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Abstract

Background: A ‘mortality risk score’ (MS) based on ten prominent mortality-related cyto-

sine-phosphate-guanine (CpG) sites was previously associated with all-cause mortality,

but has not been verified externally. We aimed to validate the association of MS with

mortality and to compare MS with three aging biomarkers: telomere length (TL), DNA

methylation age (DNAmAge) and phenotypic age (DNAmPhenoAge) to explore whether

MS can serve as a reliable measure of biological aging and mortality.

Methods: Among 534 males aged 55–85 years from the US Normative Aging Study, the

MS, DNAmAge and DNAmPhenoAge were derived from blood DNA methylation profiles

from the Illumina HumanMethylation450 BeadChip, and TL was measured by quantita-

tive real-time polymerase chain reaction (qRT-PCR).

Results: A total of 147 participants died during a median follow-up of 9.4 years. The MS

showed strong associations with all-cause, cardiovascular disease (CVD) and cancer

mortality. After controlling for all potential covariates, participants with high MS (>5 CpG

sites with aberrant methylation) had almost 4-fold all-cause mortality (hazard ratio: 3.84,

95% confidence interval: 1.92–7.67) compared with participants with a low MS (0–1 CpG
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site with aberrant methylation). Similar patterns were observed with respect to CVD and

cancer mortality. MS was associated with TL and DNAmPhenoAge acceleration but not

with DNAmAge acceleration. Although the MS and DNAmPhenoAge acceleration were

independently associated with all-cause mortality, the former exhibited a higher predic-

tive accuracy of mortality than the latter.

Conclusions: MS has the potential to be a prominent predictor of mortality that could

enhance survival prediction in clinical settings.
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Introduction

As the global population ages and has increasing life expec-

tancy, healthy aging is becoming an increasingly relevant

public health challenge. Identifying indicators that measure

aging and predict age-related mortality is a major emerging

topic of biomedical research. Biologically, aging is associ-

ated with the gradual accumulation of a wide variety of

molecular and cellular changes over time. Telomere length

(TL), which varies among individuals and gradually short-

ens by 50–100 base pairs (bp) with each cell division,1 is

associated with a number of aging-related diseases, includ-

ing cardiovascular disease (CVD), diabetes, Alzheimer’s

disease, cancers and disease-specific mortality,2–5 and

therefore has been increasingly recognized as one of the

most prominent biomarkers of biological aging.

Another popular indicator of biological aging is DNA

methylation age (DNAmAge), proposed by Horvath in

2013.6 DNAmAge was highly correlated with chronologi-

cal age and may estimate the biological age of a tissue, cell

or organ based on the methylation profiles of multiple cy-

tosine-phosphate-guanine (CpG) sites across the genome.

DNAmAge acceleration, i.e. the discrepancy between

DNAmAge and chronological age, is heritable and has

been brought forward as a new index of accelerated bio-

logical aging. DNAmAge acceleration has been linked to

lifestyle factors, environmental hazards and stressful life

events, as well as mortality.7–14 Most recently, Horvath

and his colleagues also proposed another biomarker named

‘phenotypic age (DNAmPhenoAge)’ based on 513 CpG

sites that show associations with age-related phenotypes.

The discrepancy between DNAmPhenoAge and chronolog-

ical age is defined as the DNAmPhenoAge acceleration,

and is a marker of risks for an array of diverse outcomes

across multiple tissues and cells. Indeed, it may provide

novel insights into important pathways of biological

aging.15,16

DNA methylation of CpG sites other than age-related

loci has also been found to be strongly associated with

mortality.17 In a recent epigenome-wide association study

(EWAS), based on approximately 1900 older adults fol-

lowed for 14 years of the ESTHER study and a validation

study among 1727 participants of the KORA study, Zhang

et al. found a total of 58 CpG sites within 19 chromosomes

that were associated with all-cause mortality.18 The author

further constructed a ‘mortality risk score’ (MS) based on

the ten most robustly mortality-related loci, which was a

strong and informative predictor of all-cause, CVD and

cancer mortality. While the identified CpG sites were

mapped in genes known to be related to various diseases,

MS linked the DNA methylation profile seen in common

disease-related genes with mortality. Even though three

recent studies showed strong independent associations

Key Messages

• An epigenetic mortality risk score (MS) was previously associated with mortality; our study verified and compared it

with three aging biomarkers in an independent cohort for the first time.

• MS was highly associated with all-cause, cardiovascular disease and cancer mortality during a median follow-up of

9.4 years among 534 males.

• MS was associated with telomere length and the acceleration of DNA methylation phenotypic age (DNAmPhenoAge),

but not with the acceleration of DNA methylation age.

• MS and DNAmPhenoAge acceleration were independently associated with all-cause mortality, and the former exhib-

ited a higher predictive accuracy of mortality than the latter.

• MS has the potential to be an informative biomarker for survival prediction.
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between MS and mortality, along with frailty, telomere

length and vitamin D deficiency,19–21 potential overestima-

tion of the predictive power of this MS may exist since the

findings were all based on the studies (ESTHER and

KORA) in the German population.

MS has yet to be validated as a predictive measure of

mortality in an independent cohort. To fill this gap, we

sought to validate the association between the 58 previ-

ously identified mortality-related CpG sites, MS and

mortality. We then assessed and compared the individual

and joint associations between MS, TL, DNAmAge accel-

eration, DNAmPhenoAge acceleration and mortality over

the course of a median follow-up of 9.4 years. This investi-

gation was carried out through the Normative Aging Study

(NAS), which is an all-male cohort of older veterans living

in the Greater Boston area.

Methods

Study design and population

The NAS is an ongoing longitudinal study on aging estab-

lished by the US Department of Veterans Affairs in 1963.

Details of the study have been published previously.22

Briefly, the NAS is a closed cohort of 2280 male veterans

from the Greater Boston area. They were enrolled after an

initial health screening to determine that they were free of

known chronic medical conditions. DNA from blood sam-

ples was collected from 657 participants, most of whom

were examined up to four times between 1999 and 2013.

Participants have been re-evaluated every 3–5 years on a

continuous rolling basis using detailed on-site physical

examinations and questionnaires. We restricted the current

analysis to data from the first visit of 534 Caucasian partic-

ipants (aged 55–85 years) with available DNA methylation

profiles to control for the heterogeneity of race. The NAS

was approved by the Department of Veterans Affairs

Boston Healthcare System and written informed consent

was obtained from each subject before participation.

Data collection

As previously described,23 participants were asked to provide

detailed information about their lifestyles, dietary habits, ac-

tivity levels and demographic factors. Height and weight

were used to calculate body mass index (BMI, in kg/m2).

Blood samples were collected to assess blood-based bio-

markers. Major diseases were assessed based on participants’

medical history and prior diagnoses.24 Regular mailings to

study participants have been used to acquire vital-status in-

formation and official death certificates were obtained from

the appropriate state health department to be reviewed by a

physician; cause of death was coded by an experienced re-

search nurse using ICD-9. Participant deaths and causes of

death are routinely updated by the research team and the last

available update was on 31 December 2013.

DNA methylation data

As previously described,25,26 we used the QIAamp DNA

Blood Kit (Qiagen, CA, USA) to extract DNA from buffy

coat and performed bisulfite conversion with the EZ-96

DNA Methylation Kit (Zymo Research, CA, USA).

To minimize batch effects, we randomized chips across plates

and randomized samples based on a two-stage age-stratified

algorithm so that age distributed similarly across chips and

plates. We measured DNA methylation of CpG probes using

the Illumina HumanMethylation450 BeadChip. After quality

control, the remaining samples were preprocessed using the

Illumina-type background correction, dye-bias adjustment

and BMIQ normalization27 to generate methylation status.

The methylation status of a specific CpG site was quantified

as a b value ranging from 0 (no methylation) to 1 (full

methylation).

Estimations of mortality risk score, DNA

methylation age and phenotypic age

We retrieved a total of 58 mortality-related CpG sites

reported by Zhang et al. from whole epigenome data.18 As

described by the author, three forms of MS (ordinal, risk

level and continuous) were further built based on ten CpG

sites (cg01612140, cg05575921, cg06126421, cg08362785,

cg10321156, cg14975410, cg19572487, cg23665802,

cg24704287 and cg25983901). Values within the 4th quar-

tile of cg08362785 (positively correlated with mortality)

and within the 1st quartile of the other nine loci (negatively

correlated with mortality) were defined as ‘aberrant’ meth-

ylation for each CpG site.18 The ordinal MS was determined

as the cumulative number of aberrantly methylated CpG

sites (0–10) and the participants were further classified into

three risk levels: low, MS ¼ 0–1; moderate, MS ¼ 2–5; and

high, MS >5. Continuous MS was constructed as the sum

of the methylation b values multiplied by the regression

coefficients of each of the ten CpG sites for all-cause mortal-

ity derived from the least absolute shrinkage and selection

operator (LASSO) regression in Zhang et al.’s study.18

Ordinal MS ranged from 0 to 10, and continuous MS

ranged from –4 to 0 (Supplementary Figure S1, available as

Supplementary data at IJE online).

A total of 353 CpG sites were retrieved from the meth-

ylation profiles for the estimation of DNAmAge for each

participant based on the algorithm proposed by Horvath.6

This algorithm was derived from a range of tissues and cell
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types using 353 probes targeted in the Illumina 27 K and

450 K methylation arrays. In this study, we performed the

estimation using an online calculator (http://labs.genetics.

ucla.edu/horvath/dnamage/),6 and used the basic Horvath

DNAmAge estimated by the 353 loci in our study.

DNAmAge acceleration was determined as discrepancies

between DNAmAge and chronological age in the form of

residuals, which had a mean of 0 and represented positive

and negative deviations from chronological age in years.

The residuals were calculated by a linear regression proce-

dure in which methylation age was the outcome and chro-

nological age was the independent variable.

Another batch of 513 CpG sites was retrieved for the es-

timation of DNAmPhenoAge for each participant based on

the algorithm proposed by Levine et al.15 With the coeffi-

cient and intercept values provided by the authors, we esti-

mated the DNAmPhenoAge as:

DNAmPhenoAge ¼ CpG11 � b1 þ CpG2 � b2

þ � � �CpG513 � b513 þ intercept

The difference between phenotypic and chronological

age (DNAmPhenoAge – chronological age) was defined as

the DNAmPhenoAge acceleration.

Telomere length

As previously described,28 TL was measured by quantitative

real-time polymerase chain reaction (qRT-PCR). Relative TL

was measured by determining the ratio of the telomere repeat

(T) copy number to a single-copy gene (S) copy number (T/S)

in a given sample. Human beta-globin was used as the single

copy gene. To control for batch effects of plate, TL was cal-

culated as relative units, which was the ratio between TL in

the test DNA and TL in a DNA pool used to generate a stan-

dard curve in each PCR. The standard pool consisted of

DNA from participants randomly selected from the NAS

(50 ng per sample) and was used in each run to create a stan-

dard curve, which ranged from 20 to 0.25 ng/lL of pooled

DNA. An eight-point standard curve ranging from 30 to

0.234 ng/lL and derived from serially diluted pooled DNA

was included in each PCR plate so that relative quantities of

T and S could be determined. We ran all samples in triplicate

and the average of three T measurements was divided by the

average of three S measurements to calculate the average T/S.

Statistical analysis

Descriptive statistics were used to summarize socio-

demographics, lifestyle factors and distributions of TL,

DNAmAge and DNAmPhenoAge at baseline of all 534

participants and subsets based on the risk levels of MS.

We then evaluated the associations of 58 loci identified

by Zhang et al. with all-cause mortality in NAS during a

median follow-up of 9.4 years. Three multivariate Cox re-

gression models were used to test their associations by in-

creasingly controlling for potential confounding factors

and treating the batch of DNA methylation measurement

as the random effect. Model 1 adjusted for age (years) and

the leukocyte distribution estimated by the Houseman

algorithm.29 Model 2 additionally adjusted for smoking

status (current/former/never smoker), alcohol consumption

(abstainer/low/intermediate/high), BMI [underweight or

normal weight (<25.0)/overweight (�25.0 to <30.0)/obese

(�30.0)], physical activity [metabolic equivalent of task

(MET), low (�12 kcal/kg hours/week), median (12–

30 kcal/kg hours/week), high (�30 kcal/kg hours/week)]

and education (�12 years, 13–16 years, >16 years). Model

3 additionally adjusted for total cholesterol (mg/dL), high-

density lipoprotein (HDL, mg/dL), triglycerides (mg/dL),

systolic blood pressure (mm Hg), hypertension, stroke, cor-

onary heart disease (CHD), diabetes and cancer (yes/no).

After the correction of multiple testing by false discovery

rate [(FDR), Benjamini-Hochberg method30] we identified

CpG sites with a FDR <0.05 as mortality-related CpG

sites. The same three Cox models were used to evaluate the

association between the MS (ordinal/risk level/continuous)

and all-cause, CVD and cancer mortality.

We further employed three linear mixed models to test

the associations between MS, TL, DNAmAge acceleration

and DNAmPhenoAge acceleration, in which the batch of

DNA methylation measurement was treated as the random

effect. Model 1 adjusted for age and leukocyte distribution.

Model 2 additionally adjusted for smoking status, alcohol

consumption, BMI, physical activity and education. Model

3 additionally adjusted for total cholesterol, HDL, trigly-

cerides, systolic blood pressure, hypertension, stroke,

CHD, diabetes and cancer.

Finally, we examined the associations of TL,

DNAmAge acceleration and DNAmPhenoAge acceleration

with all-cause, CVD and cancer mortality using multivari-

ate Cox regression models that adjusted for all the poten-

tial covariates as described in the previous survival

analyses for MS. The leukocyte distribution was adjusted

for in models with epigenetic-based indicators. In addition

to models including a single biomarker as the predictor, we

also evaluated their independent associations with mortal-

ity in models that mutually controlled for the ordinal MS

and one of the aging biomarkers. The dose–response curves

of identified mortality-related biomarkers with all-cause

mortality were assessed by restricted cubic spline regres-

sion using the SAS macro from Desquilbet and Mariotti.31

All models for dose–response analyses were adjusted for

the covariates described above. The 25th, 50th and 75th
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percentiles were selected as knots for the continuous

markers and MS ¼ 2, 5 and 8 were selected as the knots

for the ordinal MS. Harrell’s and Uno’s C statistics

were employed to evaluate the predictive abilities of

the identified mortality-related indicators and their

combinations32,33 and potential overestimation by fitting

to our data was corrected using bootstrap analysis with

1000 replications to quantify the degradation in model

predictive accuracy. Final estimates were the averages and

standard deviations (SDs) of the results from each boot-

strap sample. The corresponding receiver operating charac-

teristic curves (ROC) were derived by logistic regression

and showed areas under the curve (AUC) that were very

similar to Harrell’s and Uno’s C statistics for the Cox

model.

All analyses were performed by SAS version 9.4 (SAS

Institute Inc., Cary, NC, USA), and all statistical tests were

two-sided with P-values of <0.05.

Results

Participant characteristics

Table 1 shows the baseline characteristics and distributions

of three aging biomarkers, TL, DNAmAge and

DNAmPhenoAge, among the total population of 534 par-

ticipants and the subsets based on the risk levels of MS.

Overall, the average age at the baseline was about 72 years

and the high MS group had a higher average age than the

other two subsets. Of the participants, >60% were former

smokers and <5% were current smokers; the high MS

group (MS> 5) had the lowest proportion of never smok-

ers. The majority of participants were overweight or obese,

consumed no or low amounts of alcohol, reported a low

level of physical activity and had <16 years of education.

The high MS group had the highest proportion of people

with hypertension, CVD and cancer at baseline. Figure 1

shows the distributions of the three aging biomarkers. Men

with a high MS had shorter TL, higher DNAmAge and

DNAmPhenoAge accelerations (Table 1). During a follow-

up of 9.4 years, 147 (27.5%), 85 (15.9%) and 47 (8.8%)

of participants died from any cause, CVD and cancer,

respectively.

Validations of 58 mortality-related CpG sites and

the mortality risk score

We first tested the associations of the 58 CpG sites previ-

ously identified by Zhang et al. with all-cause mortality

(Table 2 and Supplementary Table S1, available as

Supplementary data at IJE online). Fourteen of the 58 loci

showed strong associations with all-cause mortality after

controlling for all potential covariates and multiple testing.

Hazard ratios (HRs) of the 58 CpG sites for a SD decrease

in methylation levels in our study were highly correlated

with those described by Zhang et al. (Pearson correlation

coefficient ¼0.68, P-value <0.0001). Among the 14 loci

(Table 2), the demethylation of cg08362785 (MKL1) and

cg23842572 (MPRIP) showed negative correlations with

mortality. HRs and 95% confidence intervals (CIs) for a

decrease in methylation levels by one SD were 0.62 (0.46–

0.83) and 0.65 (0.50–0.86), respectively. Demethylation of

the remaining 12 loci showed positive associations with

mortality, with HRs (95% CIs) ranging from 1.28 (1.06–

1.54) to 1.73 (1.14–2.63) per SD decrease in methylation

levels. Five of the ten loci used to construct the MS were

also verified in NAS participants (cg01612140,

cg05575921, cg06126421, cg08362785 and cg23665802).

The five loci along with three other CpG sites

(cg14975410, cg19572487 and cg24704287) were

smoking-related loci reported by previous studies.34,35

Associations of the MS with all-cause and disease-

specific mortality are demonstrated in Table 3. After con-

trolling for age and technical covariates (Model 1), the MS

showed strong associations with deaths by any cause, CVD

and cancer. Additional adjustment for other potential

covariates did not alter the pattern in any relevant manner.

In the fully-adjusted model (Model 3), a unit increase of

ordinal and continuous MS was associated with a 1.25-

fold (95% CI: 1.13–1.38) and 2.53-fold (95% CI: 1.43–

4.47) increase in all-cause mortality, respectively. In the

categorical analysis of the MS risk level, HRs (95% CIs)

for moderate and high-risk groups were 1.38 (0.86–2.19)

and 3.84 (1.92–7.67), respectively, compared with the

low-risk group (MS ¼ 0–1). Similar patterns were observed

with respect to CVD and cancer mortality.

Subgroup analyses were additionally performed by

smoking status (Supplementary Table S2, available as

Supplementary data at IJE online). As the self-reported

smoking status is the subject of underreporting or other in-

formation bias, and cg05575921 can objectively distin-

guish cigarette consumption,36 we performed the analysis

in four subgroups, group 1: ever smokers (current or for-

mer smokers, n¼ 361), group 2: never smokers (n¼ 173),

group 3: never smokers who had a cg05575921 level >1st

quartile of never smokers (n¼ 119) and group 4: never

smokers who had a cg05575921 level �0.75 (n¼ 156).

The distribution of cg05575921 based on smoking status is

provided in Supplementary Figure S2, available as

Supplementary data at IJE online. All forms of MS mostly

demonstrated increasing patterns with all-cause, CVD and

cancer mortality as identified from the total population, al-

beit with larger CIs due to the limited number of deaths. In

particular, the ordinal MS still had robust associations
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with all-cause and disease-specific mortality, but its HRs

attenuated in groups 2–4.

Figure 2a and b further depicts the dose–response rela-

tionships of the ordinal and continuous MS with all-cause

mortality after controlling for all potential covariates in

the total population. All-cause mortality robustly increased

for ordinal MS >2 (Figure 2a) and one SD increase of

continuous MS was roughly associated with a 2-fold in-

crease in the risk of all-cause mortality (Figure 2b).

Additionally, two CpG sites, cg06126421 and cg23665802,

are not covered by the Illumina EPIC methylation array.

We tested the associations between a revised MS [ordinal (0–8)

and continuous] without the two loci and all-cause, CVD

and cancer mortality as a sensitivity analysis (Supplementary

Table 1. Characteristics of participants from the Normative Aging Study at baselinea

Characteristics nTotal ¼ 534 Subsets based on risk levels of mortality risk score

0–1 / Low (n¼238) 2–5 / Moderate (n¼251) >5 / High (n¼45) P-value

Age (years) 71.6 (6.5) 70.5 (6.3) 72.2 (6.6) 73.2 (6.1) 0.003

Total cholesterol (mg/dL) 198.9 (36.9) 202.7 (38.4) 197.2 (35.6) 188.9 (34.3) 0.04

Serum triglyceride (mg/dL) 138.9 (85.6) 139.6 (96.3) 137.8 (75.6) 141.8 (78.8) 0.95

HDL cholesterol (mg/dL) 49.8 (13.5) 49.7 (13.0) 49.8 (13.8) 50.0 (14.9) 0.99

Systolic blood pressure (mm Hg) 131.4 (17.3) 132.4 (16.2) 131.3 (17.5) 127.2 (21.3) 0.18

Smoking status 0.0004

Current smoker 19 (3.6%) 0 (0%) 16 (6.4%) 3 (6.7%)

Former smoker 342 (64.0%) 149 (62.6%) 160 (63.7%) 33 (73.3%)

Never smoker 173 (32.4%) 89 (37.4) 75 (29.9%) 9 (20.0%)

Body mass index (kg/m2) 0.61

Underweight or normal weight (<25.0) 102 (19.1%) 51 (21.4%) 45 (17.9%) 6 (13.3%)

Overweight (�25.0 to <30.0) 292 (54.7%) 124 (52.1%) 143 (57.0%) 25 (55.6%)

Obese (�30.0 ) 140 (26.2%) 63 (26.5%) 63 (25.1%) 14 (31.1%)

Alcohol consumptionb 0.39

Abstainer 112 (22.5%) 54 (24.4%) 50 (21.5%) 8 (18.6%)

Low (0 to <40 g/d) 349 (70.2%) 157 (71.0%) 161 (69.1%) 31 (72.1%)

Intermediate (40 to <60 g/d) 24 (4.8%) 8 (3.6%) 13 (5.5%) 3 (7.0%)

High (�60 g/d) 12 (2.4%) 2 (1.0%) 9 (3.9%) 1 (2.3%)

Physical activity (MET-hours/week)c 0.02

Low (�12 kcal/kg hours/week) 312 (61.1%) 122 (54.2%) 156 (64.5%) 34 (77.3%)

Median (12–30 kcal/kg hours/week) 128 (25.0%) 65 (28.9%) 54 (22.3%) 9 (20.5%)

High (�30 kcal/kg hours/week) 71 (13.9%) 38 (16.9%) 32 (13.2%) 1 (2.2%)

Years of educationd 0.86

�12 years 227 (44.3%) 95 (42.2%) 109 (45.1%) 23 (51.1%)

13–16 years 217 (42.4%) 99 (44.0%) 101 (41.7%) 17 (37.8%)

>16 years 68 (13.3%) 31 (13.8%) 32 (13.2%) 5 (11.1%)

Major diseases

Hypertension 365 (68.4%) 151 (63.5%) 180 (71.7%) 34 (75.6%) 0.08

Stroke 32 (6.0%) 11 (4.6%) 15 (6.0%) 6 (13.3%) 0.08

Coronary heart disease (CHD) 141 (26.4%) 51 (21.4%) 73 (29.1%) 17 (37.8%) 0.03

Diabetes 66 (12.4%) 29 (12.2%) 31 (12.4%) 6 (13.3%) 0.98

Cancer 267 (50.0%) 117 (49.2%) 120 (47.8%) 30 (66.7%) 0.06

Telomere length (T/S) 1.28 (0.48) 1.31 (0.51) 1.28 (0.47) 1.16 (0.38) 0.15

DNAmAge (Horvath, years) 72.6 (6.7) 71.9 (6.6) 72.9 (6.5) 74.8 (7.4) 0.02

DNAmAge acceleration (Horvath, years) 0.21 (5.2) 0.14 (4.9) 0.06 (5.2) 1.39 (6.0) 0.27

DNAmPhenoAge (years) 66.5 (8.1) 64.3 (8.0) 67.5 (7.8) 71.7 (6.8) <0.0001

DNAmPhenoAge acceleration (years) –5.0 (6.2) –5.9 (5.9) –4.8 (6.1) –1.6 (6.8) 0.0002

aMean values (standard deviation) for continuous variables and n (%) for categorical variables; differences among risk levels of mortality risk score were tested

for statistical significance by Kruskal-Wallis test (continuous variables) and Chi-square test (categorical variables).
bData missing for 37 participants.
cData missing for 23 participants.
dData missing for 22 participants.

International Journal of Epidemiology, 2019, Vol. 48, No. 6 1963

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/48/6/1958/5481894 by guest on 16 August 2022

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz082#supplementary-data


Table S3, available as Supplementary data at IJE online). This

revised indicator still showed positive associations with the

mortality after fully controlling for potential covariates, but the

corresponding HRs of both forms of this revised MS were at-

tenuated and the CIs were wider than the original.

Associations of mortality risk score with telomere

length, DNAmAge and DNAmPhenoAge

Next, we evaluated the associations of the MS with three

aging biomarkers: TL, DNAmAge acceleration and

DNAmPhenoAge acceleration (Table 4, Supplementary

Figure 1. Distributions of telomere length, DNAmAge acceleration and DNAmPhenoAge acceleration based on the mortality risk score.

1964 International Journal of Epidemiology, 2019, Vol. 48, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/48/6/1958/5481894 by guest on 16 August 2022

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz082#supplementary-data


Table 2. Fourteen previously reported CpG sites that were associated with all-cause mortality in NAS

CpG Sitesa Genes Chromosomeb Dead (n¼147) Alive (n¼387) HR per SD decrease

(95% CI)d
P-value FDRe

Mean (SD)c Mean (SD)

cg01612140* unassigned 6q14.1 0.24 (0.060) 0.27 (0.063) 1.47 (1.11–1.95) 0.0070 0.0370

cg03636183* F2RL3 19p13.11 0.67 (0.077) 0.70 (0.067) 1.28 (1.06–1.54) 0.0096 0.0427

cg03725309* SARS 1p13.3 0.07 (0.024) 0.08 (0.025) 1.43 (1.10–1.85) 0.0083 0.0403

cg05575921* AHRR 5p15.33 0.80 (0.086) 0.83 (0.078) 1.36 (1.09–1.70) 0.0059 0.0370

cg06126421* unassigned 6p21.33 0.63 (0.104) 0.67 (0.089) 1.33 (1.09–1.64) 0.0064 0.0370

cg08362785* MKL1 22q13.1 0.70 (0.044) 0.69 (0.039) 0.62 (0.46–0.83) 0.0013 0.0255

cg11341610 CALR 19q13.2 0.08 (0.031) 0.09 (0.031) 1.62 (1.22–2.16) 0.0010 0.0255

cg15342087* unassigned 6p21.33 0.86 (0.040) 0.88 (0.042) 1.34 (1.10–1.65) 0.0043 0.0370

cg18181703* SOCS3 17q25.3 0.42 (0.065) 0.45 (0.057) 1.37 (1.12–1.68) 0.0028 0.0322

cg20732076* TRERF1 6p21.1 0.07 (0.031) 0.08 (0.030) 1.44 (1.11–1.87) 0.0060 0.0370

cg23665802* MIR19A 13q31.3 0.20 (0.064) 0.23 (0.052) 1.63 (1.22–2.18) 0.0009 0.0255

cg23842572* MPRIP 17p11.2 0.79 (0.031) 0.77 (0.033) 0.65 (0.50–0.86) 0.0021 0.0307

cg25763716 VCAM1 1p21.2 0.11 (0.042) 0.13 (0.041) 1.58 (1.15–2.17) 0.0047 0.0370

cg26709988 CRISPLD2 16q24.1 0.31 (0.081) 0.33 (0.078) 1.73 (1.14–2.63) 0.0107 0.0442

aCpG sites with *smoking-related loci reported by previous studies34,35 and in bold loci selected to construct the mortality risk score17.
bAccording to GRCh37/hg19.
cSD, standard deviation.
dModel adjusted for age (years), leukocyte distribution (Houseman algorithm) and random batch effect of methylation measurement, smoking status (current/

former/never), alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI, underweight or normal weight/overweight/obese), physical activity

[metabolic equivalent of task (MET), low (�12 kcal/kg hours/week), median (12–30 kcal/kg hours/week), high (�30 kcal/kg hours/week)], education (�12 years,

13–16 years, >16 years), total cholesterol (mg/dL), HDL (mg/dL), triglycerides (mg/dL), systolic blood pressure (mm Hg), hypertension, stroke, coronary heart

disease, diabetes and cancer (yes/no); HR, hazard ratio; CI, confidence interval.
eFDR ¼ false discovery rate.

Table 3. Associations between mortality risk score and all-cause, cardiovascular disease and cancer mortality in NAS

Mortality Indicator n / ndeath Model 1a Model 2b Model 3c

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

All-cause Ordinal MS (per one unit) 534/147 1.27 (1.16–1.38) <0.0001 1.24 (1.12–1.37) <0.0001 1.25 (1.13–1.38) <0.0001

MS risk level Low 238/47 Ref Ref Ref

Moderate 251/76 1.45 (0.95–2.19) 0.084 1.26 (0.81–1.96) 0.298 1.38 (0.86–2.19) 0.180

High 45/24 4.10 (2.26–7.42) <0.0001 3.26 (1.72–6.20) 0.0003 3.84 (1.92–7.67) 0.0001

Continuous MS (per one unit) 534/147 2.53 (1.59–4.01) <0.0001 2.19 (1.30–3.69) 0.0032 2.53 (1.43–4.47) 0.0014

Cardiovascular

disease

Ordinal MS (per one unit) 534/85 1.30 (1.16–1.45) <0.0001 1.24 (1.09–1.41) 0.0014 1.29 (1.12–1.47) 0.0003

MS risk level Low 238/26 Ref Ref Ref

Moderate 251/42 1.61 (0.90–2.89) 0.112 1.33 (0.71–2.47) 0.373 1.42 (0.74–2.72) 0.377

High 45/17 5.62 (2.59–12.18) <0.0001 4.26 (1.84–9.88) 0.0007 5.20 (2.11–12.83) 0.0004

Continuous MS (per one unit) 534/85 3.21 (1.74–5.92) 0.0002 2.60 (1.30–5.18) 0.007 3.09 (1.42–6.70) 0.004

Cancer Ordinal MS (per one unit) 534/47 1.31 (1.13–1.52) 0.0003 1.34 (1.13–1.58) 0.0006 1.29 (1.09–1.53) 0.004

MS risk level Low 238/14 Ref Ref Ref

Moderate 251/26 1.64 (0.81–3.30) 0.169 1.58 (0.76–3.26) 0.220 2.50 (1.11–5.60) 0.026

High 45/7 5.40 (1.85–15.75) 0.002 5.09 (1.66–15.67) 0.005 6.56 (1.87–23.06) 0.003

Continuous MS (per one unit) 534/47 3.57 (1.67–7.64) 0.001 3.34 (1.39–8.03) 0.007 3.90 (1.47–10.35) 0.006

aModel 1: adjusted for age (years), leukocyte distribution (Houseman algorithm) and random batch effect of methylation measurement; HR. hazard ratio; CI,

confidence interval; MS, mortality risk score.
bModel 2: additionally adjusted for smoking status, alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI, underweight or normal

weight/overweight/obese), physical activity [metabolic equivalent of task (MET), low (�12 kcal/kg hours/week), median (12–30 kcal/kg hours/week), high

(�30 kcal/kg hours/week)] and education (�12 years, 13–16 years, >16 years).
cModel 3: additionally adjusted for total cholesterol (mg/dL), HDL (mg/dL), triglycerides (mg/dL), systolic blood pressure (mm Hg), hypertension, stroke, coro-

nary heart disease, diabetes and cancer (yes/no).
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Figure 2. Graphs of the best-fitting models for relationships of mortality risk score (a and b) and DNAmPhenoAge acceleration (c) with all-cause mortality.

Table 4. Associations between mortality risk score and telomere length, DNAmAge acceleration and DNAmPhenoAge

acceleration

Biomarkers Forms of MS Model 1a Model 2b Model 3c

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value

Telomere length

(T/S ratio)

Ordinal MS (per one unit) –0.027 (0.011) 0.018 –0.020 (0.013) 0.122 –0.019 (0.013) 0.149

MS risk level Low Ref Ref Ref

Moderate –0.074 (0.046) 0.109 –0.047 (0.050) 0.356 –0.039 (0.052) 0.451

High –0.193 (0.087) 0.027 –0.138 (0.093) 0.136 –0.142 (0.096) 0.139

Continuous MS (per one unit) –0.200 (0.056) 0.0004 –0.183 (0.064) 0.005 –0.194 (0.068) 0.004

DNAmAge acceleration

(Horvath, years)

Ordinal MS (per one unit) 0.167 (0.123) 0.174 0.164 (0.135) 0.223 0.122 (0.138) 0.378

MS risk level Low Ref Ref Ref

Moderate 0.065 (0.496) 0.896 0.083 (0.532) 0.876 –0.069 (0.538) 0.898

High 1.924 (0.928) 0.039 1.430 (0.975) 0.143 0.830 (0.991) 0.403

Continuous MS (per one unit) 1.405 (0.601) 0.020 1.417 (0.674) 0.036 0.824 (0.701) 0.241

DNAmPhenoAge

acceleration (years)

Ordinal MS (per one unit) 0.564 (0.139) <0.0001 0.480 (0.150) 0.002 0.392 (0.152) 0.010

MS risk level Low Ref Ref Ref

Moderate 1.388 (0.561) 0.014 1.176 (0.592) 0.048 0.953 (0.591) 0.108

High 4.367 (1.050) <0.0001 3.403 (1.087) 0.002 2.347 (1.090) 0.032

Continuous MS (per one unit) 2.512 (0.684) 0.0003 2.032 (0.756) 0.008 1.537 (0.773) 0.047

aModel 1: adjusted for age (years), leukocyte distribution (Houseman algorithm) and random batch effect of methylation measurement; SE, standard error;

MS, mortality risk score.
bModel 2: additionally adjusted for smoking status, alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI, underweight or normal

weight/overweight/obese), physical activity [metabolic equivalent of task (MET), low (�12 kcal/kg hours/week), median (12-30 kcal/kg hours/week), high

(�30 kcal/kg hours/week)] and education (�12 years, 13–16 years, >16 years).
cModel 3: additionally adjusted for total cholesterol (mg/dL), HDL (mg/dL), triglycerides (mg/dL), systolic blood pressure (mm Hg), hypertension, stroke, coro-

nary heart disease, diabetes and cancer (yes/no).
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Figure S3, available as Supplementary data at IJE online).

No overlap was found between the CpG sites used by the

MS and those used by the DNAmAge or DNAmPhenoAge.

All types of MS were negatively associated with TL. One

unit increase of the continuous MS was associated with

about 0.19 unit decrease in the T/S ratio of TL. DNAmAge

acceleration was not associated with any forms of MS. In

contrast, DNAmPhenoAge acceleration showed a robust

positive association with MS. After controlling for poten-

tial covariates, one unit increase of the ordinal and contin-

uous MS were associated with about 0.4 and 1.5 years

increase in DNAmPhenoAge acceleration, respectively.

Compared with the low MS risk group, the moderate and

high risk groups were associated with about 0.9 and 2.3

years increase in the acceleration of DNAmPhenoAge,

respectively.

We further assessed the associations between the three

aging biomarkers and mortality without and with mutual

adjustment for ordinal MS (Table 5). After the mutual

adjustments, the HRs of ordinal MS, DNAmAge acceler-

ation and DNAmPhenoAge acceleration were essentially

unchanged, whereas the HRs of TL changed considerably.

The ordinal MS still showed the strongest associations

with mortality compared with other markers even after the

mutual adjustments. DNAmPhenoAge acceleration was

the only aging biomarker that was highly associated with

all-cause and CVD mortality after the mutual adjustment.

A 1 year increase in DNAmPhenoAge acceleration was as-

sociated with a 1.05-fold (95% CI: 1.01–1.08) and 1.07-

fold (1.02–1.12) increase in all-cause and CVD mortality,

respectively. One SD increase in DNAmPhenoAge acceler-

ation predicted a 1.5-fold increase in the risk of all-cause

mortality (Figure 2c). Nevertheless, none of the aging bio-

markers was associated with cancer mortality.

As the MS and DNAmPhenoAge acceleration were the

only two indicators associated with all-cause mortality in

the present study, we additionally estimated the perform-

ances of both in the prediction of all-cause mortality.

Summary indicators are presented in Table 6 and Figure 3.

The ordinal MS outperformed DNAmPhenoAge accelera-

tion in predicting all-cause mortality. Harrell’s C statistics

for the ordinal MS was 0.627 (95% CI: 0.587–0.666) and

0.527 (95% CI: 0.490–0.564) for the DNAmPhenoAge ac-

celeration (P-value for their difference <0.0001).

Continuous MS was better than DNAmPhenoAge acceler-

ation in mortality prediction with a Harrell’s C of 0.585

(95% CI: 0.543–0.627), but not as good as the ordinal

MS. The combination of ordinal MS and DNAmPhenoAge

acceleration slightly increased the C statistics of the predic-

tion model (P-value ¼ 0.09). A very similar pattern was

seen for Uno’s C statistics.

Discussion

In this study of 534 older male adults from the NAS with a

median follow-up of 9.4 years, we validated 58 previously

identified mortality-related CpG sites and the newly con-

structed MS in relation to mortality. We further assessed

associations between MS and three popular aging bio-

markers and evaluated their predictive performances of

mortality. Fourteen of the 58 loci were found to be associ-

ated with all-cause mortality and the MS demonstrated

strong associations with all-cause, CVD and cancer mor-

tality. Furthermore, the MS was associated with TL and

DNAmPhenoAge acceleration, but not with DNAmAge

acceleration. DNAmPhenoAge acceleration was the only

aging biomarker that showed independent associations

with all-cause and CVD mortality along with MS.

Compared with the DNAmPhenoAge acceleration, MS

was more predictive of all-cause mortality. This compara-

tive validation of MS with other aging surrogates provides

evidence in favour of the potential use of MS in the assess-

ment of mortality risk in clinical settings.

Not only is our study the first external validation of MS,

we also conducted for the first time a comparison of MS with

three popular aging markers in the prediction of mortality us-

ing an independent cohort. The strong predictive ability of

MS could be partly explained by tobacco smoking, which not

only strongly correlates with mortality,37,38 but also plays an

important role in the modification of MS. As noted, 11 out

of the 14 validated mortality-related CpG sites and eight out

of the ten loci for the construction of MS were smoking-

related as reported by previous studies.34,35 The discrepancies

between MS and DNAmAge in relation to smoking exposure

might also partly explain their null association. In contrast to

its strong linkage with MS, a previous study has reported

that smoking status was not related to DNAmAge in older

adults.39 Furthermore, MS could have the potential to reflect

more than the mortality risks triggered by smoking exposure.

In the subgroup analyses by smoking status, we observed

consistent patterns of the ordinal MS with all-cause and

disease-specific mortality among never and ever smokers, al-

beit the CIs were much wider due to a limited number of

cases. This suggests that the MS could be associated with

mortality risks via pathways other than smoking-related

pathological mechanisms Altogether, the full landscape of un-

derlying biological mechanisms and functional connections

of the mortality-related CpG sites/MS with the development

of individual mortality risks still need to be further elucidated

by multidisciplinary studies.

A key question with critical importance for gerontology

is whether and to what extent MS reflects the biological

aging and mortality risk separately. We found that MS was

not associated with DNAmAge acceleration but with TL,
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two predictors that were considered to reflect biological ag-

ing. The MS–TL relationship is in line with the finding of a

recent study based on the ESTHER cohort.21 However,

Zhang et al.’s study found that MS was associated with

frailty, another well-known aging indicator.19 Altogether,

our data suggest that MS might reflect biological aging only

to a limited extent without being able to perform as a reason-

ably accurate biomarker of accelerated aging. Conversely,

MS had a robust association with DNAmPhenoAge accelera-

tion, an ‘updated’ DNA methylation age built to be more

closely related to a cadre of mortality predictors,15 and even

outperformed DNAmPhenoAge in predicting all-cause mor-

tality. Since the DNAmPhenoAge primarily represents the im-

pact of biological aging on mortality, rather than biological

aging itself, we suggest that MS might additionally predict

the impacts on the risks of death from factors other than sim-

ply biological aging. Independent associations of MS and

DNAmPhenoAge with mortality further indicate that they

may reflect different pathological mechanisms in the develop-

ment of mortality risks. Together with similar independent

associations between vitamin D and MS in relation to mortal-

ity that were observed,20 we believe that the MS could be an-

other important biomarker for predicting mortality risk

along with other established mortality-related factors.

Given the different relationships with biological aging

and mortality demonstrated in this study and previous epi-

genetic epidemiological investigations, we suggest that the

DNA methylation-based age estimators (e.g. DNAmAge

and DNAmPhenoAge) and mortality indicators (e.g. MS)

have varied but equally important implications for clinical

research and diagnosis. Age estimators could be utilized to

describe the individual pathological changes and morbid-

ities that are caused by or mostly sensitive to accelerated

aging, such as physical functioning,40 psychosocial disor-

ders8,41,42 and aging-related diseases. In contrast, the MS

and other mortality-related epigenetic patterns that are un-

der development are initially created for mortality predic-

tion and could therefore be more specialized for reflecting

the integrated mortality risks led by biological aging and

other external risk factors, such as being overweight, to-

bacco smoking and other unhealthy lifestyles. Although

DNA methylation-based age estimators showed robust as-

sociation with mortality within larger populations

(n> 1000)11,40,43 and meta-analysis,44 due to the poten-

tially limited weight of aging in the contribution to mortal-

ity risks, their power in predicting mortality was much less

than mortality-specific indicators for individuals or rela-

tively small populations. This limitation restricts the appli-

cations of current available epigenetic aging estimators for

mortality risk stratification in clinical settings and makes

the indicators like MS good candidates. Nevertheless, we

are still far from establishing reliable epigenetic indicators

for the whole population. Current epigenetic indicators are

required to be updated and optimized for compatibility

with the advent of epigenetic measurement methods. For

instance, 2/10 and 17/353 CpG sites for the construction

of the MS and Horvath’s DNAmAge were no longer avail-

able after the introduction of Illumina EPIC methylation

array. As shown in Supplementary Table S3, available as

Figure 3. ROC curves for DNAmPhenoAge acceleration, mortality risk

score (MS) and their combination for all-cause mortality.

Table 6. Overall Harrell’s and Uno’s C statistics of the mortality risk score (ordinal and continuous) and DNAmPhenoAge accel-

eration in prediction of all-cause mortality

Characteristic Harrell’s C statistics 95% CI Uno’s C statistics 95% CI

Ordinal MS 0.627 0.587–0.666 0.612 0.569–0.654

Continuous MS 0.585 0.543–0.627 0.561 0.515–0.606

DNAmPhenoAge acceleration 0.527 0.490–0.564 0.500 0.449–0.553

Ordinal MS þ DNAmPhenoAge acceleration 0.653 0.612–0.694 0.635 0.586–0.684

Continuous MS þ DNAmPhenoAge acceleration 0.602 0.558–0.646 0.582 0.530–0.635

CI, confidence interval.
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Supplementary data at IJE online, the lack of the two loci

for MS attenuated its prediction of mortality to a certain

extent. Population heterogeneity is another obstacle that

could hinder the promotion of such epigenetic indicators

that are sensitive to racial difference.10,45 More efforts are

warranted to unify the currently available epigenetic candi-

dates into universally applicable epigenetic indicators for

aging and mortality and to translate them into reliable clin-

ical tools.

Major strengths of the present study include detailed in-

formation on a broad range of covariates and estimates of

different aging and mortality biomarkers. Several limita-

tions should also be noted in the interpretation of results.

First, shifts of leukocyte distribution might affect DNA

methylation changes in whole blood samples.46 Hence, we

adjusted for leukocyte distribution by the Houseman algo-

rithm to restrict confounding from differential blood

counts to the greatest possible extent.29 Second, the se-

lected study participants were Caucasians and all older

males, which limits the generalizability of our results to

other racial/ethnic groups and women. Finally, although

our overall sample size was relatively large, some of the

results with weak associations in the subgroup analyses

may have been due to the lack of statistical power with the

relatively limited number of deaths.

In summary, this comparative validation showed strong

associations between MS based on ten mortality-related

CpG sites and all-cause, CVD and cancer mortality, and

further demonstrated that it outperformed TL, DNAmAge

acceleration and DNAmPhenoAge acceleration in predict-

ing mortality as a more relevant mortality indicator. This

study sheds some light on the utilization of epigenetic

markers as an informative approach for predicting mortal-

ity and mortality-related health risks at the population

level. Our findings need to be further assessed in larger

cohorts to evaluate the clinical applications of the

epigenetic-based MS in routine medical practice aimed at

assessing mortality risks along with other robust survival

predictors.

Supplementary Data

Supplementary data are available at IJE online.
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