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Abstract

Background: External validation of risk models is critical for risk-stratified breast cancer prevention. We used the

Individualized Coherent Absolute Risk Estimation (iCARE) as a flexible tool for risk model development and comparative

model validation and to make projections for population risk stratification.

Methods: Performance of two recently developed models, one based on the Breast and Prostate Cancer Cohort Consortium

analysis (iCARE-BPC3) and another based on a literature review (iCARE-Lit), were compared with two establishedmodels

(Breast Cancer Risk Assessment Tool and International Breast Cancer Intervention Study Model) based on classical risk

factors in a UK-based cohort of 64 874 white non-Hispanic women (863 patients) age 35–74years. Risk projections in a target

population of US white non-Hispanic women age 50–70years assessed potential improvements in risk stratification by adding

mammographic breast density (MD) and polygenic risk score (PRS).

Results: The best calibrated models were iCARE-Lit (expected to observed number of cases [E/O] ¼ 0.98, 95% confidence inter-

val [CI] ¼ 0.87 to 1.11) for women younger than 50years, and iCARE-BPC3 (E/O¼1.00, 95% CI ¼ 0.93 to 1.09) for women 50years

or older. Risk projections using iCARE-BPC3 indicated classical risk factors can identify approximately 500 000 women at mod-

erate to high risk (>3% 5-year risk) in the target population. Addition of MD and a 313-variant PRS is expected to increase this

number to approximately 3.5 million women, and among them, approximately 153 000 are expected to develop invasive

breast cancer within 5 years.

Conclusions: iCARE models based on classical risk factors perform similarly to or better than BCRAT or IBIS in white

non-Hispanic women. Addition of MD and PRS can lead to substantial improvements in risk stratification. However, these in-

tegrated models require independent prospective validation before broad clinical applications.

Breast cancer risk prediction models are used in clinical and re-

search settings to identify women at elevated risk of disease who

could benefit from preventive therapies and enhanced screening

or be eligible to participate in prevention trials. Continuing

updates of risk models incorporating additional risk factors will

potentially improve our ability to identify such women (1), as well

as women at low risk of disease.

Independent prospective validation of models is critical to

determine their accuracy of prediction, robustness, and poten-

tial for clinical application. Breast Cancer Risk Assessment Tool

(BCRAT) and International Breast Cancer Intervention Study

Model (IBIS) are established models that are currently used for

clinical and research applications (2). BCRAT includes classical

risk factors and has been extensively evaluated generally
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showing good calibration but low risk discrimination (2–4). IBIS,

which includes a more comprehensive set of classical risk fac-

tors and extensive family history, performed better than BCRAT

in average- to high-risk populations (5,6). Although addition of

mammographic breast density (MD) (7–11) or polygenetic risk

scores (PRS) (12–20) can lead to improved risk stratification, pro-

spective evaluation of the accuracy of absolute risk predictions

from models incorporating PRS is limited (21).

Risk prediction models should be dynamic and flexible in

their ability to incorporate additional risk factors and context-

specific incidence rates. However, developing and validating a

comprehensive model is challenging because of all the relevant

risk factors not being typically measured in a single study and

requiring novel methods for data integration from multiple epi-

demiologic studies (22–24). Our recently developed

Individualized Coherent Absolute Risk Estimation (iCARE) soft-

ware implements a flexible approach to build absolute risk

models for a population combining information on relative risk

estimates, age-specific incidence and mortality rates, and risk

factor distributions from multiple data sources (25–27). It

includes advanced features to account for missing risk factors

using internal imputation and a validation component to facili-

tate comparative model evaluation across multiple cohorts us-

ing uniform methodology (27).

We previously used iCARE to develop a breast cancer risk

model using relative risks from a multivariable regression based

on eight prospective cohorts of women age 50 years or older in

the Breast and Prostate Cancer Cohort Consortium (iCARE-

BPC3) (25). Here, we develop an updated version of the synthetic

model, described in Garcia-Closas et al. (1), using relative risks

from published literature (iCARE-Lit). A literature-based model,

though requiring more assumptions, can include comprehen-

sive sets of risk factors that may not all be measured in one

study.

The current study aims to compare the performances of the

iCARE models, BCRAT, and IBIS based on classical risk factors (ie,

questionnaire-based risk factors like menstrual, reproductive,

hormonal, and lifestyle risk factors) in the UK-based Generations

Study (GS). Additionally, the Prostate, Lung, Colorectal and

Ovarian (PLCO) Cancer Screening Trial, used to develop iCARE-

BPC3, provided further evaluation of the other models. Risk pro-

jections in a target population were estimated based on classical

risk factors and after addition of MD (28) and PRS.

Materials and Methods

Study Populations

Primary analyses were performed in a population of 113 211

women age 16–102years at enrollment (2003–2012) from the UK-

based GS. Further validation of the iCARE-Lit model was per-

formed in 78 214 women age 50–75years at enrollment (1993–

2001) from the US-based PLCO. Exclusion criteria included history

of breast cancer, nonwhite or unknown ethnicity, no genetic con-

sent or DNA source, entry age younger than 35 or older than

75years, presence of first- or second-degree relative in study (GS

only), and individuals with an unconfirmable report of breast

cancer (PLCO only). The final analytic samples from the GS and

PLCO were 64 874 (863 cases within 5 years) and 48 279 (1008

cases within 5 years), respectively (Supplementary Figure 1, avail-

able online). As PLCO was used for the development of iCARE-

BPC3 (24), it was used only for validating other models.

Supplementary Table 1 (available online) shows the risk factor

distributions in both cohorts.

Breast Cancer Risk Model Validation and Risk Projection

Supplementary Tables 2–4 (available online) provide detailed

descriptions of the iCARE-based models, BCRAT and IBIS. All

models incorporate information on marginal disease incidence

rates (Supplementary Figure 2, A and B, available online) and ac-

count for competing mortality using mortality rates, both avail-

able from population-based registries (27,29,30). The incidence

rates were used to calibrate the average predicted risk to the na-

tional breast cancer risk (29,30). iCARE implements this step us-

ing an additional individual-level reference dataset of risk

factors representing the underlying population.

For evaluating calibration, we categorized individuals based

on deciles of both of the 5-year absolute risks that incorporate

the variation of age and the relative risk score (ie, sum of log rel-

ative risks multiplied by risk factors) that does not include age.

The predicted and observed risks across risk categories were

compared using expected-to-observed (E/O) ratio, calibration

slope, and intercept. Model discrimination was assessed using

area under the curve (AUC) statistics based both on 5-year abso-

lute risk and the relative risk score (Supplementary Methods,

available online).

Risk projections of invasive breast cancer were estimated

among US white non-Hispanic women age 50–70years using

the best calibrated model based on classical risk factors in that

group. We also evaluated the net benefit (31–33) of this model

for high-risk decisions in that population (Supplementary

Methods, available online). We explored potential improve-

ments in risk stratification and net benefit with addition of PRS

and MD. Apart from the PRS constructed using 313 single-nucle-

otide polymorphisms (SNPs) (Supplementary Table 5, available

online) (34–36), we considered an “improved” PRS incorporating

the fraction of additional heritability attributable to common

variants, and a “best” PRS incorporating all the common variant

heritability (34,36–38). Theoretical AUC was computed using a

normal approximation of the relative risk scores for different

combinations: classical risk factors only, PRS only, MD only, and

a combined model with all risk factors (26,38,39). Moreover, we

considered two high-risk thresholds: 3% corresponding to US

Preventive Services Task Force recommendation for risk-

lowering drugs and 6% used by the WISDOM trial as a cutoff for

very high risk (40,41) and two low risk thresholds: 0.6% and

1.3%, which are average 5-year risks of US women age 40 and

50years, respectively. We estimated numbers of women and fu-

ture cases identified at the extremes of the risk distribution

based on the above thresholds (Supplementary Methods, avail-

able online) (25,27).

Results

Breast Cancer Risk Model Validation

Among women younger than 50years, all models showed good

calibration of relative risk (Figure 1, Table 1; Supplementary

Figure 3A, available online). Absolute risk was best calibrated

for iCARE-Lit (E/O ¼ 0.98, 96% CI ¼ 0.87 to 0.11), with a discrimi-

nation of AUC ¼ 65.4 (95% CI ¼ 62.1 to 68.7) (Table 1). BCRAT

tended to underestimate (E/O¼ 0.85, 95% CI¼ 0.75 to 0.95) and

IBIS to overestimate (E/O¼ 1.14, 95% CI¼ 1.01 to 1.29) absolute

risk.
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Among women age 50years or older, iCARE-BPC3 showed

good calibration of absolute and relative risk (E/O¼ 1.00, 95%

CI¼ 0.93 to 1.09), with AUC¼ 60.2, 95% CI¼ 58.0 to 62.4. iCARE-

Lit showed good calibration of relative risk but overestimation

of absolute risk (E/O¼ 1.13, 95% CI¼ 1.04 to 1.22) (Table 1, Figure

2; Supplementary Figure 4A, available online). BCRAT and IBIS

showed miscalibration both of absolute and relative risk. BCRAT

tended to show underestimation in low-risk deciles and

overestimation in the high-risk decile. IBIS (E/O¼ 1.13, 95%

CI¼ 1.05 to 1.23) showed a similar extent of overall miscalibra-

tion as iCARE-Lit and greater miscalibration in the high-risk

deciles (Table 1, Figure 2; Supplementary Figure 4A, available

online).

In PLCO, iCARE-Lit produced a similar overestimation of

5-year absolute risk as in the GS for women age 50years or

older. BCRAT and IBIS both underestimated absolute risk

Figure 1. Absolute risk calibration of breast cancer risk prediction models in the GS cohort among women younger than 50years. The risk categories are based on abso-

lute risk. The backgrounds of the plots are shaded to indicate the absolute risk threshold categories (�0.6% in pink, >0.6% to �1.13% in green, >1.13% to �3% in blue,

and >3% in orange). The 0.6% and 1.13% thresholds correspond to the average 5-year risk for US women age 40years and 50years, respectively. The 3% threshold is

used by the US Preventive Services Task Force for recommending risk-lowering drugs, and 6% is used by the WISDOM trial as a threshold for very high risk. BCRAT ¼

Breast Cancer Risk Assessment Tool; CI ¼ confidence interval; E/O ¼ expected-to-observed; GS ¼ Generations Study; IBIS ¼ International Breast Cancer Intervention

Study; iCARE-Lit ¼ Individualized Coherent Absolute Risk Estimation model based on literature review.

Table 1. Ratios of expected-to-observed 5-year absolute risk for the breast cancer risk prediction models validated using the GS*

Age group, years

(number of cases,

number of noncases) Model AUC (95% CI)

Overall Top risk decile

O% (95% CI) E% E/O ratio (95% CI) O% (95% CI) E% E/O ratio (95% CI)

<50 (265 cases,

27 967 noncases)

iCARE-Lit 65.4 (62.1 to 68.7) 0.94 (0.83 to 1.05) 0.92 0.98 (0.87 to 1.11) 2.22 (1.68 to 2.77) 2.51 1.13 (0.89 to 1.44)

BCRAT 64.0 (60.6 to 67.4) 0.79 0.85 (0.75 to 0.95) 2.24 (1.70 to 2.79) 1.73 0.77 (0.60 to 0.98)

IBIS 64.6 (61.3 to 67.9) 1.07 1.14 (1.01 to 1.29) 2.19 (1.65 to 2.73) 2.58 1.18 (0.92 to 1.51)

�50 (598 cases,

36 044 noncases)

iCARE-Lit 62.2 (60.0 to 64.5) 1.63 (1.50 to 1.76) 1.84 1.13 (1.04 to 1.22) 3.20 (2.62 to 3.77) 3.91 1.22 (1.02 to 1.46)

iCARE-BPC3 60.2 (58.0 to 62.4) 1.64 1.00 (0.93 to 1.09) 2.63 (2.12 to 3.15) 2.85 1.08 (0.89 to 1.32)

BCRAT 58.2 (55.8 to 60.5) 1.56 0.95 (0.88 to 1.03) 2.73 (2.20 to 3.26) 3.27 1.20 (0.99 to 1.46)

IBIS 61.4 (59.2 to 63.6) 1.85 1.13 (1.05 to 1.23) 3.07 (2.51 to 3.63) 3.98 1.30 (1.08 to 1.56)

*The AUCs reported in Table 1 are defined based on absolute risk and incorporate the variation due to age. The AUCs (95% CI) based on the relative risk score, which do

not incorporate variation of age, are as follows: for women younger than 50years, iCARE-Lit: 58.8 (95% CI ¼ 55.3 to 62.3); BCRAT: 54.6 (95% CI ¼ 50.9 to 58.4); IBIS: 57.0

(95% CI ¼ 53.4 to 60.6); and for women 50years or older, iCARE-Lit: 60.3 (95% CI ¼ 58.0 to 62.6); iCARE-BPC3: 57.7 (95% CI ¼ 55.4 to 60.0); BCRAT: 52.2 (95% CI ¼ 49.6 to

54.7); IBIS: 60.2 (95% CI ¼ 57.9 to 62.5). AUC ¼ area under the curve; GS ¼ Generations Study; CI ¼ confidence interval; BCRAT ¼ Breast Cancer Risk Assessment Tool; E ¼

expected absolute risk; E/O ¼ expected-to-observed; iCARE-BPC3 ¼ Individualized Coherent Absolute Risk Estimation model based on Breast and Prostate Cancer

Cohort Consortium; iCARE-Lit ¼ iCARE model based on literature review; IBIS ¼ International Breast Cancer Intervention Study; O ¼ observed absolute risk.
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(Supplementary Table 6 and Supplementary Figure 5A, available

online). In both cohorts, discriminatory accuracy was lower

when AUC was defined using the relative risk score, as opposed

to absolute risk. (Supplementary Figures 3B, 4B, and 5B, avail-

able online).

Breast Cancer Risk Projections

Figure 3 shows 5-year absolute risk projections in a target popu-

lation of white non-Hispanic US women age 50–70 years

(�30 million according to 2016 US Census). MD and 313-SNP PRS

alone had higher AUCs compared with classical risk factors

(based on iCARE-BPC3). An integrated model with classical risk

factors, MD and PRS had the highest AUC of 68.3.

The classical risk factors could identify approximately

4.1 million women, representing 13.8% of the target population,

at low risk (<1.13%, corresponding to the average 5-year risk for

50-year-old US women) of invasive breast cancer, and 40 516

(8.2% of all cases) are expected to develop the disease within

5 years (Figure 4; Supplementary Table 7, available online).

Integrating classical risk factors with MD and 313-SNP PRS is

expected to increase the number of women to 12 million, and

around 89 000 (17.7% of all cases) would be expected to develop

the disease within 5 years. In the moderate- to high-risk group

(>3% 5-year risk threshold based on US Preventive Services

Task Force recommendation for risk-reducing therapies [41]),

approximately 500 000 women, representing 1.7% of this popu-

lation, could be identified based on classical risk factors, includ-

ing approximately nearly 17 000 (3.4% of all cases) expected to

develop the disease within 5 years (Figure 4; Supplementary

Table 7, available online). Integrating with MD and 313-SNP PRS

increases the number of women identified to 3.5 million, and

among them, approximately 153 000 (�30% of all cases) would

be expected to develop the disease within 5 years.

We projected that doubling the size of current breast cancer

genomewide association study (to around 300 000 patients and

300 000 controls) would yield additional discoveries and an

Figure 2. Absolute risk calibration of breast cancer risk prediction models in the GS cohort among women 50years of age. The risk categories are based on absolute

risk. The backgrounds of the plots are shaded to indicate the absolute risk threshold categories (�0.6% in pink, >0.6% to �1.13% in green, >1.13% to �3% in blue, and

>3% in orange). The 0.6% and 1.13% thresholds correspond to the average 5-year risk for US women age 40years and 50 years, respectively. The 3% threshold is used by

the US Preventive Services Task Force for recommending risk-lowering drugs, and 6% is used by the WISDOM trial as a threshold for very high risk. BCRAT ¼ Breast

Cancer Risk Assessment Tool; CI ¼ confidence interval; E/O ¼ expected-to-observed, GS ¼ Generations Study; IBIS ¼ International Breast Cancer Intervention Study;

iCARE-BPC3 ¼ Individualized Coherent Absolute Risk Estimation model based on Breast and Prostate Cancer Cohort Consortium; iCARE-Lit ¼ iCARE model based on lit-

erature review.

Figure 3. Five-year absolute risk projection for the general US population of

white non-Hispanic women, ages 50–70years. The classical risk factors corre-

spond to the iCARE-BPC3 model. Classical risk factors include age at menarche,

age at menopause, parity, age at first birth, height, alcohol intake, breast cancer

family history, smoking status, body mass index, current HRT use, and ever HRT

type. The projected AUCs reported are based on the relative risk score in that

population and do not incorporate variation due to age. AUC ¼ area under the

curve; HRT ¼ hormone replacement therapy; iCARE-BPC3 ¼ Individualized

Coherent Absolute Risk Estimation model based on Breast and Prostate Cancer

Cohort Consortium; MD ¼ mammographic breast density; PRS ¼ polygenic risk

score; SNP ¼ single-nucleotide polymorphism.
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“improved” PRS with an AUC of 69.1 (Supplementary Table 7,

available online). An integrated model with improved PRS could

identify approximately 14 million women at low risk, and ap-

proximately 92 000 (�18% of all cases) would be expected to de-

velop invasive breast cancer within 5 years (Figure 4;

Supplementary Table 7, available online). In the moderate- to

high-risk group, we could identify close to 4.2 million women,

with approximately 207 000 (�40% of all cases) expected to de-

velop the disease within 5 years. This is close to the risk stratifi-

cation attained by the “best” theoretical PRS explaining 100% of

the variability of polygenic risk from common variants (Figure 4;

Supplementary Table 7, available online). Additionally, when

incorporating the improved PRS, the relative increase in the

numbers of women and cases identified increases as the risk

threshold becomes more extreme at either end of the distribu-

tion (Figures 4; Supplementary Table 7, available online).

Evaluation of Net Benefit

We evaluated the theoretical net benefit for high-risk decisions

based on the iCARE-BPC3 model and its extensions after the ad-

dition of PRS and MD in the US population of white non-

Hispanic women age 50–70 years (Figure 5). At a 3% 5-year risk

threshold used for recommendation for risk-lowering medica-

tions (41), there is virtually no net benefit for a model with clas-

sical risk factors alone, whereas the integrated models with the

addition of PRS and MD show some net benefit for these

women. However, none of the models show a net benefit for

risk-reducing interventions on women at the highest risk

threshold (ie, above 6%).

Discussion

In this comparative analysis using data from a large population-

based cohort, we showed that iCARE-based absolute risk models

for invasive breast cancer with classical risk factors are simi-

larly or better calibrated than previous models evaluated here,

and that the addition of MD and PRS to classical risk factors can

substantially improve risk stratification in the population.

Among women younger than 50 years, we found no substan-

tial evidence of miscalibration of the relative risk for any of the

models evaluated; however, we found some evidence for misca-

libration of the 5-year absolute risk for all models except iCARE-

Lit. This illustrates the challenges of validating models for

absolute risk because, in addition to relative risk information, it

requires information on population-based incidence rates and

distribution of risk factors, ideally from the same time period as

the validation study.

Among women age 50years or older, we found no evidence

for miscalibration of iCARE-BPC3 in terms of relative or absolute

risk, whereas the other models overestimated absolute risk for

women in the highest risk category. Although relative risk is

reasonably well calibrated for both iCARE-based models, the

better absolute risk calibration for iCARE-BPC3 compared with

iCARE-Lit could be due to differences in specification of risk fac-

tors (ie, finer vs coarser categories of continuous risk factors).

Figure 4. White non-Hispanic women age 50–70years in the US population expected to be identified at different levels of risk of breast cancer according to four risk

thresholds and the incident cases of invasive breast cancer who are expected to occur in these groups within a 5-year interval. The expected number of women is cal-

culated using mid-2016 population estimates (n¼30 030 821) from the US Census Bureau, and the number of cases is calculated using the average predicted 5-year risk

and the 2015 invasive breast cancer incidence rates from the Surveillance, Epidemiology, and End Results Program. The 0.6% and 1.13% thresholds correspond to the

average 5-year risk for US women age 40years and 50years, respectively. The 3% threshold is used by the US Preventive Services Task Force for recommending risk-

lowering drugs, and 6% is used by the WISDOM trial as a threshold for very high risk. Classical risk factors include age at menarche, age at menopause, parity, age at

first birth, height, alcohol intake, breast cancer family history, smoking status, body mass index, current HRT use, and ever HRT type. The projected AUCs reported are

based on the relative risk score in that population and do not incorporate variation due to age. AUC ¼ area under the curve; HRT = hormone replacement therapy; MD

¼ mammographic breast density; PRS ¼ polygenic risk score; SNP ¼ single-nucleotide polymorphism. iCARE-BPC3 ¼ Individualized Coherent Absolute Risk Estimation

model based on Breast and Prostate Cancer Cohort Consortium.
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The IBIS and iCARE models include more information on

classical risk factors than BCRAT (29,30), which has lower dis-

criminatory accuracy. IBIS incorporates detailed family history

information, considered important to identify high-risk women

with extensive family history. However, comparisons of risk

stratification across models in our study were limited by the

miscalibration of BCRAT, IBIS, and iCARE-Lit for women age

50years or older, particularly in high-risk deciles.

BCRAT has been extensively evaluated and is currently rec-

ommended for predicting breast cancer risk for US women un-

dergoing mammographic screening (42,43). Whereas some

studies found no evidence for miscalibration of BCRAT (44–47),

others reported underestimation (48–50) or overestimation

(47,51–53) of risk. Some studies reported improved calibration

when using incidence and mortality rates from the same coun-

try and time period (49,50,53). Sensitivity analyses using rates

closer to our validation population also indicated slight im-

provement in calibration (data not shown). Miscalibration may

be due to model misspecification or not fully accounted-for dif-

ferences in the risk factor distribution between the cohort and

the underlying population.

Two validation studies in high-risk populations in the

United States and United Kingdom found no evidence for mis-

calibration of IBIS (5,54,55). IBIS 10-year risk predictions have

been found to be better calibrated in family-based studies

including average-to-high risk women, than the BCRAT predic-

tions (5,6,56,57). IBIS and BCRAT both showed good absolute

risk calibration in an Australian population of average-risk

women (16). A recent prospective evaluation in a US-based inte-

grated health-care system showed good calibration of IBIS 10-

year absolute risks overall, but approximately 20% overestima-

tion in the highest-risk decile (9). The current literature and our

findings highlight the importance of external validation of risk

models using multiple prospective studies to evaluate robust-

ness of model performance across populations. Of note, valida-

tion studies often lack adequate size and rigorous methodology,

making comparisons across studies difficult (58). There is a

need for further robust validation in large studies to identify

models adequate for clinical decision making (59).

Our study has several strengths. GS is a relatively recent

population-based cohort including women with a wide age

range. Moreover, the validation results of the iCARE-Lit model in

PLCO further supported our overall conclusions. We evaluated

model calibration overall and stratified by levels of risk. The lat-

ter is important because accurate classification of individuals at

the extremes of risk is most relevant for risk-based prevention

and screening. Second, we assessed model calibration by deciles

of expected absolute risk and by the relative risk score. The for-

mer is commonly used in validation studies (5,44–46,48,53,54) be-

cause absolute risk is the relevant measure for clinical or public

health applications. However, strong dependence of absolute

risk on age makes the differences in model performance because

of other risk factors less evident than comparisons using the rel-

ative risk score, which does not include age. We evaluated model

calibration and discrimination with and without accounting for

age. Most (5,45,48–51,54,55) but not all (44,46,53) previous valida-

tion studies of BCRAT and IBIS assessed model discrimination

accounting for age. Such model discrimination statistics (eg,

AUC) evaluated in a validation cohort may differ from those in

the target population because of differences in risk factor distri-

butions. Additionally, our results showed that small changes in

overall measures (eg, AUC) derived from additional risk factors

can result in substantial changes in the number of women at the

extremes of risk distribution.

Limitations of our analyses include that not all risk factors

were available in the validation cohorts. Additionally, further

evalution of iCARE models in cohorts more representative of

populations in health-care systems where the models would be

used is desirable. Moreover, we evaluated only short-term risk

predictions, assuming risk factors remained constant over the

prediction period. Validation of long-term risk will require fur-

ther follow-up or additional studies, preferably accounting for

time-varying risk factors and time-dependent associations. Our

current model development and validation efforts focus on pre-

dicting risk of breast cancer for white non-Hispanic women. Our

ongoing work will extend the models to nonwhite populations

and include extensive classical risk factor information and an

improved PRS (60,61).

For a given high-risk clinical decision, a well-calibrated

model providing wider risk stratification is likely to have greater

clinical utility. We have shown this using theoretical net benefit

analyses in a target population; however, further assessment of

the clinical utility of models will require identifying risk thresh-

olds explicitly informed by benefits and costs of a specific inter-

vention (20,62,63). Risk projections based on the integrated

model assumed that classical risk factors, MD, and PRS act mul-

tiplicatively on disease risk. We accounted for known depen-

dencies between classical risk factors, and previous studies

support multiplicative effects of classical risk factors or MD

Figure 5. Projected net benefit of identifying white non-Hispanic women age 50–

70years with predicted absolute risk above a range of thresholds, with vertical

lines representing 3% and 6% thresholds. The 3% threshold is used by the US

Preventive Services Task Force for recommending risk-lowering drugs, and 6% is

used by the WISDOM trial as a threshold for very high risk. The classical risk fac-

tors correspond to the iCARE-BPC3 model. Classical risk factors include age at

menarche, age at menopause, parity, age at first birth, height, alcohol intake,

breast cancer family history, smoking status, body mass index, current HRT use,

and ever HRT type. Projections were made under the assumption of perfect cali-

bration and log-normal distribution of risk in the population and using informa-

tion on the spread (SD) of the risk score from the reference sample and

distribution of age in the current US population. HRT ¼ hormone replacement

therapy; iCARE-BPC3 ¼ Individualized Coherent Absolute Risk Estimation model

based on Breast and Prostate Cancer Cohort Consortium; MD ¼ mammographic

breast density, PRS ¼ polygenic risk score, SNP ¼ single nucleotide

polymorphism.
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with PRS on disease risk (24,64,65). Risk projections based on

models with MD accounted for its dependence on age and body

mass index, but not on the other risk factors in the model that

have weaker associations with MD (66). Thus, these should be

considered only as projections, and such integrated models re-

quire independent prospective validation prior to consideration

for clinical use. We derived PRS based on SNP odds ratios from

genetic discovery studies (34,35). This may result in overestima-

tion of risk stratification; however, based on previous assess-

ment (67), this bias is likely small.

Updates to BCRAT and IBIS have added MD (7–11) and PRS

(12–18) to the original models. However, only the addition of MD

to IBIS has been prospectively validated and it showed some

overestimation in the high-risk categories (9). Addition of an 18-

SNP PRS to IBIS was shown to increase risk discrimination in a

UK-based screening cohort, although accuracy of prediction was

not prospectively evaluated (18). The Breast Cancer Surveillance

Consortium risk model, which includes BI-RADS MD and a 76-

SNP PRS, showed good calibration in a case-control study nested

within a US-based cohort (68).

Further improvements in risk stratification could be achieved

by incorporating additional risk factors and heterogeneity in risk

factor associations by breast cancer subtypes. Ultimately, it is

desirable to develop a comprehensive model, robustly validated

in multiple populations with disparate risk factor information,

applicable in populations with a wide range of underlying risk

that provides reliable risk estimates based on subsets of risk fac-

tors depending on the clinical application (eg, risk assessment

before or after mammography). The iCARE methodology facili-

tates this by providing a flexible risk modeling and validation

tool with capabilities of handling missing risk factors.

In conclusion, we have demonstrated that iCARE models

based on classical risk factors perform similarly to and, in some

cases, better than established models for 5-year risk predictions

of invasive breast cancer. Based on our projections, substantial

improvements in risk stratification can be achieved with the ad-

dition of MD and PRS to classical risk factors. Such integrated

risk models require further prospective empirical validation be-

fore broad clinical or research applications.
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