis

Each of the comparison groups (IR-i, IR-c, SO-r, and SO-l) included three animals
(n = 3) for RNA-Seq experiments. All genes were annotated using Cuffdiff/Cufflinks, so
multiple isoforms (their RefSeq ID) were merged. The annotation database was available
at genome.ucsc.edu/cgi-bin/hgTables (accessed on 15 April 2021). The levels of mRNA
expression were measured using the Cuffdiff program as previously described [30]. Only
genes that exhibited changes in expression >1.5-fold and had a p-values (t-test) adjusted
using the Benjamini–Hochberg procedure lower 0.05 (Padj < 0.05) were considered.

Two reference genes Gapdh and Rpl3 were used to normalize the RT–PCR results [54].
Calculations were performed using Relative Expression Software Tool (REST) 2005 soft-
ware (gene-quantification, Freising-Weihenstephan, Bavaria, Germany) [55] as previously
described [40]. The efficiency values for all PCR reactions were in the range 1.86 to 2.02
(Supplementary Table S7). Five animals were included in each comparison group. When
comparing data groups, statistically significant differences were considered with the proba-
bility p < 0.05. Additional calculations were performed using Microsoft Excel (Microsoft
Office 2010, Microsoft, Redmond, WA, USA).

Hierarchical cluster analysis of DEGs was performed using Heatmapper (Wishart
Research Group, University of Alberta, Ottawa, ON, Canada) [56]. A volcano plot was
constructed by Microsoft Excel (Microsoft Office 2010, Microsoft, Redmond, WA, USA).
Violin plots were constructed by BoxPlotR: a web-tool for generation of box plots [57].

4.9. Functional Analysis and Network Construction

The Database for Annotation, Visualization and Integrated Discovery (DAVID) (2021
Update) [58] and The PANTHER (Protein ANalysis THrough Evolutionary Relation-
ships) [59] resources were used to annotate the functions of the differentially expressed
mRNAs (DEGs). When comparing data groups, statistically significant differences were
considered with the probability Padj < 0.05.

The Cytoscape 3.8.2 software (Institute for Systems Biology, Seattle, WA, USA) [60]
was used to visualize the regulatory network. Additional calculations were performed
using Microsoft Excel (Microsoft Office 2010, Microsoft, Redmond, WA, USA).

4.10. Availability of Data and Material

RNA-sequencing data have been deposited in the Sequence Read Archive database
under accession code PRJNA803984 (SAMN25694602-SAMN25694613, http://www.ncbi.
nlm.nih.gov/bioproject/803984 (accessed on 18 April 2022)) [61].

5. Conclusions

A comprehensive analysis of the transcriptome changes that occur in the IH after focal
stroke using two commonly used controls was carried out in a rat tMCAO model. As a
result, the sets of genetic responses were characterized as possibly being inherent to the use
of CH as a control. Thus, we identified traces of a bilateral genetic response in the brain
after focal stroke.

http://www.ncbi.nlm.nih.gov/bioproject/803984
http://www.ncbi.nlm.nih.gov/bioproject/803984
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